Skip to main content

Enterohormones and the Response to Critical Illness

  • Chapter
  • First Online:
The Stress Response of Critical Illness: Metabolic and Hormonal Aspects

Abstract

The secretion of a number of enterohormones is disordered in the critically ill which may mediate abnormalities in motility and glycaemia. However, these mediators can also potentially serve a protective role, dampening inflammation and modulating the enteral immune response. There are over 30 recognised enterohormones, and therapeutic manipulation of specific enterohormones or their receptors is a burgeoning area of critical care research with promising preclinical data and an increasing number of small clinical trials. Further characterisation of the effect of critical illness on the endocrine gut and how it can be manipulated to improve outcomes in critical illness warrants evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rehfeld JF (2012) Beginnings: a reflection on the history of gastrointestinal endocrinology. Regul Pept 177(Suppl):S1–S5

    Article  PubMed  Google Scholar 

  2. Schmidt WE (1997) The intestine, an endocrine organ. Digestion 58(Suppl 1):56–58

    Article  PubMed  Google Scholar 

  3. Thompson JS (1995) The intestinal response to critical illness. Am J Gastroenterol 90(2):190–200

    CAS  PubMed  Google Scholar 

  4. Deane A, Chapman MJ, Fraser RJ, Horowitz M (2010) Bench-to-bedside review: the gut as an endocrine organ in the critically ill. Crit Care 14(5):228

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parker BA, Doran S, Wishart J, Horowitz M, Chapman IM (2005) Effects of small intestinal and gastric glucose administration on the suppression of plasma ghrelin concentrations in healthy older men and women. Clin Endocrinol 62(5):539–546

    Article  CAS  Google Scholar 

  6. Crona D, MacLaren R (2012) Gastrointestinal hormone concentrations associated with gastric feeding in critically ill patients. JPEN J Parenter Enteral Nutr 36(2):189–196

    Article  CAS  PubMed  Google Scholar 

  7. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660

    Article  CAS  PubMed  Google Scholar 

  8. Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F et al (2015) Ghrelin. Mol Metab 4(6):437–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tack J, Depoortere I, Bisschops R, Delporte C, Coulie B, Meulemans A, Janssens J, Peeters T (2006) Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 55(3):327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Winter BY, De Man JG, Seerden TC, Depoortere I, Herman AG, Peeters TL, Pelckmans PA (2004) Effect of ghrelin and growth hormone-releasing peptide 6 on septic ileus in mice. J Neurogastroenterol Motil 16(4):439–446

    Article  Google Scholar 

  11. Ejskjaer N, Vestergaard ET, Hellstrom PM, Gormsen LC, Madsbad S, Madsen JL, Jensen TA, Pezzullo JC, Christiansen JS, Shaughnessy L et al (2009) Ghrelin receptor agonist (TZP-101) accelerates gastric emptying in adults with diabetes and symptomatic gastroparesis. Aliment Pharmacol Ther 29(11):1179–1187

    Article  CAS  PubMed  Google Scholar 

  12. Koch A, Sanson E, Helm A, Voigt S, Trautwein C, Tacke F (2010) Regulation and prognostic relevance of serum ghrelin concentrations in critical illness and sepsis. Crit Care 14(3):R94

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cummings DE, Overduin J (2004) Circulating Ghrelin levels in pathophysiological conditions. In: Ghigo E (ed) Ghrelin. Springer Science + Business Media, Boston, pp 213–214

    Google Scholar 

  14. Wu R, Dong W, Cui X, Zhou M, Simms HH, Ravikumar TS, Wang P (2007) Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg 245(3):480–486

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang W, Bansal S, Falk S, Ljubanovic D, Schrier R (2009) Ghrelin protects mice against endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol 297(4):F1032–F1037

    Article  CAS  PubMed  Google Scholar 

  16. Wu R, Dong W, Qiang X, Wang H, Blau SA, Ravikumar TS, Wang P (2009) Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit Care Med 37(8):2421–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu R, Dong W, Zhou M, Zhang F, Marini CP, Ravikumar TS, Wang P (2007) Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med 176(8):805–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu R, Dong W, Zhou M, Cui X, Hank Simms H, Wang P (2005) Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1. Cardiovasc Res 68(2):318–326

    Article  CAS  PubMed  Google Scholar 

  19. Garin MC, Burns CM, Kaul S, Cappola AR (2013) Clinical review: the human experience with ghrelin administration. J Clin Endocrinol Metab 98(5):1826–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doig GS, Simpson F, Finfer S, Delaney A, Davies AR, Mitchell I, Dobb G (2008) Nutrition Guidelines Investigators of the ACTG: effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA 300(23):2731–2741

    Article  CAS  PubMed  Google Scholar 

  21. Poitras P, Peeters TL (2008) Motilin. Curr Opin Endocrinol Diabetes Obes 15(1):54–57

    Article  CAS  PubMed  Google Scholar 

  22. Vantrappen G, Janssens J, Peeters TL, Bloom SR, Christofides ND, Hellemans J (1979) Motilin and the interdigestive migrating motor complex in man. Dig Dis Sci 24(7):497–500

    Article  CAS  PubMed  Google Scholar 

  23. Peeters TL, Muls E, Janssens J, Urbain JL, Bex M, Van Cutsem E, Depoortere I, De Roo M, Vantrappen G, Bouillon R (1992) Effect of motilin on gastric emptying in patients with diabetic gastroparesis. Gastroenterology 102(1):97–101

    CAS  PubMed  Google Scholar 

  24. Janssens J, Peeters TL, Vantrappen G, Tack J, Urbain JL, De Roo M, Muls E, Bouillon R (1990) Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N Engl J Med 322(15):1028–1031

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen NQ, Chapman MJ, Fraser RJ, Bryant LK, Holloway RH (2007) Erythromycin is more effective than metoclopramide in the treatment of feed intolerance in critical illness. Crit Care Med 35(2):483–489

    Article  CAS  PubMed  Google Scholar 

  26. MacLaren R, Kiser TH, Fish DN, Wischmeyer PE (2008) Erythromycin vs metoclopramide for facilitating gastric emptying and tolerance to intragastric nutrition in critically ill patients. JPEN J Parenter Enteral Nutr 32(4):412–419

    Article  CAS  PubMed  Google Scholar 

  27. Dive A, Miesse C, Galanti L, Jamart J, Evrard P, Gonzalez M, Installe E (1995) Effect of erythromycin on gastric motility in mechanically ventilated critically ill patients: a double-blind, randomized, placebo-controlled study. Crit Care Med 23(8):1356–1362

    Article  CAS  PubMed  Google Scholar 

  28. Gungabissoon U, Hacquoil K, Bains C, Irizarry M, Dukes G, Williamson R, Deane AM, Heyland DK (2015) Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness. JPEN J Parenter Enteral Nutr 39(4):441–448

    Article  PubMed  Google Scholar 

  29. Sanger GJ, Wang Y, Hobson A, Broad J (2013) Motilin: towards a new understanding of the gastrointestinal neuropharmacology and therapeutic use of motilin receptor agonists. Br J Pharmacol 170(7):1323–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chapman MJ, Fraser R, Nguyen NQ, Deane AM, O'Conner SN, Duncan R, Hacquoil K, Vasist L, Barton M, Dukes G (2011) The effect of GSK962040, a selective motilin agonist, on gastric emptying in critically ill patients with enteral feed intolerance (Mot112572). Crit Care Med 39(12):195

    Google Scholar 

  31. Pilichiewicz AN, Chaikomin R, Brennan IM, Wishart JM, Rayner CK, Jones KL, Smout AJ, Horowitz M, Feinle-Bisset C (2007) Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am J Physiol Endocrinol Metab 293(3):E743–E753

    Article  CAS  PubMed  Google Scholar 

  32. Luttikhold J, de Ruijter FM, van Norren K, Diamant M, Witkamp RF, van Leeuwen PA, Vermeulen MA (2013) Review article: the role of gastrointestinal hormones in the treatment of delayed gastric emptying in critically ill patients. Aliment Pharmacol Ther 38(6):573–583

    Article  CAS  PubMed  Google Scholar 

  33. Wank SA (1995) Cholecystokinin receptors. Am J Physiol 269(5 Pt 1):G628–G646

    CAS  PubMed  Google Scholar 

  34. Fried M, Erlacher U, Schwizer W, Lochner C, Koerfer J, Beglinger C, Jansen JB, Lamers CB, Harder F, Bischof-Delaloye A et al (1991) Role of cholecystokinin in the regulation of gastric emptying and pancreatic enzyme secretion in humans. Studies with the cholecystokinin-receptor antagonist loxiglumide. Gastroenterology 101(2):503–511

    CAS  PubMed  Google Scholar 

  35. Rayner CK, Park HS, Doran SM, Chapman IM, Horowitz M (2000) Effects of cholecystokinin on appetite and pyloric motility during physiological hyperglycemia. Am J Physiol Gastrointest Liver Physiol 278(1):G98–G104

    CAS  PubMed  Google Scholar 

  36. Nguyen NQ, Fraser RJ, Chapman MJ, Bryant LK, Holloway RH, Vozzo R, Wishart J, Feinle-Bisset C, Horowitz M (2007) Feed intolerance in critical illness is associated with increased basal and nutrient-stimulated plasma cholecystokinin concentrations. Crit Care Med 35(1):82–88

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen NQ, Fraser RJ, Chapman M, Bryant LK, Wishart J, Holloway RH, Horowitz M (2006) Fasting and nutrient-stimulated plasma peptide-YY levels are elevated in critical illness and associated with feed intolerance: an observational, controlled study. Crit Care 10(6):R175

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deane AM, Nguyen NQ, Stevens JE, Fraser RJ, Holloway RH, Besanko LK, Burgstad C, Jones KL, Chapman MJ, Rayner CK et al (2010) Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab 95(1):215–221

    Article  CAS  PubMed  Google Scholar 

  39. Plummer MP, Jones KL, Annink CE, Cousins CE, Meier JJ, Chapman MJ, Horowitz M, Deane AM (2014) Glucagon-like peptide 1 attenuates the acceleration of gastric emptying induced by hypoglycemia in healthy subjects. Diabetes Care 37(6):1509–1515

    Article  CAS  PubMed  Google Scholar 

  40. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202(8):1023–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Haan JJ, Lubbers T, Hadfoune M, Luyer MD, Dejong CH, Buurman WA, Greve JW (2008) Postshock intervention with high-lipid enteral nutrition reduces inflammation and tissue damage. Ann Surg 248(5):842–848

    Article  PubMed  Google Scholar 

  42. Schirra J, Katschinski M, Weidmann C, Schafer T, Wank U, Arnold R, Goke B (1996) Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Invest 97(1):92–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plummer MP, Chapman MJ, Horowitz M, Deane AM (2014) Incretins and the intensivist: what are they and what does an intensivist need to know about them? Crit Care 18(1):205

    Article  PubMed  PubMed Central  Google Scholar 

  44. Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17(6):819–837

    Article  CAS  PubMed  Google Scholar 

  45. Nauck M, Stockmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29(1):46–52

    Article  CAS  PubMed  Google Scholar 

  46. Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 46(12):1954–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M, Woerle HJ, Goke B (2006) Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 55(2):243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA, Bloom SR (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 48(1):86–93

    Article  CAS  PubMed  Google Scholar 

  49. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH (2002) Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 87(3):1239–1246

    Article  CAS  PubMed  Google Scholar 

  50. Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, Hvelplund A, Bardram L, Calatayud D, Knudsen LB (2014) GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155(4):1280–1290

    Article  PubMed  Google Scholar 

  51. Muscogiuri G, Cignarelli A, Giorgino F, Prodram F, Santi D, Tirabassi G, Balercia G, Modica R, Faggiano A, Colao A (2014) GLP-1: benefits beyond pancreas. J Endocrinol Invest 37:1143–53

    Article  CAS  PubMed  Google Scholar 

  52. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91(1):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nauck M (1996) Therapeutic potential of glucagon-like peptide 1 in type 2 diabetes. Diabet Med 13(9 Suppl 5):S39–S43

    CAS  PubMed  Google Scholar 

  54. Nauck MA (2009) Unraveling the science of incretin biology. Am J Med 122(6 Suppl):S3–S10

    Article  PubMed  Google Scholar 

  55. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439

    Article  CAS  PubMed  Google Scholar 

  56. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR et al (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35(6):1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Deane AM, Rayner CK, Keeshan A, Cvijanovic N, Marino Z, Nguyen NQ, Chia B, Summers MJ, Sim JA, van Beek T et al (2014) The effects of critical illness on intestinal glucose sensing, transporters, and absorption. Crit Care Med 42:57–65

    Article  CAS  PubMed  Google Scholar 

  58. Kahles F, Meyer C, Mollmann J, Diebold S, Findeisen HM, Lebherz C, Trautwein C, Koch A, Tacke F, Marx N et al (2014) GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63(10):3221–3229

    Article  CAS  PubMed  Google Scholar 

  59. Summers MJ, DI Bartolomeo AE, Zaknic AV, Chapman MJ, Nguyen NQ, Zacharakis B, Rayner CK, Horowitz M, Deane AM (2014) Endogenous amylin and glucagon-like peptide-1 concentrations are not associated with gastric emptying in critical illness. Acta Anaesthesiol Scand 58(2):235–242

    Article  CAS  PubMed  Google Scholar 

  60. Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, Holst JJ, Ferrannini E (2008) Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 57(5):1340–1348

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen AT, Mandard S, Dray C, Deckert V, Valet P, Besnard P, Drucker DJ, Lagrost L, Grober J (2014) Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway. Diabetes 63(2):471–482

    Article  CAS  PubMed  Google Scholar 

  62. Nielsen ST, Lehrskov-Schmidt L, Krogh-Madsen R, Solomon TP, Lehrskov-Schmidt L, Holst JJ, Moller K (2013) Tumour necrosis factor-alpha infusion produced insulin resistance but no change in the incretin effect in healthy volunteers. Diabetes Metab Res Rev 29(8):655–663

    Article  CAS  PubMed  Google Scholar 

  63. Combes J, Borot S, Mougel F, Penfornis A (2011) The potential role of glucagon-like peptide-1 or its analogues in enhancing glycaemic control in critically ill adult patients. Diabetes Obes Metab 13(2):118–129

    Article  CAS  PubMed  Google Scholar 

  64. Pinelli NR, Jones MC, Monday LM, Smith Z, Rhoney DH (2012) Exogenous glucagon-like peptide-1 for hyperglycemia in critically ill patients. Ann Pharmacother 46(1):124–129

    Article  CAS  PubMed  Google Scholar 

  65. Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, Holst JJ, Schmidt WE, Gallwitz B (2004) Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med 32(3):848–851

    Article  CAS  PubMed  Google Scholar 

  66. Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ Jr, Maher TD, Dean DA, Bailey SH, Marrone G, Benckart DH et al (2007) Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol 100(5):824–829

    Article  CAS  PubMed  Google Scholar 

  67. Deane AM, Summers MJ, Zaknic AV, Chapman MJ, Fraser RJ, Di Bartolomeo AE, Wishart JM, Horowitz M (2011) Exogenous glucagon-like peptide-1 attenuates the glycaemic response to postpyloric nutrient infusion in critically ill patients with type-2 diabetes. Crit Care 15(1):R35

    Article  PubMed  PubMed Central  Google Scholar 

  68. Deane AM, Chapman MJ, Fraser RJ, Summers MJ, Zaknic AV, Storey JP, Jones KL, Rayner CK, Horowitz M (2010) Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med 38(5):1261–1269

    Article  CAS  PubMed  Google Scholar 

  69. Deane AM, Chapman MJ, Fraser RJ, Burgstad CM, Besanko LK, Horowitz M (2009) The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study. Crit Care 13(3):R67

    Article  PubMed  PubMed Central  Google Scholar 

  70. Galiatsatos P, Gibson BR, Rabiee A, Carlson O, Egan JM, Shannon RP, Andersen DK, Elahi D (2014) The glucoregulatory benefits of glucagon-like peptide-1 (7–36) amide infusion during intensive insulin therapy in critically ill surgical patients: a pilot study. Crit Care Med 42(3):638–645

    Article  CAS  PubMed  Google Scholar 

  71. Abuannadi M, Kosiborod M, Riggs L, House JA, Hamburg MS, Kennedy KF, Marso SP (2013) Management of hyperglycemia with the administration of intravenous exenatide to patients in the cardiac intensive care unit. Endocr Pract 19(1):81–90

    Article  PubMed  Google Scholar 

  72. Mecott GA, Herndon DN, Kulp GA, Brooks NC, Al-Mousawi AM, Kraft R, Rivero HG, Williams FN, Branski LK, Jeschke MG (2010) The use of exenatide in severely burned pediatric patients. Crit Care 14(4):R153

    Article  PubMed  PubMed Central  Google Scholar 

  73. Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA (2003) Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 46(6):798–801

    Article  CAS  PubMed  Google Scholar 

  74. Deacon CF, Ahren B (2011) Physiology of incretins in health and disease. Rev Diabet Stud 8(3):293–306

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhou J, Livak MF, Bernier M, Muller DC, Carlson OD, Elahi D, Maudsley S, Egan JM (2007) Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab 293(2):E538–E547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hojberg PV, Vilsboll T, Rabol R, Knop FK, Bache M, Krarup T, Holst JJ, Madsbad S (2009) Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52(2):199–207

    Article  CAS  PubMed  Google Scholar 

  77. Layon AJ, Florete OG Jr, Day AL, Kilroy RA, James PB, McGuigan JE (1991) The effect of duodenojejunal alimentation on gastric pH and hormones in intensive care unit patients. Chest 99(3):695–702

    Article  CAS  PubMed  Google Scholar 

  78. Lee MY, Fraser JD, Chapman MJ, Sundararajan K, Umapathysivam MM, Summers MJ, Zaknic AV, Rayner CK, Meier JJ, Horowitz M et al (2013) The effect of exogenous glucose-dependent insulinotropic polypeptide in combination with glucagon-like peptide-1 on glycemia in the critically ill. Diabetes Care 36(10):3333–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kar P, Cousins CE, Annink CE, Jones KL, Chapman MJ, Meier JJ, Nauck MA, Horowitz M, Deane AM (2015) Effects of glucose-dependent insulinotropic polypeptide on gastric emptying, glycaemia and insulinaemia during critical illness: a prospective, double blind, randomised, crossover study. Crit Care 19(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kar P, Jones KL, Horowitz M, Chapman MJ, Deane AM (2015) Measurement of gastric emptying in the critically ill. Clin Nutr 34(4):557–564

    Article  PubMed  Google Scholar 

  81. Dube PE, Brubaker PL (2007) Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab 293(2):E460–E465

    Article  CAS  PubMed  Google Scholar 

  82. Wallis K, Walters JR, Forbes A (2007) Review article: glucagon-like peptide 2--current applications and future directions. Aliment Pharmacol Ther 25(4):365–372

    Article  CAS  PubMed  Google Scholar 

  83. Estall JL, Drucker DJ (2006) Glucagon-like Peptide-2. Annu Rev Nutr 26:391–411

    Article  CAS  PubMed  Google Scholar 

  84. Scott RB, Kirk D, MacNaughton WK, Meddings JB (1998) GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol 275(5 Pt 1):G911–G921

    CAS  PubMed  Google Scholar 

  85. Boushey RP, Yusta B, Drucker DJ (1999) Glucagon-like peptide 2 decreases mortality and reduces the severity of indomethacin-induced murine enteritis. Am J Physiol 277(5 Pt 1):E937–E947

    CAS  PubMed  Google Scholar 

  86. Kouris GJ, Liu Q, Rossi H, Djuricin G, Gattuso P, Nathan C, Weinstein RA, Prinz RA (2001) The effect of glucagon-like peptide 2 on intestinal permeability and bacterial translocation in acute necrotizing pancreatitis. Am J Surg 181(6):571–575

    Article  CAS  PubMed  Google Scholar 

  87. Prasad R, Alavi K, Schwartz MZ (2000) Glucagonlike peptide-2 analogue enhances intestinal mucosal mass after ischemia and reperfusion. J Pediatr Surg 35(2):357–359

    Article  CAS  PubMed  Google Scholar 

  88. Cameron HL, Perdue MH (2005) Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J Pharmacol Exp Ther 314(1):214–220

    Article  CAS  PubMed  Google Scholar 

  89. Wilhelm SM, Lipari M, Kulik JK, Kale-Pradhan PB (2014) Teduglutide for the treatment of short bowel syndrome. Ann Pharmacother 48(9):1209–1213

    Article  CAS  PubMed  Google Scholar 

  90. Hernandez G, Velasco N, Wainstein C, Castillo L, Bugedo G, Maiz A, Lopez F, Guzman S, Vargas C (1999) Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J Crit Care 14(2):73–77

    Article  CAS  PubMed  Google Scholar 

  91. Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125(3):403–404

    Article  CAS  PubMed  Google Scholar 

  92. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89(5):1070–1077

    CAS  PubMed  Google Scholar 

  93. Lin HC, Chey WY, Zhao X (2000) Release of distal gut peptide YY (PYY) by fat in proximal gut depends on CCK. Peptides 21(10):1561–1563

    Article  CAS  PubMed  Google Scholar 

  94. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349(10):941–948

    Article  CAS  PubMed  Google Scholar 

  95. Nematy M, O'Flynn JE, Wandrag L, Brynes AE, Brett SJ, Patterson M, Ghatei MA, Bloom SR, Frost GS (2006) Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study. Crit Care 10(1):R10

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nguyen NQ, Fraser RJ, Bryant LK, Chapman MJ, Wishart J, Holloway RH, Butler R, Horowitz M (2007) The relationship between gastric emptying, plasma cholecystokinin, and peptide YY in critically ill patients. Crit Care 11(6):R132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Plummer MMBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plummer, M.P., Blaser, A.R., Deane, A.M. (2016). Enterohormones and the Response to Critical Illness. In: Preiser, JC. (eds) The Stress Response of Critical Illness: Metabolic and Hormonal Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-27687-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27687-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27685-4

  • Online ISBN: 978-3-319-27687-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics