Skip to main content

Dendritic Cells

  • Chapter
  • First Online:
Immunotherapy of Melanoma
  • 965 Accesses

Abstract

Dendritic cells are the professional antigen presenting cells that have the ability to capture the antigen from foreign as well as abnormal host cells, process the antigens and present the antigens on MHC class I/II to T-cells along with appropriate costimulatory signals. They are the unique type of antigen presenting cells that can activate both CD8+ as well as CD4+ T-cells. The present chapter describes the significance of DCs in immune response. The chapter begins with a brief note on discovery of DCs by noted immunologist Dr. Ralph Steinmann and his contributions to development of DC-based vaccines. Next, the different subtypes of DCs, classified based on their origin, location, phenotype and function are presented and then the main functions of DCs are listed. While discussing the functions of DCs in detail, various antigen processing mechanisms including the ‘classical’ MHC class I and class II pathways as well as the CD1 pathway and the significance of costimulation in the activation of T-cells are described. Role of DCs and the DC-secreted cytokines in induction of T-cell differentiation into different types of effector T-cells are discussed. The interaction between DCs and B-cells including antigen presentation, activation and induction of B-cell differentiation are then described in the chapter, followed by discussion on significance of DCs in immune tolerance. Finally, the role of DCs in tumor microenvironment is discussed with details on the mechanisms employed by tumor cells to inhibit DC-mediated anti-tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipscomb, M. F., & Masten, B. J. (2002). Dendritic cells: Immune regulators in health and disease. Physiological Reviews, 82(1), 97–130. doi:10.1152/physrev.00023.2001.

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R. M., & Banchereau, J. (2007). Taking dendritic cells into medicine. Nature, 449(7161), 419–426. doi:10.1038/nature06175. nature06175 [pii].

    Article  CAS  PubMed  Google Scholar 

  3. Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. Journal of Experimental Medicine, 137(5), 1142–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steinman, R. M., & Cohn, Z. A. (1974). Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. Journal of Experimental Medicine, 139(2), 380–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steinman, R. M., Lustig, D. S., & Cohn, Z. A. (1974). Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. Journal of Experimental Medicine, 139(6), 1431–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. One of 3 Chosen for Nobel in Medicine Died Days Ago. (2011). The New York Times.

    Google Scholar 

  7. Nobel winner’s last big experiment: Himself. (2011). Reuters.

    Google Scholar 

  8. Merad, M., Sathe, P., Helft, J., Miller, J., & Mortha, A. (2013). The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563–604. doi:10.1146/annurev-immunol-020711-074950.

    Article  CAS  PubMed  Google Scholar 

  9. Dzionek, A., Fuchs, A., Schmidt, P., Cremer, S., Zysk, M., Miltenyi, S., et al. (2000). BDCA-2, BDCA-3, and BDCA-4: Three markers for distinct subsets of dendritic cells in human peripheral blood. The Journal of Immunology, 165(11), 6037–6046.

    Article  CAS  PubMed  Google Scholar 

  10. Palucka, K., & Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12(4), 265–277. doi:10.1038/nrc3258. nrc3258 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Basu, S., & Srivastava, P. K. (1999). Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. Journal of Experimental Medicine, 189(5), 797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pamer, E., & Cresswell, P. (1998). Mechanisms of MHC class I–restricted antigen processing. Annual Review of Immunology, 16, 323–358. doi:10.1146/annurev.immunol.16.1.323.

    Article  CAS  PubMed  Google Scholar 

  13. Germain, R. N. (1995). The biochemistry and cell biology of antigen presentation by MHC class I and class II molecules. Implications for development of combination vaccines. Annals of the New York Academy of Sciences, 754, 114–125.

    Article  CAS  PubMed  Google Scholar 

  14. Reis e Sousa, C., & Germain, R. N. (1995). Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. Journal of Experimental Medicine, 182(3), 841–851.

    Article  CAS  PubMed  Google Scholar 

  15. Larsson, M., Fonteneau, J. F., & Bhardwaj, N. (2001). Dendritic cells resurrect antigens from dead cells. Trends in Immunology, 22(3), 141–148. S1471-4906(01)01860-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  16. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nature Medicine, 4(5), 594–600.

    Article  CAS  PubMed  Google Scholar 

  17. Castellino, F., & Germain, R. N. (1995). Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity, 2(1), 73–88.

    Article  CAS  PubMed  Google Scholar 

  18. Brigl, M., & Brenner, M. B. (2004). CD1: Antigen presentation and T cell function. Annual Review of Immunology, 22, 817–890. doi:10.1146/annurev.immunol.22.012703.104608.

    Article  CAS  PubMed  Google Scholar 

  19. Barral, D. C., & Brenner, M. B. (2007). CD1 antigen presentation: How it works. Nature Reviews Immunology, 7(12), 929–941. doi:10.1038/nri2191. nri2191 [pii].

    Article  CAS  PubMed  Google Scholar 

  20. Walunas, T. L., Lenschow, D. J., Bakker, C. Y., Linsley, P. S., Freeman, G. J., Green, J. M., et al. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1(5), 405–413. 1074-7613(94)90071-X [pii].

    Article  CAS  PubMed  Google Scholar 

  21. Walunas, T. L., Bakker, C. Y., & Bluestone, J. A. (1996). CTLA-4 ligation blocks CD28-dependent T cell activation. Journal of Experimental Medicine, 183(6), 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  22. Hutloff, A., Dittrich, A. M., Beier, K. C., Eljaschewitsch, B., Kraft, R., Anagnostopoulos, I., et al. (1999). ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature, 397(6716), 263–266. doi:10.1038/16717.

    Article  CAS  PubMed  Google Scholar 

  23. McDermott, D. F., & Atkins, M. B. (2013). PD-1 as a potential target in cancer therapy. Cancer Medicine, 2(5), 662–673. doi:10.1002/cam4.106.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Loos, M., Hedderich, D. M., Friess, H., & Kleeff, J. (2010). B7-h3 and its role in antitumor immunity. Clinical and Developmental Immunology, 2010, 683875. doi:10.1155/2010/683875.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leitner, J., Klauser, C., Pickl, W. F., Stockl, J., Majdic, O., Bardet, A. F., et al. (2009). B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. European Journal of Immunology, 39(7), 1754–1764. doi:10.1002/eji.200839028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caux, C., Burdin, N., Galibert, L., Hermann, P., Renard, N., Servet-Delprat, C., et al. (1994). Functional CD40 on B lymphocytes and dendritic cells. Research in Immunology, 145(3), 235–239; discussion 244–239.

    Google Scholar 

  27. Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Van Kooten, C., Durand, I., et al. (1994). Activation of human dendritic cells through CD40 cross-linking. Journal of Experimental Medicine, 180(4), 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  28. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., & Alber, G. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. Journal of Experimental Medicine, 184(2), 747–752.

    Article  CAS  PubMed  Google Scholar 

  29. Gramaglia, I., Weinberg, A. D., Lemon, M., & Croft, M. (1998). Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. The Journal of Immunology, 161(12), 6510–6517.

    CAS  PubMed  Google Scholar 

  30. Weinberg, A. D., Vella, A. T., & Croft, M. (1998). OX-40: Life beyond the effector T cell stage. Seminars in Immunology, 10(6), 471–480. doi:10.1006/smim.1998.0146. S1044-5323(98)90146-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  31. Weinberg, A. D., Morris, N. P., Kovacsovics-Bankowski, M., Urba, W. J., & Curti, B. D. (2011). Science gone translational: The OX40 agonist story. Immunological Reviews, 244(1), 218–231. doi:10.1111/j.1600-065X.2011.01069.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schaer, D. A., Hirschhorn-Cymerman, D., & Wolchok, J. D. (2014). Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. Journal for ImmunoTherapy of Cancer, 2, 7. doi:10.1186/2051-1426-2-72051-1426-2-7. [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  33. Denoeud, J., & Moser, M. (2011). Role of CD27/CD70 pathway of activation in immunity and tolerance. Journal of Leukocyte Biology, 89(2), 195–203. doi:10.1189/jlb.0610351. jlb.0610351 [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, L. J., He, L. Z., Marsh, H., & Keler, T. (2014). Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology, 3(1), e27255. doi:10.4161/onci.272552013ONCOIMM0327. [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045. doi:10.1146/annurev.iy.12.040194.005015.

    Article  CAS  PubMed  Google Scholar 

  36. Matzinger, P. (2002). The danger model: A renewed sense of self. Science, 296(5566), 301–305. doi:10.1126/science.1071059296/5566/301. [pii].

    Article  CAS  PubMed  Google Scholar 

  37. Takeda, K., & Akira, S. (2005). Toll-like receptors in innate immunity. International Immunology, 17(1), 1–14. doi:10.1093/intimm/dxh186. 17/1/1 [pii].

    Article  CAS  PubMed  Google Scholar 

  38. Kawai, T., & Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637–650. doi:10.1016/j.immuni.2011.05.006. S1074-7613(11)00190-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  39. Walsh, K. P., & Mills, K. H. (2013). Dendritic cells and other innate determinants of T helper cell polarisation. Trends in Immunology, 34(11), 521–530. doi:10.1016/j.it.2013.07.006. S1471-4906(13)00117-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  40. Yamane, H., & Paul, W. E. (2013). Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets. Immunological Reviews, 252(1), 12–23. doi:10.1111/imr.12032.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Groom, J. R., Richmond, J., Murooka, T. T., Sorensen, E. W., Sung, J. H., Bankert, K., et al. (2012). CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+T helper 1 cell differentiation. Immunity, 37(6), 1091–1103. doi:10.1016/j.immuni.2012.08.016. S1074-7613(12)00453-0 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maldonado-Lopez, R., De Smedt, T., Michel, P., Godfroid, J., Pajak, B., Heirman, C., et al. (1999). CD8alpha+ and CD8alpha− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. Journal of Experimental Medicine, 189(3), 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pulendran, B., Smith, J. L., Caspary, G., Brasel, K., Pettit, D., Maraskovsky, E., et al. (1999). Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proceedings of the National Academy of Sciences USA, 96(3), 1036–1041.

    Article  CAS  Google Scholar 

  44. Strasser, D., Neumann, K., Bergmann, H., Marakalala, M. J., Guler, R., Rojowska, A., et al. (2012). Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity, 36(1), 32–42. doi:10.1016/j.immuni.2011.11.015. S1074-7613(12)00002-7 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787. doi:10.1016/j.cell.2008.05.009. S0092-8674(08)00624-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  46. van Leeuwen, E. M., Sprent, J., & Surh, C. D. (2009). Generation and maintenance of memory CD4(+) T Cells. Current Opinion in Immunology, 21(2), 167–172. doi:10.1016/j.coi.2009.02.005. S0952-7915(09)00018-1 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  47. Batista, F. D., & Harwood, N. E. (2009). The who, how and where of antigen presentation to B cells. Nature Reviews Immunology, 9(1), 15–27. doi:10.1038/nri2454. nri2454 [pii].

    Article  CAS  PubMed  Google Scholar 

  48. Dubois, B., Bridon, J. M., Fayette, J., Barthelemy, C., Banchereau, J., Caux, C., et al. (1999). Dendritic cells directly modulate B cell growth and differentiation. Journal of Leukocyte Biology, 66(2), 224–230.

    CAS  PubMed  Google Scholar 

  49. Bjorck, P., Flores-Romo, L., & Liu, Y. J. (1997). Human interdigitating dendritic cells directly stimulate CD40-activated naive B cells. European Journal of Immunology, 27(5), 1266–1274. doi:10.1002/eji.1830270531.

    Article  CAS  PubMed  Google Scholar 

  50. Ngo, V. N., Tang, H. L., & Cyster, J. G. (1998). Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. Journal of Experimental Medicine, 188(1), 181–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qi, H., Egen, J. G., Huang, A. Y., & Germain, R. N. (2006). Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science, 312(5780), 1672–1676. doi:10.1126/science.1125703. 312/5780/1672 [pii].

    Article  CAS  PubMed  Google Scholar 

  52. Dubois, B., Massacrier, C., Vanbervliet, B., Fayette, J., Briere, F., Banchereau, J., et al. (1998). Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. The Journal of Immunology, 161(5), 2223–2231.

    CAS  PubMed  Google Scholar 

  53. Jego, G., Pascual, V., Palucka, A. K., & Banchereau, J. (2005). Dendritic cells control B cell growth and differentiation. Current Directions in Autoimmunity, 8, 124–139. doi:10.1159/000082101. 82101 [pii].

    Article  CAS  PubMed  Google Scholar 

  54. Wykes, M., Pombo, A., Jenkins, C., & MacPherson, G. G. (1998). Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. The Journal of Immunology, 161(3), 1313–1319.

    CAS  PubMed  Google Scholar 

  55. Tew, J. G., Wu, J., Qin, D., Helm, S., Burton, G. F., & Szakal, A. K. (1997). Follicular dendritic cells and presentation of antigen and costimulatory signals to B cells. Immunological Reviews, 156, 39–52.

    Article  CAS  PubMed  Google Scholar 

  56. Fakher, M., Wu, J., Qin, D., Szakal, A., & Tew, J. (2001). Follicular dendritic cell accessory activity crosses MHC and species barriers. European Journal of Immunology, 31(1), 176–185. doi:10.1002/1521-4141(200101)31:1<176:AID-IMMU176>3.0.CO;2-H. [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Grouard, G., Durand, I., Filgueira, L., Banchereau, J., & Liu, Y. J. (1996). Dendritic cells capable of stimulating T cells in germinal centres. Nature, 384(6607), 364–367. doi:10.1038/384364a0.

    Article  CAS  PubMed  Google Scholar 

  58. Dubois, B., Barthelemy, C., Durand, I., Liu, Y. J., Caux, C., & Briere, F. (1999). Toward a role of dendritic cells in the germinal center reaction: Triggering of B cell proliferation and isotype switching. The Journal of Immunology, 162(6), 3428–3436.

    CAS  PubMed  Google Scholar 

  59. Lindhout, E., Vissers, J. L., Hartgers, F. C., Huijbens, R. J., Scharenborg, N. M., Figdor, C. G., et al. (2001). The dendritic cell-specific CC-chemokine DC-CK1 is expressed by germinal center dendritic cells and attracts CD38-negative mantle zone B lymphocytes. The Journal of Immunology, 166(5), 3284–3289.

    Article  CAS  PubMed  Google Scholar 

  60. Tran Janco, J. M., Lamichhane, P., Karyampudi, L., & Knutson, K. L. (2015). Tumor-infiltrating dendritic cells in cancer pathogenesis. The Journal of Immunology, 194(7), 2985–2991. doi:10.4049/jimmunol.1403134. 194/7/2985 [pii].

    Article  PubMed  Google Scholar 

  61. Ravichandran, K. S. (2011). Beginnings of a good apoptotic meal: The find-me and eat-me signaling pathways. Immunity, 35(4), 445–455. doi:10.1016/j.immuni.2011.09.004. S1074-7613(11)00364-5 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chomarat, P., Banchereau, J., Davoust, J., & Palucka, A. K. (2000). IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nature Immunology, 1(6), 510–514. doi:10.1038/82763.

    Article  CAS  PubMed  Google Scholar 

  63. Hiltbold, E. M., Vlad, A. M., Ciborowski, P., Watkins, S. C., & Finn, O. J. (2000). The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. The Journal of Immunology, 165(7), 3730–3741.

    Article  CAS  PubMed  Google Scholar 

  64. Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J., & Enk, A. H. (1997). Induction of tolerance by IL-10-treated dendritic cells. The Journal of Immunology, 159(10), 4772–4780.

    CAS  PubMed  Google Scholar 

  65. Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., et al. (2007). Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+T cells that facilitate tumor development. Journal of Experimental Medicine, 204(5), 1037–1047. doi:10.1084/jem.20061120. jem.20061120 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rotte, A., Bhandaru, M. (2016). Dendritic Cells. In: Immunotherapy of Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-48066-4_6

Download citation

Publish with us

Policies and ethics