Skip to main content

Proteomics of Human Pancreatic Juice

  • Chapter
Proteomics of Human Body Fluids

Abstract

Pancreatic juice has recently been characterized in detail using proteomic methods. The cataloging of proteins from healthy individuals and those diagnosed with pancreatic cancer has revealed the presence of a number of proteins in pancreatic juice that could serve as potential biomarkers for cancer. Because obtaining pancreatic juice is not trivial, it is possible that these biomarkers can be detected in serum using more sensitive methods like ELISA. Here, we discuss the protein constituents of pancreatic juice with special reference to cancer biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson NL, Polanski M, Pieper R, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004;3:311–326.

    Article  PubMed  CAS  Google Scholar 

  2. Muthusamy B, Hanumanthu G, Suresh S, et al. Plasma Proteome Database as a resource for proteomics research. Proteomics 2005;5:3531–3536.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1:845–867.

    Article  PubMed  CAS  Google Scholar 

  4. Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2003;2:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  5. Pieper R, Gatlin CL, Makusky AJ, et al. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 2003; 3:1345–1364.

    Article  PubMed  CAS  Google Scholar 

  6. Satoh J, Darley-Usmar VM, Kashimura H, Fukutomi H, Anan K, Ohsuga T. Analysis of pure pancreatic juice proteins by two-dimensional gel electrophoresis in cases of pancreatic cancer. Gastroenterol Jpn 1986;21:623–629.

    PubMed  CAS  Google Scholar 

  7. Goke B, Keim V, Dagorn JC, Arnold R, Adler G. Resolution of human exocrine pancreatic juice proteins by reversed-phase high performance liquid chromatography (HPLC). Pancreas 1990;5:261–266.

    Article  PubMed  CAS  Google Scholar 

  8. Gronborg M, Bunkenborg J, Kristiansen TZ, et al. Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 2004;3:1042–1055.

    Article  PubMed  CAS  Google Scholar 

  9. Rosty C, Goggins M. Early detection of pancreatic carcinoma. Hematol Oncol Clin North Am 2002; 16:37–52.

    Article  PubMed  Google Scholar 

  10. Chen R, Pan S, Brentnall TA, Aebersold R. Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 2005;4:523–533.

    Article  PubMed  CAS  Google Scholar 

  11. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin 2001;51:15–36.

    PubMed  CAS  Google Scholar 

  12. Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin 2002;52:23–47.

    PubMed  Google Scholar 

  13. Yeo TP, Hruban RH, Leach SD, et al. Pancreatic cancer. Curr Probl Cancer 2002;26:176–275.

    Article  PubMed  Google Scholar 

  14. Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol 1990;85:350–355.

    PubMed  CAS  Google Scholar 

  15. Hanash S. Mining the cancer proteome. Proteomics 2001; 1:1189–1190.

    PubMed  CAS  Google Scholar 

  16. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572–577.

    Article  PubMed  CAS  Google Scholar 

  17. Srinivas PR, Srivastava S, Hanash S, Wright GL Jr. Proteomics in early detection of cancer. Clin Chem 2001;47:1901–1911.

    PubMed  CAS  Google Scholar 

  18. Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res 2001;7:1118–1126.

    PubMed  CAS  Google Scholar 

  19. Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 2002;3:755–763.

    Article  PubMed  CAS  Google Scholar 

  20. Shevchenko A, Jensen ON, Podtelejnikov AV, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 1996;93:14,440–14,445.

    Article  PubMed  CAS  Google Scholar 

  21. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 2000;97:9390–9395.

    Article  PubMed  CAS  Google Scholar 

  22. Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002;2:3–10.

    Article  PubMed  CAS  Google Scholar 

  23. Veenstra TD. Proteome analysis of posttranslational modifications. Adv Protein Chem 2003;65:161–194.

    PubMed  CAS  Google Scholar 

  24. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003;21:255–261.

    Article  PubMed  CAS  Google Scholar 

  25. Shen J, Person MD, Zhu J, Abbruzzese JL, Li D. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 2004;64:9018–9026.

    Article  PubMed  CAS  Google Scholar 

  26. Lu Z, Hu L, Evers S, Chen J, Shen Y. Differential expression profiling of human pancreatic adenocarcinoma and healthy pancreatic tissue. Proteomics 2004;4: 3975–3988.

    Article  PubMed  CAS  Google Scholar 

  27. Shekouh AR, Thompson CC, Prime W, et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 2003;3:1988–2001.

    Article  PubMed  CAS  Google Scholar 

  28. Seike M, Kondo T, Fujii K, et al. Proteomic signature of human cancer cells. Proteomics 2004;4:2776–2788.

    Article  PubMed  CAS  Google Scholar 

  29. Koopmann J, Fedarko NS, Jain A, et al. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2004; 13: 487–491.

    PubMed  CAS  Google Scholar 

  30. Verma M, Wright GL, Jr., Hanash SM, Gopal-Srivastava R, Srivastava S. Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N YAcad Sci 2001;945:103–115.

    Article  CAS  Google Scholar 

  31. Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 2001;70:437–473.

    Article  PubMed  CAS  Google Scholar 

  32. Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000;405: 837–846.

    Article  PubMed  CAS  Google Scholar 

  33. Kristiansen TZ, Bunkenborg J, Gronborg M, et al. A proteomic analysis of human bile. Mol Cell Proteomics 2004;3:715–728.

    Article  PubMed  CAS  Google Scholar 

  34. Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 2002; 1:47–54.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou H, Ranish JA, Watts JD, Aebersold R. Quantitative proteome analysis by solid phase isotope tagging and mass spectrometry. Nat Biotechnol 2002;20:512–515.

    Article  PubMed  CAS  Google Scholar 

  36. Li C, Hong Y, Tan YX, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 2004;3:399–409.

    Article  PubMed  CAS  Google Scholar 

  37. Meehan KL, Sadar MD. Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 2004;4: 1116–1134.

    Article  PubMed  CAS  Google Scholar 

  38. Everley PA, Krijgsveld J, Zetter BR, Gygi SP. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics 2004;3:729–735.

    Article  PubMed  CAS  Google Scholar 

  39. Gronborg M, Kristiansen TZ, Iwahori A, et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomics approach. Mol Cell Proteomics 2006;5:157–176.

    PubMed  CAS  Google Scholar 

  40. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 2003;63:8614–8622.

    PubMed  CAS  Google Scholar 

  41. Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 2003;162:1151–1162.

    PubMed  CAS  Google Scholar 

  42. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 2002;160:1239–1249.

    PubMed  CAS  Google Scholar 

  43. Mulla A, Christian HC, Solito E, Mendoza N, Morris JF, Buckingham JC. Expression, subcellular localization and phosphorylation status of annexins 1 and 5 in human pituitary adenomas and a growth hormone-secreting carcinoma. Clin Endocrinol (Oxf) 2004;60:107–119.

    Article  CAS  Google Scholar 

  44. Wang Y, Serfass L, Roy MO, Wong J, Bonneau AM, Georges E. Annexin-I expression modulates drug resistance in tumor cells. Biochem Biophys Res Commun 2004;314:565–570.

    Article  PubMed  CAS  Google Scholar 

  45. Fang MZ, Liu C, Song Y, et al. Over-expression of gastrin-releasing peptide in human esophageal squamous cell carcinomas. Carcinogenesis 2004;25:865–876.

    Article  PubMed  CAS  Google Scholar 

  46. Pencil SD, Toth M. Elevated levels of annexin I protein in vitro and in vivo in rat and human mammary adenocarcinoma. Clin Exp Metastasis 1998;16:113–121.

    Article  PubMed  CAS  Google Scholar 

  47. Kodera Y, Isobe K, Yamauchi M, et al. Expression of carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA) in gastrointestinal cancer; the correlation with degree of differentiation. Br J Cancer 1993;68:130–136.

    PubMed  CAS  Google Scholar 

  48. Hasegawa T, Isobe K, Tsuchiya Y, et al. Nonspecific crossreacting antigen (NCA) is a major member of the carcinoembryonic antigen (CEA)-related gene family expressed in lung cancer. Br J Cancer 1993;67:58–65.

    PubMed  CAS  Google Scholar 

  49. Sienel W, Dango S, Woelfle U, et al. Elevated expression of carcinoembryonic antigen-related cell adhesion molecule 1 promotes progression of non-small cell lung cancer. Clin Cancer Res 2003;9:2260–2266.

    PubMed  CAS  Google Scholar 

  50. Scholzel S, Zimmermann W, Schwarzkopf G, Grunert F, Rogaczewski B, Thompson J. Carcinoembryonic antigen family members CEACAM6 and CEACAM7 are differentially expressed in normal tissues and oppositely deregulated in hyperplastic colorectal polyps and early adenomas. Am J Pathol 2000; 156:595–605.

    PubMed  CAS  Google Scholar 

  51. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene 2004;23:465–473.

    Article  PubMed  CAS  Google Scholar 

  52. Sato N, Fukushima N, Maitra A, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 2004; 164:903–914.

    PubMed  CAS  Google Scholar 

  53. Mori M, Shiraishi T, Tanaka S, et al. Lack of DMBT1 expression in oesophageal, gastric and colon cancers. Br J Cancer 1999;79:211–213.

    PubMed  CAS  Google Scholar 

  54. Wu W, Kemp BL, Proctor ML, et al. Expression of DMBT1, a candidate tumor suppressor gene, is frequently lost in lung cancer. Cancer Res 1999;59:1846–1851.

    PubMed  CAS  Google Scholar 

  55. Sasaki K, Sato K, Akiyama Y, Yanagihara K, Oka M, Yamaguchi K. Peptidomics based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines. Cancer Res 2002;62:4894–4898.

    PubMed  CAS  Google Scholar 

  56. Iacobelli S, Arno E, D’Orazio A, Coletti G. Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer. Cancer Res 1986;46:3005–3010.

    PubMed  CAS  Google Scholar 

  57. Iacobelli S, Arno E, Sismondi P, et al. Measurement of a breast cancer associated antigen detected by monoclonal antibody SP-2 in sera of cancer patients. Breast Cancer Res Treat 1988;11:19–30.

    Article  PubMed  CAS  Google Scholar 

  58. Iacobelli S, Bucci I, D’Egidio M, et al. Purification and characterization of a 90 kDa protein released from human tumors and tumor cell lines. FEBS Lett 1993;319:59–65.

    Article  PubMed  CAS  Google Scholar 

  59. Iacobelli S, Sismondi P, Giai M, et al. Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br J Cancer 1994;69:172–176.

    PubMed  CAS  Google Scholar 

  60. Christa L, Simon MT, Brezault-Bonnet C, et al. Hepatocarcinoma-intestine-pancreas/ pancreatic associated protein (HIP/PAP) is expressed and secreted by proliferating ductules as well as by hepatocarcinoma and cholangiocarcinoma cells. Am J Pathol 1999;155:1525–1533.

    PubMed  CAS  Google Scholar 

  61. Christa L, Carnot F, Simon MT, et al. HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am J Physiol 1996;271:G993–G1002.

    PubMed  CAS  Google Scholar 

  62. Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002;62:1868–1875.

    PubMed  CAS  Google Scholar 

  63. Muller HL, Oh Y, Lehrnbecher T, Blum WF, Rosenfeld RG. Insulin-like growth factor-binding protein-2 concentrations in cerebrospinal fluid and serum of children with malignant solid tumors or acute leukemia. J Clin Endocrinol Metab 1994;79:428–434.

    Article  PubMed  CAS  Google Scholar 

  64. Cohen P. Serum insulin-like growth factor-I levels and prostate cancer risk— interpreting the evidence. J Natl Cancer Inst 1998;90:876–879.

    Article  PubMed  CAS  Google Scholar 

  65. Ho PJ, Baxter RC. Insulin-like growth factor-binding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol (Oxf) 1997;46:333–342.

    Article  CAS  Google Scholar 

  66. Cariani E, Lasserre C, Kemeny F, Franco D, Brechot C. Expression of insulin-like growth factor II, alpha-fetoprotein and hepatitis B virus transcripts in human primary liver cancer. Hepatology 1991;13:644–649.

    Article  PubMed  CAS  Google Scholar 

  67. Kunzli BM, Berberat PO, Zhu ZW, et al. Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma. Cancer 2002;94:228–239.

    Article  PubMed  CAS  Google Scholar 

  68. Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE. Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res 2001;61:1833–1838.

    PubMed  CAS  Google Scholar 

  69. Sanchez LM, Freije JP, Merino AM, Vizoso F, Foltmann B, Lopez-Otin C. Isolation and characterization of a pepsin C zymogen produced by human breast tissues. J Biol Chem 1992;267:24,725–24,731.

    PubMed  CAS  Google Scholar 

  70. Diaz M, Rodriguez JC, Sanchez J, et al. Clinical significance of pepsinogen C tumor expression in patients with stage D2 prostate carcinoma. Int J Biol Markers 2002; 17:125–129.

    PubMed  CAS  Google Scholar 

  71. Takahashi S, Suzuki S, Inaguma S, et al. Down-regulated expression of prostasin in high-grade or hormone-refractory human prostate cancers. Prostate 2003;54: 187–193.

    Article  PubMed  CAS  Google Scholar 

  72. Chen LM, Chai KX. Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. Int J Cancer 2002;97:323–329.

    Article  PubMed  CAS  Google Scholar 

  73. Mok SC, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001;93:1458–1464.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Grønborg, M., Maitra, A., Pandey, A. (2007). Proteomics of Human Pancreatic Juice. In: Thongboonkerd, V. (eds) Proteomics of Human Body Fluids. Humana Press. https://doi.org/10.1007/978-1-59745-432-2_17

Download citation

Publish with us

Policies and ethics