Skip to main content

Etiology

  • Chapter
  • First Online:
Immunotherapy of Melanoma
  • 1032 Accesses

Abstract

Melanoma etiology is complex and involves several types of risk factors which can be broadly classified into environmental, phenotypic and genetic factors. In this chapter, different types of risk factors and their association with melanoma are detailed. First, UV radiation, a well-known environmental risk factor for melanoma, its characteristic features, subtypes, types of DNA damages caused and the main repair mechanisms are discussed; Xeroderma Pigmentosum, a rare disorder caused due to patients’ inability to repair UV-B induced DNA damage is also discussed. Next, the correlation between family history and melanoma, details on Familial Atypical Multiple Mole Melanoma (FAMMM) syndrome, relationship between skin/hair color and melanoma development are discussed. Various melanoma susceptibility genes classified into high, moderate or intermediate and low risk are listed. Among the high risk genes, CDKN2A and CDK4/6 are described along with the key functions of the proteins encoded by them. Among the moderate-to-low risk genes identified, the functions of MC1R and MITF are described. Finally the significance of signaling pathways regulating cell survival and proliferation in the initiation and/or progression of melanoma is discussed with emphasis on MAPK pathway. The functions of c-KIT, NRAS and BRAF under normal physiological conditions are discussed along with some of the important studies showing associations between c-KIT/NRAS/BRAF mutations and melanoma. Special emphasis is made on NRAS as well as BRAF mutations since their inhibitors including MEK inhibitors (trametanib and cobimetinib) as well as selective BRAFV600E inhibitors (dabrafenib and vemurafenib) were approved for the treatment of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsao, H., Chin, L., Garraway, L. A., & Fisher, D. E. (2012). Melanoma: From mutations to medicine. Genes & Development, 26(11), 1131–1155. doi:10.1101/gad.191999.112 26/11/1131 [pii].

  2. Potrony, M., Badenas, C., Aguilera, P., Puig-Butille, J. A., Carrera, C., Malvehy, J., et al. (2015). Update in genetic susceptibility in melanoma. Annals of Translational Medicine, 3(15), 210. doi:10.3978/j.issn.2305-5839.2015.08.11 atm-03-15-210 [pii].

  3. Gandini, S., Sera, F., Cattaruzza, M. S., Pasquini, P., Picconi, O., Boyle, P., et al. (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45–60. doi:10.1016/j.ejca.2004.10.016 S0959-8049(04)00833-0 [pii].

  4. Chang, Y. M., Barrett, J. H., Bishop, D. T., Armstrong, B. K., Bataille, V., Bergman, W., et al. (2009). Sun exposure and melanoma risk at different latitudes: A pooled analysis of 5700 cases and 7216 controls. International Journal of Epidemiology, 38(3), 814–830. doi:10.1093/ije/dyp166 dyp166 [pii].

  5. Gandini, S., Sera, F., Cattaruzza, M. S., Pasquini, P., Abeni, D., Boyle, P., et al. (2005). Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. European Journal of Cancer, 41(1), 28–44. doi:10.1016/j.ejca.2004.10.015 S0959-8049(04)00832-9 [pii].

  6. Gandini, S., Sera, F., Cattaruzza, M. S., Pasquini, P., Zanetti, R., Masini, C., et al. (2005). Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. European Journal of Cancer, 41(14), 2040–2059. doi:10.1016/j.ejca.2005.03.034 S0959-8049(05)00545-9 [pii].

  7. Gonzaga, E. R. (2009). Role of UV light in photodamage, skin aging, and skin cancer: Importance of photoprotection. American Journal of Clinical Dermatology, 10(Suppl 1), 19–24. 1014 [pii].

    Google Scholar 

  8. Tucker, M. A., & Goldstein, A. M. (2003). Melanoma etiology: Where are we? Oncogene, 22(20), 3042–3052. doi:10.1038/sj.onc.1206444 1206444 [pii].

  9. Jhappan, C., Noonan, F. P., & Merlino, G. (2003). Ultraviolet radiation and cutaneous malignant melanoma. Oncogene, 22(20), 3099–3112. doi:10.1038/sj.onc.1206450 1206450 [pii].

  10. Tang, M. S. (2010). Ultraviolet a light: Potential underlying causes of melanoma. Future Oncology, 6(10), 1523–1526. doi:10.2217/fon.10.129.

    Article  CAS  PubMed  Google Scholar 

  11. Mc, G. V. (1952). Melanoblastoma. Medical Journal of Australia, 1(5), 139–142.

    Google Scholar 

  12. Lancaster, H. O. (1956). Some geographical aspects of the mortality from melanoma in Europeans. Medical Journal of Australia, 43(26), 1082–1087.

    CAS  PubMed  Google Scholar 

  13. Armstrong, B. K., & Kricker, A. (1995). Skin cancer. Dermatologic Clinics, 13(3), 583–594.

    CAS  PubMed  Google Scholar 

  14. Armstrong, B. K., Kricker, A., & English, D. R. (1997). Sun exposure and skin cancer. Australasian Journal of Dermatology, 38(Suppl 1), S1–S6.

    Article  PubMed  Google Scholar 

  15. MacKie, R. M. (1998). Incidence, risk factors and prevention of melanoma. European Journal of Cancer, 34(Suppl 3), S3–S6.

    Article  PubMed  Google Scholar 

  16. Rigel, D. S., & Carucci, J. A. (2000). Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA: A Cancer Journal for Clinicians, 50(4), 215–236; quiz 237-240.

    Google Scholar 

  17. Jemal, A., Devesa, S. S., Hartge, P., & Tucker, M. A. (2001). Recent trends in cutaneous melanoma incidence among whites in the United States. Journal of the National Cancer Institute, 93(9), 678–683.

    Article  CAS  PubMed  Google Scholar 

  18. MacKie, R. M., Hauschild, A., & Eggermont, A. M. (2009). Epidemiology of invasive cutaneous melanoma. Annals of Oncology, 20(Suppl 6), vi1–vi7. doi:10.1093/annonc/mdp252 mdp252 [pii].

  19. Armstrong, B. K. (1988). Epidemiology of malignant melanoma: Intermittent or total accumulated exposure to the sun? The Journal of Dermatologic Surgery and Oncology, 14(8), 835–849.

    Article  CAS  PubMed  Google Scholar 

  20. de Gruijl, F. R. (1999). Skin cancer and solar UV radiation. European Journal of Cancer, 35(14), 2003–2009. S0959-8049(99)00283-X [pii].

    Google Scholar 

  21. Marks, R. (2000). Epidemiology of melanoma. Clinical and Experimental Dermatology, 25(6), 459–463. ced693 [pii].

    Google Scholar 

  22. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66(1), 7–30. doi:10.3322/caac.21332.

    Article  Google Scholar 

  23. Forman, D., Bray, F., Brewster, D. H., Gombe Mbalawa, C., Kohler, B., Piñeros, M., et al. (2014). International Agency for Research on Cancer (Ed.), Cancer incidence in five continents Vol. X (Vol. X). Lyon: IARC Scientific Publications.

    Google Scholar 

  24. Coelho, S. G., & Hearing, V. J. (2010). UVA tanning is involved in the increased incidence of skin cancers in fair-skinned young women. Pigment Cell Melanoma Research, 23(1), 57–63. doi:10.1111/j.1755-148X.2009.00656.x PCR656 [pii].

  25. Bradford, P. T., Anderson, W. F., Purdue, M. P., Goldstein, A. M., & Tucker, M. A. (2010). Rising melanoma incidence rates of the trunk among younger women in the United States. Cancer Epidemiology Biomarkers & Prevention, 19(9), 2401–2406. doi:10.1158/1055-9965.EPI-10-0503 19/9/2401 [pii].

  26. Lazovich, D., Vogel, R. I., Berwick, M., Weinstock, M. A., Anderson, K. E., & Warshaw, E. M. (2010). Indoor tanning and risk of melanoma: A case-control study in a highly exposed population. Cancer Epidemiology Biomarkers & Prevention, 19(6), 1557–1568. doi:10.1158/1055-9965.EPI-09-1249 1055-9965.EPI-09-1249 [pii].

  27. Ferrucci, L. M., Vogel, R. I., Cartmel, B., Lazovich, D., & Mayne, S. T. (2014). Indoor tanning in businesses and homes and risk of melanoma and nonmelanoma skin cancer in 2 US case-control studies. Journal of the American Academy of Dermatology, 71(5), 882–887. doi:10.1016/j.jaad.2014.06.046 S0190-9622(14)01663-6 [pii].

  28. Lazovich, D., Isaksson Vogel, R., Weinstock, M. A., Nelson, H. H., Ahmed, R. L., & Berwick, M. (2016). Association Between Indoor Tanning and Melanoma in Younger Men and Women. JAMA Dermatology, 152(3), 268–275. doi:10.1001/jamadermatol.2015.2938 2484645 [pii].

  29. Kielbassa, C., Roza, L., & Epe, B. (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis, 18(4), 811–816.

    Article  CAS  PubMed  Google Scholar 

  30. Lund, L. P., & Timmins, G. S. (2007). Melanoma, long wavelength ultraviolet and sunscreens: Controversies and potential resolutions. Pharmacology & Therapeutics, 114(2), 198–207. doi:10.1016/j.pharmthera.2007.01.007 S0163-7258(07)00020-4 [pii].

  31. Moan, J., Dahlback, A., & Setlow, R. B. (1999). Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochemistry and Photobiology, 70(2), 243–247.

    Article  CAS  PubMed  Google Scholar 

  32. De Fabo, E. C., Noonan, F. P., Fears, T., & Merlino, G. (2004). Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Research, 64(18), 6372–6376. doi:10.1158/0008-5472.CAN-04-1454 64/18/6372 [pii].

  33. Walker, G. J., Kimlin, M. G., Hacker, E., Ravishankar, S., Muller, H. K., Beermann, F., et al. (2009). Murine neonatal melanocytes exhibit a heightened proliferative response to ultraviolet radiation and migrate to the epidermal basal layer. Journal of Investigative Dermatology, 129(1), 184–193. doi:10.1038/jid.2008.210 jid2008210 [pii].

    Google Scholar 

  34. Mitchell, D. L., Fernandez, A. A., Nairn, R. S., Garcia, R., Paniker, L., Trono, D., et al. (2010). Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9329–9334. doi:10.1073/pnas.1000324107 1000324107 [pii].

  35. Kaidbey, K. H., & Kligman, A. M. (1979). The acute effects of long-wave ultraviolet radiation on human skin. Journal of Investigative Dermatology, 72(5), 253–256.

    Article  CAS  PubMed  Google Scholar 

  36. Bruls, W. A., van Weelden, H., & van der Leun, J. C. (1984). Transmission of UV-radiation through human epidermal layers as a factor influencing the minimal erythema dose. Photochemistry and Photobiology, 39(1), 63–67.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S. Q., Kopf, A. W., Marx, J., Bogdan, A., Polsky, D., & Bart, R. S. (2001). Reduction of ultraviolet transmission through cotton T-shirt fabrics with low ultraviolet protection by various laundering methods and dyeing: Clinical implications. Journal of the American Academy of Dermatology, 44(5), 767–774. doi:10.1067/mjd.2001.112384 S0190-9622(01)46866-6 [pii].

  38. Irwin, C., Barnes, A., Veres, D., & Kaidbey, K. (1993). An ultraviolet radiation action spectrum for immediate pigment darkening. Photochemistry and Photobiology, 57(3), 504–507.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, S. Q., Setlow, R., Berwick, M., Polsky, D., Marghoob, A. A., Kopf, A. W., et al. (2001). Ultraviolet A and melanoma: A review. Journal of the American Academy of Dermatology, 44(5), 837–846. doi:10.1067/mjd.2001.114594 S0190-9622(01)71337-0 [pii].

  40. Black, H. S., deGruijl, F. R., Forbes, P. D., Cleaver, J. E., Ananthaswamy, H. N., deFabo, E. C., et al. (1997). Photocarcinogenesis: An overview. Journal of Photochemistry and Photobiology B: Biology, 40(1), 29–47. S1011134497000213 [pii].

    Google Scholar 

  41. Cadet, J., Berger, M., Douki, T., Morin, B., Raoul, S., Ravanat, J. L., et al. (1997). Effects of UV and visible radiation on DNA-final base damage. Biological Chemistry, 378(11), 1275–1286.

    CAS  PubMed  Google Scholar 

  42. Scharffetter-Kochanek, K., Wlaschek, M., Brenneisen, P., Schauen, M., Blaudschun, R., & Wenk, J. (1997). UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biological Chemistry, 378(11), 1247–1257.

    CAS  PubMed  Google Scholar 

  43. Wilson, D. M., 3rd, & Bohr, V. A. (2007). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst), 6(4), 544–559. doi:10.1016/j.dnarep.2006.10.017 S1568-7864(06)00326-0 [pii].

  44. Hazra, T. K., Hill, J. W., Izumi, T., & Mitra, S. (2001). Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Progress in Nucleic Acid Research and Molecular Biology, 68, 193–205.

    Article  CAS  PubMed  Google Scholar 

  45. Wallace, S. S., Bandaru, V., Kathe, S. D., & Bond, J. P. (2003). The enigma of endonuclease VIII. DNA Repair (Amst), 2(5), 441–453. S1568786402001829 [pii].

    Google Scholar 

  46. Wiederhold, L., Leppard, J. B., Kedar, P., Karimi-Busheri, F., Rasouli-Nia, A., Weinfeld, M., et al. (2004). AP endonuclease-independent DNA base excision repair in human cells. Molecular Cell, 15(2), 209–220. doi:10.1016/j.molcel.2004.06.003 S1097276504003363 [pii].

  47. Rasouli-Nia, A., Karimi-Busheri, F., & Weinfeld, M. (2004). Stable down-regulation of human polynucleotide kinase enhances spontaneous mutation frequency and sensitizes cells to genotoxic agents. Proceedings of the National Academy of Sciences of the United States of America, 101(18), 6905–6910. doi:10.1073/pnas.0400099101 0400099101 [pii].

  48. Bennett, R. A., Wilson, D. M., 3rd, Wong, D., & Demple, B. (1997). Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proceedings of the National Academy of Sciences of the United States of America, 94(14), 7166–7169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mol, C. D., Izumi, T., Mitra, S., & Tainer, J. A. (2000). DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature, 403(6768), 451–456. doi:10.1038/35000249.

    Article  CAS  PubMed  Google Scholar 

  50. Wilson, S. H. (1998). Mammalian base excision repair and DNA polymerase beta. Mutation Research, 407(3), 203–215.

    Article  CAS  PubMed  Google Scholar 

  51. Tomkinson, A. E., Chen, L., Dong, Z., Leppard, J. B., Levin, D. S., Mackey, Z. B., et al. (2001). Completion of base excision repair by mammalian DNA ligases. Progress in Nucleic Acid Research and Molecular Biology, 68, 151–164.

    Article  CAS  PubMed  Google Scholar 

  52. Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C., & Bohr, V. A. (2009). Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 30(1), 2–10. doi:10.1093/carcin/bgn250 bgn250 [pii].

  53. Thompson, L. H., & West, M. G. (2000). XRCC1 keeps DNA from getting stranded. Mutation Research, 459(1), 1–18. S0921877799000580 [pii].

    Google Scholar 

  54. Bhandaru, M., Martinka, M., Li, G., & Rotte, A. (2014). Loss of XRCC1 confers a metastatic phenotype to melanoma cells and is associated with poor survival in patients with melanoma. Pigment Cell Melanoma Research, 27(3), 366–375. doi:10.1111/pcmr.12212.

    Article  CAS  PubMed  Google Scholar 

  55. Hanawalt, P. C. (2002). Subpathways of nucleotide excision repair and their regulation. Oncogene, 21(58), 8949–8956. doi:10.1038/sj.onc.1206096.

    Article  CAS  PubMed  Google Scholar 

  56. Kamileri, I., Karakasilioti, I., & Garinis, G. A. (2012). Nucleotide excision repair: New tricks with old bricks. Trends in Genetics, 28(11), 566–573. doi:10.1016/j.tig.2012.06.004 S0168-9525(12)00093-5 [pii].

  57. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., et al. (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO Journal, 13(8), 1831–1843.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., et al. (2005). Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Molecular and Cellular Biology, 25(13), 5664–5674. doi:10.1128/MCB.25.13.5664-5674.2005 25/13/5664 [pii].

  59. Lagerwerf, S., Vrouwe, M. G., Overmeer, R. M., Fousteri, M. I., & Mullenders, L. H. (2011). DNA damage response and transcription. DNA Repair (Amst), 10(7), 743–750. doi:10.1016/j.dnarep.2011.04.024 S1568-7864(11)00121-2 [pii].

  60. Hoeijmakers, J. H. (2001). DNA repair mechanisms. Maturitas, 38(1), 17–22; discussion 22-13. S0378512200001882 [pii].

    Google Scholar 

  61. Egly, J. M., & Coin, F. (2011). A history of TFIIH: Two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst), 10(7), 714–721. doi:10.1016/j.dnarep.2011.04.021S1568-7864(11)00118-2 [pii].

  62. Oksenych, V., Bernardes de Jesus, B., Zhovmer, A., Egly, J. M., & Coin, F. (2009). Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO Journal, 28(19), 2971–2980. doi:10.1038/emboj.2009.230 emboj2009230 [pii].

    Google Scholar 

  63. Overmeer, R. M., Moser, J., Volker, M., Kool, H., Tomkinson, A. E., van Zeeland, A. A., et al. (2011). Replication protein A safeguards genome integrity by controlling NER incision events. Journal of Cell Biology, 192(3), 401–415. doi:10.1083/jcb.201006011 jcb.201006011 [pii].

  64. Kelman, Z. (1997). PCNA: Structure, functions and interactions. Oncogene, 14(6), 629–640. doi:10.1038/sj.onc.1200886.

    Article  CAS  PubMed  Google Scholar 

  65. Moser, J., Kool, H., Giakzidis, I., Caldecott, K., Mullenders, L. H., & Fousteri, M. I. (2007). Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Molecular Cell, 27(2), 311–323. doi:10.1016/j.molcel.2007.06.014 S1097-2765(07)00404-2 [pii].

  66. Araujo, S. J., Tirode, F., Coin, F., Pospiech, H., Syvaoja, J. E., Stucki, M., et al. (2000). Nucleotide excision repair of DNA with recombinant human proteins: Definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes & Development, 14(3), 349–359.

    CAS  Google Scholar 

  67. Fousteri, M., Vermeulen, W., van Zeeland, A. A., & Mullenders, L. H. (2006). Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Molecular Cell, 23(4), 471–482. doi:10.1016/j.molcel.2006.06.029 S1097-2765(06)00465-5 [pii].

  68. Laine, J. P., & Egly, J. M. (2006). Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO Journal, 25(2), 387–397. doi:10.1038/sj.emboj.7600933 7600933 [pii].

  69. Citterio, E., Rademakers, S., van der Horst, G. T., van Gool, A. J., Hoeijmakers, J. H., & Vermeulen, W. (1998). Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. Journal of Biological Chemistry, 273(19), 11844–11851.

    Article  CAS  PubMed  Google Scholar 

  70. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., et al. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell, 113(3), 357–367. S0092867403003167 [pii].

    Google Scholar 

  71. Zhang, X., Horibata, K., Saijo, M., Ishigami, C., Ukai, A., Kanno, S., et al. (2012). Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nature Genetics, 44(5), 593–597. doi:10.1038/ng.2228 ng.2228 [pii].

  72. Schwertman, P., Lagarou, A., Dekkers, D. H., Raams, A., van der Hoek, A. C., Laffeber, C., et al. (2012). UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nature Genetics, 44(5), 598–602. doi:10.1038/ng.2230 ng.2230 [pii].

    Google Scholar 

  73. Hasan, S., Hassa, P. O., Imhof, R., & Hottiger, M. O. (2001). Transcription coactivator p 300 binds PCNA and may have a role in DNA repair synthesis. Nature, 410(6826), 387–391. doi:10.1038/35066610 35066610 [pii].

  74. Birger, Y., West, K. L., Postnikov, Y. V., Lim, J. H., Furusawa, T., Wagner, J. P., et al. (2003). Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin. EMBO Journal, 22(7), 1665–1675. doi:10.1093/emboj/cdg142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakatsu, Y., Asahina, H., Citterio, E., Rademakers, S., Vermeulen, W., Kamiuchi, S., et al. (2000). XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. Journal of Biological Chemistry, 275(45), 34931–34937. doi:10.1074/jbc.M004936200 M004936200 [pii].

  76. Tornaletti, S., Reines, D., & Hanawalt, P. C. (1999). Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. Journal of Biological Chemistry, 274(34), 24124–24130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kraemer, K. H., Levy, D. D., Parris, C. N., Gozukara, E. M., Moriwaki, S., Adelberg, S., et al. (1994). Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer. Journal of Investigative Dermatology, 103(5 Suppl), 96S–101S.

    Article  CAS  PubMed  Google Scholar 

  78. Kraemer, K. H., Lee, M. M., Andrews, A. D., & Lambert, W. C. (1994). The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Archives of Dermatology, 130(8), 1018–1021.

    Article  CAS  PubMed  Google Scholar 

  79. Kraemer, K. H. (1994). Nucleotide excision repair genes involved in xeroderma pigmentosum. Japanese Journal of Cancer Research, 85(2), inside front cover.

    Google Scholar 

  80. Diwan, A. H. (2015). Xeroderma pigmentosum.

    Google Scholar 

  81. DiGiovanna, J. J., & Kraemer, K. H. (2012). Shining a light on xeroderma pigmentosum. Journal of Investigative Dermatology, 132(3 Pt 2), 785–796. doi:10.1038/jid.2011.426 jid2011426 [pii].

    Google Scholar 

  82. Gratchev, A., Strein, P., Utikal, J., & Sergij, G. (2003). Molecular genetics of Xeroderma pigmentosum variant. Experimental Dermatology, 12(5), 529–536.

    Article  CAS  PubMed  Google Scholar 

  83. Ortega-Recalde, O., Vergara, J. I., Fonseca, D. J., Rios, X., Mosquera, H., Bermudez, O. M., et al. (2014). Whole-exome sequencing enables rapid determination of xeroderma pigmentosum molecular etiology. PLoS One, 8(6), e64692. doi:10.1371/journal.pone.0064692 PONE-D-13–08562 [pii].

  84. Arrangoiz, R., Dorantes, J., Cordera, F., Juarez, M. M., Paquentin, E. M., & L., d. L. E. (2016). Melanoma review: Epidemiology, risk factors, diagnosis and staging. [Review]. Journal of Cancer Treatment and Research, 4(1), 1–15. doi:10.11648/j.jctr.20160401.11

    Google Scholar 

  85. Kopf, A. W., Hellman, L. J., Rogers, G. S., Gross, D. F., Rigel, D. S., Friedman, R. J., et al. (1986). Familial malignant melanoma. JAMA, 256(14), 1915–1919.

    Article  CAS  PubMed  Google Scholar 

  86. Barnhill, R. L., Roush, G. C., Titus-Ernstoff, L., Ernstoff, M. S., Duray, P. H., & Kirkwood, J. M. (1992). Comparison of nonfamilial and familial melanoma. Dermatology, 184(1), 2–7.

    Article  CAS  PubMed  Google Scholar 

  87. Ford, D., Bliss, J. M., Swerdlow, A. J., Armstrong, B. K., Franceschi, S., Green, A., et al. (1995). Risk of cutaneous melanoma associated with a family history of the disease. The International Melanoma Analysis Group (IMAGE). International Journal of Cancer, 62(4), 377–381.

    Article  CAS  PubMed  Google Scholar 

  88. Aitken, J. F., Duffy, D. L., Green, A., Youl, P., MacLennan, R., & Martin, N. G. (1994). Heterogeneity of melanoma risk in families of melanoma patients. American Journal of Epidemiology, 140(11), 961–973.

    CAS  PubMed  Google Scholar 

  89. Eckerle Mize, D., Bishop, M., Resse, E., & Sluzevich, J. (2009). Familial atypical multiple mole melanoma syndrome. NBK7030 [bookaccession].

    Google Scholar 

  90. Borg, A., Sandberg, T., Nilsson, K., Johannsson, O., Klinker, M., Masback, A., et al. (2000). High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. Journal of the National Cancer Institute, 92(15), 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  91. Vasen, H. F., Gruis, N. A., Frants, R. R., van Der Velden, P. A., Hille, E. T., & Bergman, W. (2000). Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p 16 (p16-Leiden). International Journal of Cancer, 87(6), 809–811. doi:10.1002/1097-0215(20000915)87:6<809::AID-IJC8>3.0.CO;2-U [pii].

  92. Bliss, J. M., Ford, D., Swerdlow, A. J., Armstrong, B. K., Cristofolini, M., Elwood, J. M., et al. (1995). Risk of cutaneous melanoma associated with pigmentation characteristics and freckling: Systematic overview of 10 case-control studies. The International Melanoma Analysis Group (IMAGE). International Journal of Cancer, 62(4), 367–376.

    Article  CAS  PubMed  Google Scholar 

  93. Brenner, A. V., Lubin, J. H., Calista, D., & Landi, M. T. (2002). Instrumental measurements of skin color and skin ultraviolet light sensitivity and risk of cutaneous malignant melanoma: A case-control study in an Italian population. American Journal of Epidemiology, 156(4), 353–362.

    Article  PubMed  Google Scholar 

  94. Cannon-Albright, L. A., Goldgar, D. E., Meyer, L. J., Lewis, C. M., Anderson, D. E., Fountain, J. W., et al. (1992). Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science, 258(5085), 1148–1152.

    Article  CAS  PubMed  Google Scholar 

  95. Serrano, M., Hannon, G. J., & Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366(6456), 704–707. doi:10.1038/366704a0.

    Article  CAS  PubMed  Google Scholar 

  96. Hussussian, C. J., Struewing, J. P., Goldstein, A. M., Higgins, P. A., Ally, D. S., Sheahan, M. D., et al. (1994). Germline p16 mutations in familial melanoma. Nature Genetics, 8(1), 15–21. doi:10.1038/ng0994-15.

    Article  CAS  PubMed  Google Scholar 

  97. Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V., et al. (1994). A cell cycle regulator potentially involved in genesis of many tumor types. Science, 264(5157), 436–440.

    Article  CAS  PubMed  Google Scholar 

  98. Nobori, T., Miura, K., Wu, D. J., Lois, A., Takabayashi, K., & Carson, D. A. (1994). Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature, 368(6473), 753–756. doi:10.1038/368753a0.

    Article  CAS  PubMed  Google Scholar 

  99. Bishop, D. T., Demenais, F., Goldstein, A. M., Bergman, W., Bishop, J. N., Bressac-de Paillerets, B., et al. (2002). Geographical variation in the penetrance of CDKN2A mutations for melanoma. Journal of the National Cancer Institute, 94(12), 894–903.

    Article  CAS  PubMed  Google Scholar 

  100. Zuo, L., Weger, J., Yang, Q., Goldstein, A. M., Tucker, M. A., Walker, G. J., et al. (1996). Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genetics, 12(1), 97–99. doi:10.1038/ng0196-97.

    Article  CAS  PubMed  Google Scholar 

  101. Valverde, P., Healy, E., Jackson, I., Rees, J. L., & Thody, A. J. (1995). Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genetics, 11(3), 328–330. doi:10.1038/ng1195-328.

    Article  CAS  PubMed  Google Scholar 

  102. Fargnoli, M. C., Gandini, S., Peris, K., Maisonneuve, P., & Raimondi, S. (2010). MC1R variants increase melanoma risk in families with CDKN2A mutations: A meta-analysis. European Journal of Cancer, 46(8), 1413–1420. doi:10.1016/j.ejca.2010.01.027 S0959-8049(10)00048-1 [pii].

  103. Kennedy, C., ter Huurne, J., Berkhout, M., Gruis, N., Bastiaens, M., Bergman, W., et al. (2001). Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. Journal of Investigative Dermatology, 117(2), 294–300. doi:10.1046/j.0022-202x.2001.01421.x S0022-202X(15)41327-2 [pii].

  104. Bertolotto, C., Lesueur, F., Giuliano, S., Strub, T., de Lichy, M., Bille, K., et al. (2011). A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature, 480(7375), 94–98. doi:10.1038/nature10539 nature10539 [pii].

  105. Yokoyama, S., Woods, S. L., Boyle, G. M., Aoude, L. G., MacGregor, S., Zismann, V., et al. (2011). A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature, 480(7375), 99–103. doi:10.1038/nature10630 nature10630 [pii].

  106. Gudbjartsson, D. F., Sulem, P., Stacey, S. N., Goldstein, A. M., Rafnar, T., Sigurgeirsson, B., et al. (2008). ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nature Genetics, 40(7), 886–891. doi:10.1038/ng.161 ng.161 [pii].

  107. Hawkes, J. E., Cassidy, P. B., Manga, P., Boissy, R. E., Goldgar, D., Cannon-Albright, L., et al. (2013). Report of a novel OCA2 gene mutation and an investigation of OCA2 variants on melanoma risk in a familial melanoma pedigree. Journal of Dermatological Science, 69(1), 30–37. doi:10.1016/j.jdermsci.2012.09.016 S0923-1811(12)00295-2 [pii].

  108. Duffy, D. L., Box, N. F., Chen, W., Palmer, J. S., Montgomery, G. W., James, M. R., et al. (2004). Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Human Molecular Genetics, 13(4), 447–461. doi:10.1093/hmg/ddh043 ddh043 [pii].

  109. Behrmann, I., Wallner, S., Komyod, W., Heinrich, P. C., Schuierer, M., Buettner, R., et al. (2003). Characterization of methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma. American Journal of Pathology, 163(2), 683–690. doi:10.1016/S0002-9440(10)63695-4 S0002-9440(10)63695-4 [pii].

  110. Curtin, J. A., Busam, K., Pinkel, D., & Bastian, B. C. (2006). Somatic activation of KIT in distinct subtypes of melanoma. Journal of Clinical Oncology, 24(26), 4340–4346. doi:10.1200/JCO.2006.06.2984 JCO.2006.06.2984 [pii].

  111. Handolias, D., Salemi, R., Murray, W., Tan, A., Liu, W., Viros, A., et al. (2010). Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res, 23(2), 210–215. doi:10.1111/j.1755-148X.2010.00671.x PCR671 [pii].

  112. Kong, Y., Si, L., Zhu, Y., Xu, X., Corless, C. L., Flaherty, K. T., et al. (2011). Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clinical Cancer Research, 17(7), 1684–1691. doi:10.1158/1078-0432.CCR-10-2346 1078-0432.CCR-10-2346 [pii].

  113. Carvajal, R. D., Antonescu, C. R., Wolchok, J. D., Chapman, P. B., Roman, R. A., Teitcher, J., et al. (2011). KIT as a therapeutic target in metastatic melanoma. JAMA, 305(22), 2327–2334. doi:10.1001/jama.2011.746 305/22/2327 [pii].

    Google Scholar 

  114. Guo, J., Si, L., Kong, Y., Flaherty, K. T., Xu, X., Zhu, Y., et al. (2011). Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. Journal of Clinical Oncology, 29(21), 2904–2909. doi:10.1200/JCO.2010.33.9275 JCO.2010.33.9275 [pii].

  115. Hodi, F. S., Corless, C. L., Giobbie-Hurder, A., Fletcher, J. A., Zhu, M., Marino-Enriquez, A., et al. (2013). Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. Journal of Clinical Oncology, 31(26), 3182–3190. doi:10.1200/JCO.2012.47.7836 JCO.2012.47.7836 [pii].

  116. Chin, L., Merlino, G., & DePinho, R. A. (1998). Malignant melanoma: Modern black plague and genetic black box. Genes & Development, 12(22), 3467–3481.

    Article  CAS  Google Scholar 

  117. Ji, Z., Flaherty, K. T., & Tsao, H. (2012). Targeting the RAS pathway in melanoma. Trends in Molecular Medicine, 18(1), 27–35. doi:10.1016/j.molmed.2011.08.001 S1471-4914(11)00146-8 [pii].

  118. Thumar, J., Shahbazian, D., Aziz, S. A., Jilaveanu, L. B., & Kluger, H. M. (2014). MEK targeting in N-RAS mutated metastatic melanoma. Molecular Cancer, 13, 45. doi:10.1186/1476-4598-13-45 1476–4598-13-45 [pii].

    Google Scholar 

  119. Grimaldi, A. M., Simeone, E., & Ascierto, P. A. (2014). The role of MEK inhibitors in the treatment of metastatic melanoma. Current Opinion in Oncology, 26(2), 196–203. doi:10.1097/CCO.0000000000000050.

    Article  CAS  PubMed  Google Scholar 

  120. FDA Approves Trametinib. (2013). FDA News Release.

    Google Scholar 

  121. Trametinib and Dabrafenib. (2015). FDA News Release.

    Google Scholar 

  122. Vemurafenib. (17 August, 2011). FDA News Release.

    Google Scholar 

  123. FDA approves Cotellic as part of combination treatment for advanced melanoma. FDA News Release (2015).

    Google Scholar 

  124. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. doi:10.1038/nature00766 nature00766 [pii].

  125. Maldonado, J. L., Fridlyand, J., Patel, H., Jain, A. N., Busam, K., Kageshita, T., et al. (2003). Determinants of BRAF mutations in primary melanomas. Journal of the National Cancer Institute, 95(24), 1878–1890.

    Article  CAS  PubMed  Google Scholar 

  126. Uribe, P., Wistuba, I. I., & Gonzalez, S. (2003). BRAF mutation: A frequent event in benign, atypical, and malignant melanocytic lesions of the skin. American Journal of Dermatopathology, 25(5), 365–370.

    Article  PubMed  Google Scholar 

  127. Yazdi, A. S., Palmedo, G., Flaig, M. J., Puchta, U., Reckwerth, A., Rutten, A., et al. (2003). Mutations of the BRAF gene in benign and malignant melanocytic lesions. Journal of Investigative Dermatology, 121(5), 1160–1162. doi:10.1046/j.1523-1747.2003.12559.x S0022-202X(15)30486-3 [pii].

  128. Shinozaki, M., Fujimoto, A., Morton, D. L., & Hoon, D. S. (2004). Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clinical Cancer Research, 10(5), 1753–1757.

    Article  CAS  PubMed  Google Scholar 

  129. Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.1038/ng1054 ng1054 [pii].

  130. Kumar, R., Angelini, S., Snellman, E., & Hemminki, K. (2004). BRAF mutations are common somatic events in melanocytic nevi. Journal of Investigative Dermatology, 122(2), 342–348. doi:10.1046/j.0022-202X.2004.22225.x S0022-202X(15)30685-0 [pii].

  131. Hingorani, S. R., Jacobetz, M. A., Robertson, G. P., Herlyn, M., & Tuveson, D. A. (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Research, 63(17), 5198–5202.

    CAS  PubMed  Google Scholar 

  132. Karasarides, M., Chiloeches, A., Hayward, R., Niculescu-Duvaz, D., Scanlon, I., Friedlos, F., et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene, 23(37), 6292–6298. doi:10.1038/sj.onc.1207785 1207785 [pii].

  133. Hoeflich, K. P., Gray, D. C., Eby, M. T., Tien, J. Y., Wong, L., Bower, J., et al. (2006). Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Research, 66(2), 999–1006. doi:10.1158/0008-5472.CAN-05-2720 66/2/999 [pii].

  134. Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552. doi:10.1038/ng.356 ng.356 [pii].

  135. Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303. doi:10.1016/j.ccr.2009.02.022 S1535-6108(09)00074-9 [pii].

  136. Finn, L., Markovic, S. N., & Joseph, R. W. (2012). Therapy for metastatic melanoma: The past, present, and future. BMC Medicine, 10, 23. doi:10.1186/1741-7015-10-23 1741–7015-10-23 [pii].

  137. Rotte, A., Bhandaru, M., Zhou, Y., & McElwee, K. J. (2015). Immunotherapy of melanoma: Present options and future promises. Cancer and Metastasis Reviews, 34(1), 115–128. doi:10.1007/s10555-014-9542-0.

    Article  CAS  PubMed  Google Scholar 

  138. Dabrafenib. (May 29, 2013). FDA News Release.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rotte, A., Bhandaru, M. (2016). Etiology. In: Immunotherapy of Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-48066-4_3

Download citation

Publish with us

Policies and ethics