Skip to main content

Modeling Astrocytomas in a Family of Inducible Genetically Engineered Mice: Implications for Preclinical Cancer Drug Development

  • Chapter
  • First Online:
CNS Cancer

Abstract

Astrocytomas, the most common intracranial malignancies, are a morphologically and molecularly heterogeneous group of brain tumors with potentially dismal patient outcomes for which few effective drugs are available. Genetically engineered mouse (GEM) models of astrocytoma represent a powerful technique for defining the molecular and genetic abnormalities that contribute to tumorigenesis. Based on the genetic aberrations observed in human astrocytomas, we have generated a series of conditional, inducible GEM models of astrocytomas that recapitulate the spectrum of morphological phenotypes of human astrocytomas. However, the extent to which any given GEM model recapitulates the molecular alterations in human tumors must be determined to validate its usefulness in preclinical studies. We are currently pursuing comparative evaluation of primary astrocytomas as formed in GEM and in patients to (1) examine the signaling pathway abnormalities caused by defined genetic lesions in GEM astrocytomas and (2) identify protein biomarkers that can define human astrocytomas that most closely resemble their murine counterparts. To utilize these GEM for combined preclinical evaluation of targeted therapeutic agents and biomarkers predictive of response, we have developed a panel of cell-based assays (CBA) and an orthotopic allograft model of high-grade astrocytomas using primary astrocytes derived from GEM. These tools should prove useful for preclinical drug development studies and provide a link between preclinical drug development in GEM astrocytoma models and rational design of human clinical trials involving only those patients with tumors having similar signaling pathway abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1: 269–77.

    Article  PubMed  CAS  Google Scholar 

  • Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 2002; 22: 5100–13.

    Article  PubMed  CAS  Google Scholar 

  • Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 2006; 66: 3355–8, discussion 8–9.

    Article  PubMed  CAS  Google Scholar 

  • Bonner AE, Lemon WJ, Devereux TR, Lubet RA, You M. Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene 2004; 23: 1166–76.

    Article  PubMed  CAS  Google Scholar 

  • Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 1994; 8: 1019–29.

    Article  PubMed  CAS  Google Scholar 

  • Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A. GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 1994; 14: 1030–7.

    PubMed  CAS  Google Scholar 

  • Brubaker LM, Bullitt E, Yin C, Van Dyke T, Lin W. Magnetic resonance angiography visualization of abnormal tumor vasculature in genetically engineered mice. Cancer Res 2005; 65: 8218–23.

    Article  PubMed  CAS  Google Scholar 

  • Burchill SA. What do, can and should we learn from models to evaluate potential anticancer agents? Future Oncol 2006; 2: 201–11.

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–8.

    Google Scholar 

  • Casper KB, Jones K, McCarthy KD. Characterization of astrocyte-specific conditional knockouts. Genesis 2007; 45: 292–9.

    Article  PubMed  CAS  Google Scholar 

  • CBTRUS. Central Brain Tumor Registry of the United States: Statistical Report: Primary Brain Tumors in the United States, 2000–2004. Hinsdale, IL: Central Brain Tumor Registry of the United States; 2008.

    Google Scholar 

  • Charest A, Wilker EW, McLaughlin ME, Lane K, Gowda R, Coven S, McMahon K, Kovach S, Feng Y, Yaffe MB, Jacks T, Housman D. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res 2006; 66: 7473–81.

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15: 1913–25.

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Lyustikman Y, Shih A, Hu X, Fuller GN, Rosenblum M, Holland EC. The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia 2005; 7: 397–406.

    Article  PubMed  CAS  Google Scholar 

  • Deeb KK, Michalowska AM, Yoon CY, Krummey SM, Hoenerhoff MJ, Kavanaugh C, Li MC, Demayo FJ, Linnoila I, Deng CX, Lee EY, Medina D, Shih JH, Green JE. Identification of an Integrated SV40 T/t-Antigen Cancer Signature in Aggressive Human Breast, Prostate, and Lung Carcinomas with Poor Prognosis. Cancer Res 2007; 67: 8065–80.

    Article  PubMed  CAS  Google Scholar 

  • Demuth T, Reavie LB, Rennert JL, Nakada M, Nakada S, Hoelzinger DB, Beaudry CE, Henrichs AN, Anderson EM, Berens ME. MAP-ing glioma invasion: mitogen-activated protein kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol Cancer Ther 2007; 6: 1212–22.

    Article  PubMed  CAS  Google Scholar 

  • Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson R, Furth P, Hunter K, Kucherlapati R, Simon R, Liu ET, Green JE. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci U S A 2002; 99: 6967–72.

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001; 61: 3826–36.

    PubMed  CAS  Google Scholar 

  • Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL, Takebayashi H, Nagy A, Gutmann DH, Guha A. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 2003; 63: 1106–13.

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA, Jr., Park SH, Thompson T, Ford RJ, Bradley A. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 1995; 14: 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap SM, Celestino J, Wang H, Jiang R, Holland EC, Fuller GN, Zhang W. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci U S A 2007.

    Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R, Thomas GV, Sawyers CL. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4: 223–38.

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997; 237: 752–7.

    Article  PubMed  CAS  Google Scholar 

  • Fomchenko EI, Holland EC. Stem cells and brain cancer. Exp Cell Res 2005; 306: 323–9.

    Article  PubMed  CAS  Google Scholar 

  • Fomchenko EI, Holland EC. Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 2006a; 12: 5288–97.

    Article  PubMed  CAS  Google Scholar 

  • Fomchenko EI, Holland EC. Origins of brain tumors – a disease of stem cells? Nat Clin Pract Neurol 2006b; 2: 288–9.

    Article  PubMed  Google Scholar 

  • Foucar E. Classification in anatomic pathology. Am J Clin Pathol 2001; 116 Suppl: S5–20.

    PubMed  CAS  Google Scholar 

  • Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, Mariani G, Rodriguez J, Carcangiu M, Watson D, Valagussa P, Rouzier R, Symmans WF, Ross JS, Hortobagyi GN, Pusztai L, Shak S. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 2005; 23: 7265–77.

    Article  PubMed  CAS  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–7.

    Article  PubMed  CAS  Google Scholar 

  • Graeber TG, Sawyers CL. Cross-species comparisons of cancer signaling. Nat Genet 2005; 37: 7–8.

    Article  PubMed  CAS  Google Scholar 

  • Gutmann DH, Hunter-Schaedle K, Shannon KM. Harnessing preclinical mouse models to inform human clinical cancer trials. J Clin Invest 2006; 116: 847–52.

    Article  PubMed  CAS  Google Scholar 

  • Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  Google Scholar 

  • Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 2005; 7: 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001; 2: 120–9.

    Article  PubMed  CAS  Google Scholar 

  • Holland EC. Mouse models of human cancer as tools in drug development. Cancer Cell 2004; 6: 197–8.

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000; 25: 55–7.

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12: 3675–85.

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Li Y, Celestino J, Dai C, Schaefer L, Sawaya RA, Fuller GN. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol 2000; 157: 1031–7.

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Holland EC. Applications of mouse glioma models in preclinical trials. Mutat Res 2005; 576: 54–65.

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 2005; 7: 356–68.

    Article  PubMed  CAS  Google Scholar 

  • Huang E, Ishida S, Pittman J, Dressman H, Bild A, Kloos M, D'Amico M, Pestell RG, West M, Nevins JR. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet 2003; 34: 226–30.

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994; 7: 353–61.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ, Freudenberg J, Chen X, Haigis K, Jegga AG, Kong S, Sakthivel B, Xu H, Reichling T, Azhar M, Boivin GP, Roberts RB, Bissahoyo AC, Gonzales F, Bloom GC, Eschrich S, Carter SL, Aronow JE, Kleimeyer J, Kleimeyer M, Ramaswamy V, Settle SH, Boone B, Levy S, Graff JM, Doetschman T, Groden J, Dove WF, Threadgill DW, Yeatman TJ, Coffey RJ, Jr., Aronow BJ. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol 2007; 8: R131.

    Article  PubMed  Google Scholar 

  • Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006; 50: 377–88.

    Article  PubMed  CAS  Google Scholar 

  • Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK, Mason RP, Lee EY, Wu H, Parada LF. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 2008; 68: 3286–94.

    Article  PubMed  CAS  Google Scholar 

  • Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet 2001; 29: 404–11.

    Article  PubMed  CAS  Google Scholar 

  • Lassman AB, Dai C, Fuller GN, Vickers AJ, Holland EC. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol 2004; 1: 157–63.

    Article  PubMed  Google Scholar 

  • Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, Thorgeirsson SS. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 2004; 36: 1306–11.

    Article  PubMed  CAS  Google Scholar 

  • Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007; 2: 329–33.

    Article  PubMed  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO classification of tumours of the central nervous system. 4th ed. Lyon: IARC; 2007.

    Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322: 1111–22.

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Chambon P. Site- and time-specific gene targeting in the mouse. Methods 2001; 24: 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Miller CR, Perry A. Glioblastoma: Morphological and molecular genetic diversity. Arch Pathol Lab Med 2007; 131: 397–406.

    PubMed  Google Scholar 

  • Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 2003; 63: 1602–7.

    PubMed  CAS  Google Scholar 

  • Oh DS, Troester MA, Usary J, Hu Z, He X, Fan C, Wu J, Carey LA, Perou CM. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 2006; 24: 1656–64.

    Article  PubMed  CAS  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004; 64: 6892–9.

    Article  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–12.

    Article  PubMed  CAS  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9: 157–73.

    Article  PubMed  CAS  Google Scholar 

  • Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R, Cragun J, Cottrill H, Kelley MJ, Petersen R, Harpole D, Marks J, Berchuck A, Ginsburg GS, Febbo P, Lancaster J, Nevins JR. Genomic signatures to guide the use of chemotherapeutics. Nat Med 2006; 12: 1294–300.

    Article  PubMed  CAS  Google Scholar 

  • Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, Sawaya R. Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res 2004; 10: 212–21.

    Article  PubMed  CAS  Google Scholar 

  • Read TA, Hegedus B, Wechsler-Reya R, Gutmann DH. The neurobiology of neurooncology. Ann Neurol 2006; 60: 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 2000; 26: 109–13.

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J, Bronson RT, Smith CD, Tsang S, Munroe DJ, Jacks T. Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci U S A 2004; 101: 13008–13.

    Article  PubMed  CAS  Google Scholar 

  • Rich JN, Hans C, Jones B, Iversen ES, McLendon RE, Rasheed BK, Dobra A, Dressman HK, Bigner DD, Nevins JR, West M. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 2005; 65: 4051–8.

    Article  PubMed  CAS  Google Scholar 

  • Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, Taylor J, Hanash SM. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 2001; 61: 6885–91.

    PubMed  CAS  Google Scholar 

  • Salpietro M, Holland EC. Modeling and preclinical trials for gliomas. Clin Neurosurg 2005; 52: 104–11.

    PubMed  Google Scholar 

  • Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998; 14: 381–92.

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Sabha N, Lau N, Kamnasaran D, Gutmann DH, Guha A. Pathological and molecular progression of astrocytomas in a GFAP:12 V-Ha-Ras mouse astrocytoma model. Am J Pathol 2005; 167: 859–67.

    Article  PubMed  CAS  Google Scholar 

  • Sharpless NE, Depinho RA. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 2006; 5: 741–54.

    Article  PubMed  CAS  Google Scholar 

  • Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC. Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 2004; 64: 4783–9.

    Article  PubMed  CAS  Google Scholar 

  • Shih AH, Holland EC. Developmental neurobiology and the origin of brain tumors. J Neurooncol 2004; 70: 125–36.

    Article  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545–50.

    Article  PubMed  CAS  Google Scholar 

  • Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C, Mesirov J, Golub TR, Jacks T. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 2005; 37: 48–55.

    PubMed  CAS  Google Scholar 

  • Tchougounova E, Kastemar M, Brasater D, Holland EC, Westermark B, Uhrbom L. Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 2007; 26: 6289–96.

    Article  PubMed  CAS  Google Scholar 

  • Theurillat JP, Hainfellner J, Maddalena A, Weissenberger J, Aguzzi A. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Am J Pathol 1999; 154: 581–90.

    Article  PubMed  CAS  Google Scholar 

  • Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 1992; 66: 303–13.

    PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 5116–21.

    Article  PubMed  CAS  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 2002; 62: 5551–8.

    PubMed  CAS  Google Scholar 

  • Uhrbom L, Kastemar M, Johansson FK, Westermark B, Holland EC. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res 2005; 65: 2065–9.

    Article  PubMed  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  PubMed  Google Scholar 

  • Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002; 108: 135–44.

    Article  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW. The genetic basis of human cancer. 2nd ed. New York: McGraw-Hill; 2002.

    Google Scholar 

  • Wei Q, Clarke L, Scheidenhelm DK, Qian B, Tong A, Sabha N, Karim Z, Bock NA, Reti R, Swoboda R, Purev E, Lavoie JF, Bajenaru ML, Shannon P, Herlyn D, Kaplan D, Henkelman RM, Gutmann DH, Guha A. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 2006; 66: 7429–37.

    Article  PubMed  CAS  Google Scholar 

  • Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 2003; 63: 1589–95.

    PubMed  CAS  Google Scholar 

  • Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 1997; 14: 2005–13.

    Article  PubMed  CAS  Google Scholar 

  • Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 2002; 1: 157–68.

    Article  PubMed  CAS  Google Scholar 

  • Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res 2005; 65: 5172–80.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005; 8: 119–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ryan Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miller, C.R., Karpinich, N.O., Zhang, Q., Bullitt, E., Kozlov, S., Van Dyke, T. (2009). Modeling Astrocytomas in a Family of Inducible Genetically Engineered Mice: Implications for Preclinical Cancer Drug Development. In: Meir, E. (eds) CNS Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-553-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-553-8_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-552-1

  • Online ISBN: 978-1-60327-553-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics