Skip to main content

Dietary Patterns, Foods, Nutrients and Phytochemicals in Non-Alcoholic Fatty Liver Disease

  • Chapter
  • First Online:
Dietary Patterns and Whole Plant Foods in Aging and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and its prevalence is increasing concurrently with the obesity pandemic. The high prevalence of NAFLD is generally due to unhealthy high energy dietary patterns and sedentary lifestyles leading to obesity, insulin resistance and metabolic syndrome, which are strongly associated with elevated hepatic steatosis and increased diabetes risk. Excessive caloric intake especially from high intake of refined carbohydrates and saturated fat promotes increased fatty liver. High intake of added sugar such as sugar sweetened beverages tends to be a stronger promoter of enzymes involved in hepatic de novo lipogenesis and NAFLD than higher-fat diets. Certain nutrients and phytochemicals such as omega-3 fatty acids, monounsaturated fatty acids, dietary fiber, vitamin E, carotenoids, flavonoids and caffeine, and foods and beverages including oily fish, extra virgin olive oil, oatmeal, coffee, and soy are associated with lower risk of NAFLD or its complications. Higher quality diets including moderate energy intake, higher intake of whole (minimally processed) plant foods, and low-fat dairy, and lower intake of red and processed meat and added sugar and salt, and adequate physical activity and sleep are associated with prevention and management NAFLD. The Western lifestyle is associated with higher NAFLD risk and progression to nonalcoholic steatohepatitis (NASH). Higher adherence to Mediterranean or Dietary Approaches to Stop Hypertension (DASH) diets, especially if energy controlled, may be effective in managing NAFLD risk and complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rinella ME. Nonalcoholic fatty liver disease a systematic review. JAMA. 2015;313(22):2263–73.

    Article  CAS  PubMed  Google Scholar 

  2. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–71.

    Article  CAS  PubMed  Google Scholar 

  3. Younossi ZM, Blissert D, Blissert R, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–86.

    Google Scholar 

  4. Dongiovanni P, Valenti L. A nutrigenomic approach to non-alcoholic fatty liver disease. Int J Mol Sci. 2017; 18:1534.

    Google Scholar 

  5. Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140(1):124–31.

    Article  PubMed  Google Scholar 

  6. Tovo CV, Fernandes SA, Buss C, de Mattos AA. Sarcopenia and non-alcoholic fatty liver disease: is there a relationship? A systematic review. World J Hepatol. 2017;9(6):326–32. https://doi.org/10.4254/wjh.v9.i6.326.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schwenger KJP, Allard JP. Clinical approaches to non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20(7):1712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conlon BA, Beasley JM, Aebersold K, et al. Nutritional management of insulin resistance in nonalcoholic fatty liver disease (NAFLD). Forum Nutr. 2013;5:4093–114.

    Google Scholar 

  9. Hashiba M, Ono M, Hyogo H, et al. Glycemic variability is an independent predictive factor for development of hepatic fibrosis in nonalcoholic fatty liver disease. PLoS One. 2013;8(11):e76161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polimeni L, Ben MD, Baratta F, et al. Oxidative stress: new insights on the association of nonalcoholic fatty liver disease and atherosclerosis. World J Hepatol. 2015;7(10):1325–36.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Papandreou D, Andreou E. Role of diet on non-alcoholic fatty liver disease: an updated narrative review. World J Hepatol. 2015;7(3):575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vreman RA, Goodell AJ, Rodriquez LA, et al. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model. BMJ Open. 2017;7:e013543.

    Google Scholar 

  13. Smits MM, Ioannou GN, Boyko EJ, Utzschneider KM. Non-alcoholic fatty liver disease as an independent manifestation of the metabolic syndrome: results of a US national survey in three ethnic groups. J Gastroenterol Hepatol. 2013;28:664–70.

    Article  CAS  PubMed  Google Scholar 

  14. Zelber-Sagi S, Ratziu V, Oren R. Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. World J Gastroenterol. 2011;17:3377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zolfaghari H, Askari G, Siassi F, et al. Intake of nutrients, fiber, and sugar in patients with nonalcoholic fatty liver disease in comparison to healthy individuals. Int J Prev Med. 2016;7:98.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marchesini G, Petta S, Dalle Grave R. Diet, weight loss, and liver health in nonalcoholic fatty liver disease: pathophysiology, evidence, and practice. Hepatology. 2016;63(6):2032–43. https://doi.org/10.1002/hep.28392.

    Article  PubMed  Google Scholar 

  17. Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016;61(5):1282–93. https://doi.org/10.1007/s10620-016-4054-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sevastianova K, Santos A, Kotronen A, et al. Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. Am J Clin Nutr. 2012;96:727–34.

    Article  CAS  PubMed  Google Scholar 

  19. Siddiqi Z, Karoli R, Fatima J, et al. Soft drink consumption and the risk of nonalcoholic fatty liver disease. J Assoc Physicians India. 2017;65(5):28–32.

    Google Scholar 

  20. Jiménez-Cruz A, Gómez-Miranda LM, Ramírez GD, et al. Adiposity as a risk factor of nonalcoholic fat disease: a systemic review. Nutr Hosp. 2014;29(4):771–5.

    PubMed  Google Scholar 

  21. Pang Q, Zhang JY, Song SD, et al. Central obesity and nonalcoholic fatty liver disease risk after adjusting for body mass index. World J Gastroenterol. 2015;21(5):1650–62. https://doi.org/10.3748/wjg.v21.i5.1650.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann E, Gamborg M, Holst C, et al. Body mass index in school-aged children and the risk of routinely diagnosed non-alcoholic fatty liver disease in adulthood: a prospective study based on the Copenhagen School Health Records Register. BMJ Open. 2015;5:e006998.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ratziu V, Bellentani S, Cortez-Pinto H, et al. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol. 2010;53:372–84.

    Article  PubMed  Google Scholar 

  24. Copaci I, Lupescu I, Caceaune E, et al. Noninvasive markers of improvement of liver steatosis achieved by weight reduction in patients with nonalcoholic fatty liver disease. Rom J Intern Med. 2015;53(1):54–62.

    CAS  PubMed  Google Scholar 

  25. Montesi L, Caselli C, Centis E, et al. Physical activity support or weight loss counseling for nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(29):10128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hsu CC, Erik Ness E, Kowdley KV. Nutritional approaches to achieve weight loss in nonalcoholic fatty liver disease. Adv Nutr. 2017;8:253–65.

    Article  PubMed  Google Scholar 

  27. Wong VW, Chan RS, Wong GL, et al. Community-based lifestyle modification programme for non-alcoholic fatty liver disease: a randomized controlled trial. J Hepatol. 2013;59:536–42.

    Article  PubMed  Google Scholar 

  28. Grønbaek H, Lange A, Birkebaek NH, et al. Effect of a 10-week weight-loss camp on fatty liver disease and insulin sensitivity in obese Danish children. J Pediatr Gastroenterol Nutr. 2012;54(2):223–8.

    Article  PubMed  Google Scholar 

  29. Promrat K, Kleiner DE, Niemeier HM, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis (NASH). Hepatology. 2010;51(1):121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta V, Mah XJ, Garcia MC, et al. Oily fish, coffee and walnuts: dietary treatment for nonalcoholic fatty liver disease. World J Gastroenterol. 2015;21(37):10621–35. https://doi.org/10.3748/wjg.v21.i37.10621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20(7):1746–55. https://doi.org/10.3748/wjg.v20.i7.1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu W, Li S, Li J, et al. Effects of omega-3 fatty acid in nonalcoholic fatty liver disease: a meta-analysis. Gastroenterol Res Pract. 2016;1459790. https://doi.org/10.1155/2016/1459790.

  33. He X-X, Wu X-L, Chen R-P, et al. Effectiveness of omega-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. PLoS One. 2016;11(10):e0162368. https://doi.org/10.1371/journal.pone.0162368.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Minno MND, Russolillo A, Lupoli R, et al. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease. World J Gastroenterol. 2012;18(41):5839–47. https://doi.org/10.3748/wjg. v18.i41.5839.

  35. Finelli C, Tarantino G. Is there any consensus as to what diet or lifestyle approach is the right one for NAFLD patients? J Gastrointest Liver Dis. 2012;21(3):293–302.

    Google Scholar 

  36. Bozzetto L, Prinster A, Annuzzi G, et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care. 2012;35:1429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Priore P, Cavallo A, Gnoni A, et al. Modulation of hepatic lipid metabolism by olive oil and its phenols in nonalcoholic fatty liver disease. IUBMB Life. 2015;67(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  38. European Food Safety Authority (EFSA). EFSA panel on dietetic products, nutrition, and allergies. Opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010;8(3):1462.

    Google Scholar 

  39. Liu S, Willett WC, Manson JE, et al. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78:920–7.

    Article  CAS  PubMed  Google Scholar 

  40. Slavin JL. Dietary fiber and body weight. Nutrition. 2005;21:411–8.

    Article  PubMed  Google Scholar 

  41. Lindstrom J, Peltonen M, Eriksson JG, et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia. 2006;49:912–20.

    Article  CAS  PubMed  Google Scholar 

  42. Tucker LA, Thomas KS. Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr. 2009;139:576–81.

    Article  CAS  PubMed  Google Scholar 

  43. Fogelholm M, Anderssen S, Gunnarsdottir I, Lahti-Koski M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res. 2012;56:19103.

    Article  Google Scholar 

  44. Romaguera D, Angquist L, Du H, et al. Dietary determinants of changes in waist circumference adjusted for body mass index—a proxy measure of visceral adiposity. PLoS One. 2010;5(7):e11588.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Du H, van der AD, Boshuizen HC, et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr. 2010;91:329–36.

    Article  CAS  PubMed  Google Scholar 

  46. Chang H-C, Huang C-N, Yeh D-M, et al. Oat prevents obesity and abdominal fat distribution and improves liver function in humans. Plant Foods Hum Nutr. 2013;68:18–23. https://doi.org/10.1007/ s11130-013-0336-2.

    Article  CAS  PubMed  Google Scholar 

  47. Ma Y, Olendzki BC, Wang J, et al. Single-component versus multicomponent dietary goals for the metabolic syndrome a randomized trial. Ann Intern Med. 2015;162:248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yoneda M, Mawatari H, Fujita K, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol. 2007;42(7):573–82.

    Article  CAS  PubMed  Google Scholar 

  49. Maleki I, Rastgar A, Hosseini V, et al. High sensitive CRP and pentraxine 3 as noninvasive biomarkers of nonalcoholic fatty liver disease. Eur Rev Med Pharmacol Sci. 2014;18(11):1583–90.

    CAS  PubMed  Google Scholar 

  50. Federic A, Dallio M, Caprio GG, et al. Qualitative and quantitative evaluation of dietary intake in patients with non-alcoholic steatohepatitis. Nutrients. 2017; 9:1074.

    Google Scholar 

  51. Jiao J, Xu JY, Zhang W, et al. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9. https://doi.org/10.3109/09637486.2014.959898.

    Article  CAS  PubMed  Google Scholar 

  52. Ortiz-Lopez C, Lomonaco R, Orsak B, et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care. 2012;35:873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  54. The InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia. 2015;58(7):1394–408. https://doi.org/10.1007/s00125-015-3585-3589.

    Article  CAS  PubMed Central  Google Scholar 

  55. Mokhtari Z, Gibson DL, Hekmatdoost A. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv Nutr. 2017;8:240–52.

    Article  PubMed  Google Scholar 

  56. Karkman A, Lehtimäki J, Ruokolainen L. The ecology of human microbiota: dynamics and diversity in health and disease. Ann N Y Acad Sci. 2017;1399(1):78–92. https://doi.org/10.1111/nyas.13326.

    Article  PubMed  Google Scholar 

  57. Wijarnpreechaa K, Thongprayoona C, Ungprasertb P. Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29(2):e8–e12. https://doi.org/10.1097/MEG.0000000000000776.

    Article  Google Scholar 

  58. Sato K, Gosho M, Yamamoto T, et al. Vitamin E has a beneficial effect on nonalcoholic fatty acid disease: a meta-analysis of randomized controlled trials. Nutrition. 2015;31(7–8):923–30.

    Article  CAS  PubMed  Google Scholar 

  59. Xu R, Tao A, Zhang S. Association between vitamin E and non-alcoholic steatohepatitis: a meta-analysis. Int J Clin Exp Med. 2015;8(3):3924–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yilmaz B, Sahin K, Bilen H, et al. Carotenoids and non-alcoholic fatty liver disease. Hepatobiliary Surg Nutr. 2015;4(3):161–71. https://doi.org/10.3978/j.issn.2304-3881.2015.01.11.

    PubMed  PubMed Central  Google Scholar 

  61. Sugiura M, Nakamura M, Ogawa K, et al. High serum carotenoids are associated with lower risk for developing elevated serum alanine aminotransferase among Japanese subjects: the Mikkabi cohort study. Br J Nutr. 2016;115:1462–9. https://doi.org/10.1017/S0007114516000374.

    Article  CAS  PubMed  Google Scholar 

  62. Cao Y, Wang C, Liu J, et al. Greater serum carotenoid levels associated with lower prevalence of nonalcoholic fatty liver disease in Chinese adults. Sci Rep. 2015;5:12951. https://doi.org/10.1038/ srep12951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van De Wier B, Koek GH, Bast A, et al. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr. 2017;57(4):834–55. https://doi.org/10.1080/10408398.2014.952399.

    Article  Google Scholar 

  64. Kani AH, Alavian SM, Esmaillzadeh A, et al. Effects of a novel therapeutic diet on liver enzymes and coagulating factors in patients with non-alcoholic fatty liver disease: a parallel randomized trial. Nutrition. 2014;30:814–21.

    Article  CAS  PubMed  Google Scholar 

  65. Haghighatdoost F, Salehi-Abargouei A, Surkan PJ, Azadbakht L. The effects of low carbohydrate diets on liver function tests in nonalcoholic fatty liver disease: a systematic review and meta-analysis of clinical trials. J Res Med Sci. 2016;21:53.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Arefhosseini SR, Ebrahimi-Mameghani M, Farsad Naeimi A, et al. Lifestyle modification through dietary intervention: health promotion of patients with nonalcoholic fatty liver disease. Health Promot Perspect. 2011;1:147–54.

    PubMed  PubMed Central  Google Scholar 

  67. Rodriguez-Hernandez H, Cervantes-Huerta M, Rodriguez-Moran M, Guerrero-Romero F. Decrease of aminotransferase levels in obese women is related to body weight reduction, irrespective of type of diet. Ann Hepatol. 2011;10:486–92.

    CAS  PubMed  Google Scholar 

  68. Browning JD, Baker JA, Rogers T, Davis J, et al. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011;93:1048–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Katsagoni CN, Georgoulis M, Papatheodoridis GVA, et al. Associations between lifestyle characteristics and the presence of nonalcoholic fatty liver disease: a case-control study. Metab Syndr Relat Disord. 2017;15(2):72–9. https://doi.org/10.1089/met.2016.0105.

    Article  CAS  PubMed  Google Scholar 

  70. Chan R, Wong VW-S, Chu WC-W, et al. Diet-quality scores and prevalence of nonalcoholic fatty liver disease: a population study using proton-magnetic resonance spectroscopy. PLoS One. 2017;10(9):e0139310. https://doi.org/10.1371/journal.pone.0139310.

    Article  Google Scholar 

  71. Katsagoni CN, Papatheodoridis GV, Papageorgiou MV, et al. A “healthy diet-optimal sleep” lifestyle pattern is inversely associated with liver stiffness and insulin resistance in patients with nonalcoholic fatty liver disease. Appl Physiol Nutr Metab. 2017;42(3):250–6. https://doi.org/10.1139/apnm-2016-0492.

    Article  CAS  PubMed  Google Scholar 

  72. Wehmeyer MH, Zyriax B-C, Jagemann B, et al. Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine. 2016;95:23. https://doi.org/10.1097/MD.0000000000003887.

    Article  Google Scholar 

  73. Adriano LS, de Carvalho Sampaio HA, Arruda SPM, et al. Healthy dietary pattern is inversely associated with non-alcoholic fatty liver disease in elderly. Br J Nutr. 2016;115:2189–95. https://doi.org/10.1017/S0007114516001410.

    Article  CAS  PubMed  Google Scholar 

  74. Yang C-Q, Shu L, Wang S, et al. Dietary patterns modulate the risk of non-alcoholic fatty liver disease in Chinese adults. Forum Nutr. 2015;7:4778–91.

    Google Scholar 

  75. Goletzke J, Buyken AE, Gopinath B, et al. Carbohydrate quality is not associated with liver enzyme activity and plasma TAG and HDL concentrations over 5 years in an older population. Br J Nutr. 2013;110:918–25.

    Article  CAS  PubMed  Google Scholar 

  76. Oddy WH, Herbison CE, Jacoby P, et al. The western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am J Gastroenterol. 2013;108:778–85.

    Article  CAS  PubMed  Google Scholar 

  77. Godos J, Federico A, Dallio M, Scazzina F. Mediterranean diet and nonalcoholic fatty liver disease: molecular mechanisms of protection. Int J Food Sci Nutr. 2017;68(1):18–27. https://doi.org/10.1080/09637486.2016.1214239.

    Article  CAS  PubMed  Google Scholar 

  78. Trovato FM, Martines GF, Brischetto D, Trovato G, Catalano D. Neglected features of lifestyle: their relevance in non-alcoholic fatty liver disease. World J Hepatol. 2016;8(33):1459–65. https://doi.org/10.4254/wjh. v8. i33.1459.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aller R, Izaola O, de la Fuente B, de Luis D. Mediterranean diet is associated with liver histology in patients with non-alcoholic fatty liver disease. Nutr Hosp. 2015;32(6):2518–24.

    PubMed  Google Scholar 

  80. Kontogianni MD, Tileli N, Margariti A, et al. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr. 2014;33(4):678–83.

    Article  CAS  PubMed  Google Scholar 

  81. Ryan MC, Itsiopoulos C, Thodis T, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59:138–43.

    Article  CAS  PubMed  Google Scholar 

  82. Misciagna G, Del Pilar Diaz M, Caramin DV, et al. Effect of s low glycemic index Mediterranean diet on non-clacholic fatty liver disease. A randomized controlled clinical trial. J Nutr. 2017;21(4):404–12.

    Google Scholar 

  83. Soltani S, Chitsazi MJ, Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: a systematic review and meta-analysis of randomized trials. Clin Nutr. 2017. https://doi.org/10.1016/j.clnu.2017.02.018.

  84. Zade MR, Telkabadi MH, Bahmani F, et al. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: a randomized clinical trial. Liver Int. 2016;36:563–71. https://doi.org/10.1111/liv.12990.

  85. Hekmatdoost A, Shamsipour A, Melbodi M, et al. Adherence to the Dietary Approaches to Stop Hypertension (DASH) and risk of nonalcoholic fatty liver disease. Int J Food Sci Nutr. 2016;67(8):1024–9. https://doi.org/10.1080/09637486.2016.1210101.

Download references

Author information

Authors and Affiliations

Authors

Appendix A: Comparison of Western and Healthy Dietary Patterns per 2000 kcal (Approximated Values)

Appendix A: Comparison of Western and Healthy Dietary Patterns per 2000 kcal (Approximated Values)

Components

Western dietary pattern (US)

USDA base pattern

DASH diet pattern

Healthy Mediterranean pattern

Healthy vegetarian pattern (Lact-ovo based)

Vegan pattern

Emphasizes

Refined grains, low fiber foods, red meats, sweets, and solid fats

Vegetables, fruit, whole-grain, and low-fat milk

Potassium rich vegetables, fruits, and low fat milk products

Whole grains, vegetables, fruit, dairy products, olive oil, and moderate wine

Vegetables, fruit, whole-grains, legumes, nuts, seeds, milk products, and soy foods

Plant foods: vegetables, fruits, whole grains, nuts, seeds, and soy foods

Includes

Processed meats, sugar sweetened beverages, and fast foods

Enriched grains, lean meat, fish, nuts, seeds, and vegetable oils

Whole-grain, poultry, fish, nuts, and seeds

Fish, nuts, seeds, and pulses

Eggs, non- dairy milk alternatives, and vegetable oils

Non-dairy milk alternatives

Limits

Fruits and vegetables, and whole-grains

Solid fats and added sugars

Red meats, sweets, and sugar-sweetened beverages

Red meats, refined grains, and sweets

No red or white meats, or fish; limited sweets

No animal products

Estimated Nutrients/Components

 

Carbohydrates (% Total kcal)

51

51

55

50

54

57

Protein (% Total kcal)

16

17

18

16

14

13

Total fat (% Total kcal)

33

32

27

34

32

30

Saturated fat (% Total kcal)

11

8

6

8

8

7

Unsat. fat (% Total kcal)

22

25

21

24

26

25

Fiber (g)

16

31

29+

31

35+

40+

Potassium (mg)

2800

3350

4400

3350

3300

3650

Vegetable oils (g)

19

27

25

27

19–27

18–27

Sodium (mg)

3600

1790

1100

1690

1400

1225

Added sugar (g)

79 (20 tsp.)

32 (8 tsp.)

12 (3 tsp.)

32 (8 tsp.)

32 (8 tsp.)

32 (8 tsp.)

Plant Food Groups

Fruit (cup)

≤1.0

2.0

2.5

2.5

2.0

2.0

Vegetables (cup)

≤1.5

2.5

2.1

2.5

2.5

2.5

Whole-grains (oz.)

0.6

3.0

4.0

3.0

3.0

3.0

Legumes (oz.)

1.5

0.5

1.5

3.0

3.0+

Nuts/seeds (oz.)

0.5

0.6

1.0

0.6

1.0

2.0

Soy products (oz.)

0.0

0.5

1.1

1.5

  1. U.S. Department of Agriculture, Agriculture Research Service, Nutrient Data Laboratory. 2014. USDA National Nutrient Database for Standard Reference, Release 27. http://www.ars.usda.gov/nutrientdata. Accessed 17 Feb 2015
  2. Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Appendix E-3.7: Developing vegetarian and Mediterranean-style food patterns. 2015;1–9
  3. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th ed. Washington, DC: U.S. Government Printing Office; 2010. Table B2.4; http://www.choosemyplate.gov/. Accessed 22 Aug 2015

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Dietary Patterns, Foods, Nutrients and Phytochemicals in Non-Alcoholic Fatty Liver Disease. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59180-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59180-3_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59179-7

  • Online ISBN: 978-3-319-59180-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics