Skip to main content

Liquid Biopsy in Prostate Cancer

  • Chapter
  • First Online:
Liquid Biopsy in Cancer Patients

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 1096 Accesses

Abstract

Chemotherapy is no longer the only therapeutic option for the treatment of advanced prostate cancer. The understanding of the pathophysiological mechanisms and its dynamic changes has divided neoplastic progression into different moments. Indeed prostate cancer changes over time from a state where cell proliferation is hormone-dependent to a stage where cell growth is hormone-independent (castration resistant disease, mCRPC). This knowledge has allowed the development of new generation hormonal agents that, along with the advent of new chemotherapeutic agents, have changed the long-term prognosis of this disease. As a result, the progression of prostate disease is dynamic over time and its close monitoring may allow, for example, to choose the right time to start or stop a treatment, avoiding unnecessary toxicity and a waste of resources. Therefore liquid biopsy, through its minimal invasiveness, is set to become an indispensable tool for the prostate cancer management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashworth TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aus Med J. 1869;14:146–9.

    Google Scholar 

  2. Armstrong AJ, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bitting RL, et al. Development of a method to isolate circulating tumor cells using mesenchymal-based capture. Methods. 2013;64:129–36.

    Article  CAS  PubMed  Google Scholar 

  4. Allard WJ, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.

    Article  PubMed  Google Scholar 

  5. Shaffer DR, et al. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13:2023–9.

    Article  CAS  PubMed  Google Scholar 

  6. de Bono JS, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14:6302–9.

    Article  PubMed  Google Scholar 

  7. Goldkorn A, et al. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol. 2014;32:1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scher HI, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10:233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scher HI, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015;33:1348–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sieuwerts AM, et al. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst. 2009;101:61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu M, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pecot CV, et al. A novel platform for detection of CK+ and CK- CTCs. Cancer Discov. 2011;1:580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antonarakis ES, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Antonarakis ES, et al. AR-V7 and efficacy of abiraterone (Abi) and enzalutamide (Enza) in castration-resistant prostate cancer (CRPC): expanded analysis of the Johns Hopkins cohort. J Clin Oncol. 2016;34(suppl; abstr 5012).

    Google Scholar 

  15. Nakazawa M, et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol. 2015;26:1859–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Onstenk W, et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol. 2015;68:939–45.

    Article  CAS  PubMed  Google Scholar 

  17. Antonarakis ES, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015;1:582–91.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scher HI, et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2016;2:1441–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stott SL, et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med. 2010;2:25ra23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reyes EE, et al. Quantitative characterization of androgen receptor protein expression and cellular localization in circulating tumor cells from patients with metastatic castration-resistant prostate cancer. J Transl Med. 2014;12:313.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goldkorn A, et al. Circulating tumor cell telomerase activity as a prognostic marker for overall survival in SWOG 0421: a phase III metastatic castration resistant prostate cancer trial. Int J Cancer. 2015;136:1856–62.

    Article  CAS  PubMed  Google Scholar 

  22. Punnoose EA, et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer. 2015;113:1225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Bono JS, et al. Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin Cancer Res. 2007;13:3611–6.

    Article  PubMed  Google Scholar 

  24. Cho KS, Oh HY, Lee EJ, Hong SJ. Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: a preliminary study. Yonsei Med J. 2007;48:1009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perkins G, et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS One. 2012;7:e47020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS  PubMed  Google Scholar 

  27. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100:8817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pekin D, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11:2156–66.

    Article  CAS  PubMed  Google Scholar 

  29. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61:112–23.

    Article  CAS  PubMed  Google Scholar 

  30. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96:9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forshew T, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra168.

    Article  Google Scholar 

  32. Newman AM, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin C, et al. Quantitative and qualitative analysis of circulating cell-free DNA can be used as an adjuvant tool for prostate cancer screening: a meta-analysis. Dis Markers. 2016;2016:3825819.

    PubMed  PubMed Central  Google Scholar 

  34. Schwarzenbach H, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 2009;15:1032–8.

    Article  CAS  PubMed  Google Scholar 

  35. Network CGAR. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  36. Carreira S, et al. Tumor clone dynamics in lethal prostate cancer. Sci Transl Med. 2014;6:254ra125.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gundem G, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong MK, et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun. 2015;6:6605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Romanel A, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015;7:312re310.

    Article  Google Scholar 

  40. Kwee S, Song MA, Cheng I, Loo L, Tiirikainen M. Measurement of circulating cell-free DNA in relation to 18F-fluorocholine PET/CT imaging in chemotherapy-treated advanced prostate cancer. Clin Transl Sci. 2012;5:65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salvi S, et al. Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br J Cancer. 2015;112:1717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Azad AA, et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 2015;21:2315–24.

    Article  CAS  PubMed  Google Scholar 

  43. Frenel JS, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin Cancer Res. 2015;21:4586–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abusamra AJ, et al. Tumor exosomes expressing fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005;35:169–73.

    Article  CAS  PubMed  Google Scholar 

  45. Lundholm M, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One. 2014;9:e108925.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bryant RJ, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lázaro-Ibáñez E, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate. 2014;74:1379–90.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta. 2012;1819:1154–63.

    Article  CAS  PubMed  Google Scholar 

  49. Di Vizio D, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181:1573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khan S, et al. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One. 2012;7:e46737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ronquist G. Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Intern Med. 2012;271:400–13.

    Article  CAS  PubMed  Google Scholar 

  52. Hosseini-Beheshti E, Pham S, Adomat H, Li N, Tomlinson Guns ES. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics. 2012;11:863–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nilsson J, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tavoosidana G, et al. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc Natl Acad Sci U S A. 2011;108:8809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duijvesz D, et al. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS One. 2013;8:e82589.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang X, Liang M, Dittmar R, Wang L. Extracellular microRNAs in urologic malignancies: chances and challenges. Int J Mol Sci. 2013;14:14785–99.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dijkstra S, et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol. 2014;191:1132–8.

    Article  CAS  PubMed  Google Scholar 

  58. Drake RR, Kislinger T. The proteomics of prostate cancer exosomes. Expert Rev Proteomics. 2014;11:167–77.

    Article  CAS  PubMed  Google Scholar 

  59. Principe S, et al. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics. 2013;13:1667–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nyalwidhe JO, et al. Increased bisecting N-acetylglucosamine and decreased branched chain glycans of N-linked glycoproteins in expressed prostatic secretions associated with prostate cancer progression. Proteomics Clin Appl. 2013;7:677–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bijnsdorp IV, et al. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles. 2013;2:1–10.

    Google Scholar 

  62. Lu Q, et al. Identification of extracellular delta-catenin accumulation for prostate cancer detection. Prostate. 2009;69:411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fedele C, Singh A, Zerlanko BJ, Iozzo RV, Languino LR. The αvβ6 integrin is transferred intercellularly via exosomes. J Biol Chem. 2015;290:4545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corcoran C, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7:e50999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Del Re M, et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol. 2017;71(4):680–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rolfo MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galvano, A., Papadimitriou, K., Di Stefano, B., Castiglia, M., Rolfo, C. (2017). Liquid Biopsy in Prostate Cancer. In: Russo, A., Giordano, A., Rolfo, C. (eds) Liquid Biopsy in Cancer Patients. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55661-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55661-1_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55659-8

  • Online ISBN: 978-3-319-55661-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics