Skip to main content

Proteomic Strategies for Analyzing Body Fluids

  • Chapter
Proteomics of Human Body Fluids

Abstract

The rapid development of molecular and cell biology in the latter part of the last century has led us to the understanding that many diseases, including cancer, are caused by perturbations of cellular networks, which are triggered by genetic changes and/or environmental challenges. These perturbations manifest by changing cellular protein profiles, which, in turn, alter the quantitative relationship of tissue-specific proteins shed into the tissue/organ microenvironment. Such altered protein expression profiles in body fluids constitute molecular signatures or fingerprints that reflect the original perturbation of cellular networks. The exciting challenge of modern proteomics is to identify such signatures for various disease states—then the body fluids will become windows into disease and potential biospecimen sources for biomarkers of disease. (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skandarajah A, Moritz RL, Tjandra JJ, Simpson RJ. Proteomic analysis of colorectal cancer: discovering novel biomarkers. Expert Rev Proteomics 2005; 2: 681–692.

    Article  PubMed  CAS  Google Scholar 

  2. Robin ED. Limits of the internal environment. In: Robin ED, ed. Claude Bernard and the Internal Environment: A Memorial Symposium. New York: M. Dekker, 1979:257–267.

    Google Scholar 

  3. Guyton AC, Hall JE. The body fluid compartments: extracellular and intracellular fluids, interstitiatl fluid and edema. In: Guyton AC, Hall JE, eds. Textbook of Medical Physiology, 10th ed. Philadelphia: W.B. Saunders, 2000:264–294.

    Google Scholar 

  4. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411:375–379.

    Article  PubMed  CAS  Google Scholar 

  5. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: written in blood. Nature 2003; 425:905.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1:845–867.

    Article  PubMed  CAS  Google Scholar 

  7. Celis JE, Gromov P, Cabezon T, et al. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics 2004; 3: 327–344.

    Article  PubMed  CAS  Google Scholar 

  8. Leak LV, Liotta LA, Krutzsch H, et al. Proteomic analysis of lymph. Proteomics 2004;4:753–765.

    Article  PubMed  CAS  Google Scholar 

  9. Sedlaczek P, Frydecka I, Gabrys M, Van Dalen A, Einarsson R, Harlozinska A. Comparative analysis of CA125, tissue polypeptide specific antigen, and soluble interleukin-2 receptor alpha levels in sera, cyst, and ascitic fluids from patients with ovarian carcinoma. Cancer 2002; 95:1886–1893.

    Article  PubMed  Google Scholar 

  10. Trape J, Molina R, Sant F. Clinical evaluation of the simultaneous determination of tumor markers in fluid and serum and their ratio in the differential diagnosis of serous effusions. Tumour Biol 2004; 25:276–281.

    Article  PubMed  CAS  Google Scholar 

  11. Simpson RJ. Role of separation science in proteomics. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004:1–15.

    Google Scholar 

  12. Dufour R. Sources and control of preanalytical variation. In: Kaplan LA, Pesce AJ, Kazmierczak SC, eds. Clinical Chemistry: Theory, Analysis, Correlation, 4th ed. St. Louis, MO; Mosby, 2003:64–82.

    Google Scholar 

  13. Omenn GS. The Human Proteome Organization Plasma Proteome Project pilot phase: reference specimens, technology platform comparisons, and standardized data submissions and analyses. Proteomics 2004; 4:1235–1240.

    Article  PubMed  CAS  Google Scholar 

  14. Rand MJ, Murray RK. Plasma proteins, immunoglobulins, and blood coagulation. In: Murray RK, Granner DK, Mayes PA, Rodwell VW, eds. Harper’s Biochemistry, 25th ed. New York: McGraw-Hill, 2000:737–762.

    Google Scholar 

  15. Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005; 5:3262–3277.

    Article  PubMed  CAS  Google Scholar 

  16. Muller N, Danckworth HP. [Coagulation properties of the extravascular fluid. I. Coagulation factors in thoracic-duct lymph]. Z Lymphol 1980; 4:11–17.

    PubMed  CAS  Google Scholar 

  17. Chang P, Aronson DL, Borenstein DG, Kessler CM. Coagulant proteins and thrombin generation in synovial fluid: a model for extravascular coagulation. Am J Hematol 1995; 50:79–83.

    Article  PubMed  CAS  Google Scholar 

  18. Hulmes JD, Bethea B, Ho K, et al. An investigation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Clin Proteomics 2004; 1:17–32.

    Article  CAS  Google Scholar 

  19. Young DS, Bermes EW. Specimen collection and other preanalytical variables. In: Burtis CA, Ashwood ER, eds. Tietz Fundamentals of Clinical Chemistry, 5th ed. Philadelphia: Saunders, 2001:30–54.

    Google Scholar 

  20. Durham BH, Robinson J, Fraser WD. Differences in the stability of intact osteocalcin in serum, lithium heparin plasma and EDTA plasma. Ann Clin Biochem 1995; 32:422–423.

    PubMed  Google Scholar 

  21. Chan BY, Buckley KA, Durham BH, Gallagher JA, Fraser WD. Effect of anticoagulants and storage temperature on the stability of receptor activator for nuclear factor-kappa B ligand and osteoprotegerin in plasma and serum. Clin Chem 2003; 49:2083–2085.

    Article  PubMed  CAS  Google Scholar 

  22. Drake SK, Bowen RA, Remaley AT, Hortin GL. Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides. Clin Chem 2004; 50:2398–2401.

    Article  PubMed  CAS  Google Scholar 

  23. Lewis MR, Callas PW, Jenny NS, Tracy RP. Longitudinal stability of coagulation, fibrinolysis, and inflammation factors in stored plasma samples. Thromb Haemost 2001; 86:1495–1500.

    PubMed  CAS  Google Scholar 

  24. Rouy D, Ernens I, Jeanty C, Wagner DR. Plasma storage at-80 degrees C does not protect matrix metalloproteinase-9 from degradation. Anal Biochem 2005; 338:294–298.

    Article  PubMed  CAS  Google Scholar 

  25. Knowles MR, Cervino S, Skynner HA, et al. Multiplex proteomic analysis by twodimensional differential in-gel electrophoresis. Proteomics 2003; 3:1162–1171.

    Article  PubMed  CAS  Google Scholar 

  26. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250:4007–4021.

    PubMed  CAS  Google Scholar 

  27. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975; 26:231–243.

    PubMed  CAS  Google Scholar 

  28. Gorg A, Drews O, Weiss W. Separation of proteins using two-dimensional gel electrophoresis. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004:391–430.

    Google Scholar 

  29. Moritz RL, Ji H, Schutz F, et al. A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal Chem 2004; 76: 4811–4824.

    Article  PubMed  CAS  Google Scholar 

  30. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 2000; 21: 1104–1115.

    Article  PubMed  CAS  Google Scholar 

  31. Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002; 2:3–10.

    Article  PubMed  CAS  Google Scholar 

  32. Simpson RJ. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004.

    Google Scholar 

  33. Righetti PG, Castagna A, Antonioli P, Boschetti E. Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis 2005; 26:297–319.

    Article  PubMed  CAS  Google Scholar 

  34. Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2003; 2:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  35. Pieper R, Su Q, Gatlin CL, Huang ST, Anderson NL, Steiner S. Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 2003; 3:422–432.

    Article  PubMed  CAS  Google Scholar 

  36. Zolg JW, Langen H. How industry is approaching the search for new diagnostic markers and biomarkers. Mol Cell Proteomics 2004; 3:345–354.

    Article  PubMed  CAS  Google Scholar 

  37. Bjorhall K, Miliotis T, Davidsson P. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics 2005; 5:307–317.

    Article  PubMed  Google Scholar 

  38. Fountoulakis M, Juranville JF, Jiang L, et al. Depletion of the high-abundance plasma proteins. Amino Acids 2004; 27:249–259.

    Article  PubMed  CAS  Google Scholar 

  39. Mehta AI, Ross S, Lowenthal MS, et al. Biomarker amplification by serum carrier protein binding. Dis Markers 2003; 19:1–10.

    PubMed  CAS  Google Scholar 

  40. Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003; 21:660–666.

    Article  PubMed  CAS  Google Scholar 

  41. Kaji H, Saito H, Yamauchi Y, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 2003; 21:667–672.

    Article  PubMed  CAS  Google Scholar 

  42. Westermeier R, Gronau S. Electrophoresis in Practice: A Guide to Methods and Applications of DNA and Protein Separations, 4th ed. Weinheim: Wiley-VCH, 2005.

    Google Scholar 

  43. Simpson RJ. Proteins and Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2003.

    Google Scholar 

  44. Mant CT, Hodges RS. High-Performance Liquid Chromatography of Peptides and Proteins: Separation, Analysis, and Conformation. Boca Raton; CRC Press, 1991.

    Google Scholar 

  45. Stochaj W, Berkelman T, Laird N. Preparative two-dimensional gel electrophoresis with immobilized pH gradients. In: Simpson RJ, ed. Proteins and Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2003:143–218.

    Google Scholar 

  46. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2005; 5:826–827.

    Article  Google Scholar 

  47. Herbert BR, Righetti PG, McCarthy J, et al. Sample preparation for high-resolution two-dimensional electrophoresis by isoelectric fractionation in an MCE. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004:431–442.

    Google Scholar 

  48. Bier M. Recycling isoelectric focusing and isotachophoresis. Electrophoresis 1998; 19:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  49. Herbert BR, Righetti PG, McCarthy J, et al. Sample preparation for high-resolution two-dimensional electrophoresis by isoelectric fractionation in an MCE. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004: 431–442.

    Google Scholar 

  50. Zuo X, Speicher DW. A method for global analysis of complex proteomes using sample prefractionation by solution isoelectrofocusing prior to two-dimensional electrophoresis. Anal Biochem 2000; 284:266–278.

    Article  PubMed  CAS  Google Scholar 

  51. Zuo X, Speicher DW. Microscale solution isoelectrofocusing: a sample prefractionation method for comprehensive proteome analysis. Methods Mol Biol 2004; 244:361–375.

    PubMed  CAS  Google Scholar 

  52. Tang HY, Ali-Khan N, Echan LA, Levenkova N, Rux JJ, Speicher DW. A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 2005; 5:3329–3342.

    Article  PubMed  CAS  Google Scholar 

  53. Gorg A, Boguth G, Kopf A, Reil G, Parlar H, Weiss W. Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2002; 2:1652–1657.

    Article  PubMed  CAS  Google Scholar 

  54. Hoffmann P, Ji H, Moritz RL, et al. Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics 2001; 1:807–818.

    Article  PubMed  CAS  Google Scholar 

  55. Krivankova L, Bocek P. Continuous free-flow electrophoresis. Electrophoresis 1998; 19:1064–1074.

    Article  PubMed  CAS  Google Scholar 

  56. Weber PJA, Weber G, Eckerskorn C. Protein purification using free-flow electrophoresis. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004:463–478.

    Google Scholar 

  57. Moritz RL, Simpson RJ. Liquid-based free-flow electrophoresis-reversed-phase HPLC: a proteomic tool. Nat Methods 2005; 2:863–873.

    Article  PubMed  CAS  Google Scholar 

  58. Mohammad J. Chromatofocusing. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004:355–379.

    Google Scholar 

  59. Yan F, Subramanian B, Nakeff A, Barder TJ, Parus SJ, Lubman DM. A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2-D liquid separation mapping method based upon chromatofocusing PI fractionation. Anal Chem 2003; 75:2299–2308.

    Article  PubMed  CAS  Google Scholar 

  60. Soldi M, Sarto C, Valsecchi C, et al. Proteome profile of human urine with twodimensional liquid phase fractionation. Proteomics 2005; 5:2641–2647.

    Article  PubMed  CAS  Google Scholar 

  61. Lilley KS, Razzaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 2002; 6:46–50.

    Article  PubMed  CAS  Google Scholar 

  62. Westermeier R, Marouga R. Protein detection methods in proteomics research. Biosci Rep 2005; 25:19–32.

    Article  PubMed  CAS  Google Scholar 

  63. Van den Bergh G, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 2004; 15:38–43.

    Article  PubMed  Google Scholar 

  64. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18: 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  65. Lilley KS, Friedman DB. All about DIGE: quantification technology for differentialdisplay 2D-gel proteomics. Expert Rev Proteomics 2004; 1:401–409.

    Article  PubMed  CAS  Google Scholar 

  66. Marengo E, Robotti E, Antonucci F, Cecconi D, Campostrini N, Righetti PG. Numerical approaches for quantitative analysis of two-dimensional maps: a review of commercial software and home-made systems. Proteomics 2005; 5: 654–666.

    Article  PubMed  CAS  Google Scholar 

  67. Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 2003; 3:36–44.

    Article  PubMed  CAS  Google Scholar 

  68. Simpson RJ. Introduction to chromatographic methods for protein and peptide purification. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004: 41–74.

    Google Scholar 

  69. Lescuyer P, Hochstrasser DF, Sanchez JC. Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis 2004; 25:1125–1135.

    Article  PubMed  CAS  Google Scholar 

  70. Apffel A. Multidimensional chromatography of intact proteins. In: Simpson RJ, ed. Purifying Proteins for Proteomics: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004:75–100.

    Google Scholar 

  71. Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 2001; 73:5683–5690.

    Article  PubMed  CAS  Google Scholar 

  72. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422: 198–207.

    Article  PubMed  CAS  Google Scholar 

  73. Weatherly DB, Atwood JA 3rd, Minning TA, Cavola C, Tarleton RL, Orlando R. A heuristic method for assigning a false discovery rate for protein identifications from mascot database search results. Mol Cell Proteomics 2005.

    Google Scholar 

  74. Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomics data: The protein inference problem. Mol Cell Proteomics 2005; 4:1419–1440.

    Article  PubMed  CAS  Google Scholar 

  75. Kapp EA, Schutz F, Connolly LM, et al. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 2005; 5:3475–3490.

    Article  PubMed  CAS  Google Scholar 

  76. Sadygov RG, Cociorva D, Yates JR 3rd. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 2004; 1:195–202.

    Article  PubMed  CAS  Google Scholar 

  77. Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A. The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol Cell Proteomics 2004; 3:531–533.

    Article  PubMed  CAS  Google Scholar 

  78. Taylor SW, Fahy E, Ghosh SS. Global organellar proteomics. Trends Biotechnol 2003; 21:82–88.

    Article  PubMed  CAS  Google Scholar 

  79. Brunet S, Thibault P, Gagnon E, Kearney P, Bergeron JJ, Desjardins M. Organelle proteomics: looking at less to see more. Trends Cell Biol 2003; 13:629–638.

    Article  PubMed  CAS  Google Scholar 

  80. Ong SE, Mann M. Mass-spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005; 1:252–262.

    Article  PubMed  CAS  Google Scholar 

  81. Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR 3rd. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 2004; 76:4951–4959.

    Article  PubMed  CAS  Google Scholar 

  82. Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1:376–386.

    Article  PubMed  CAS  Google Scholar 

  83. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17:994–999.

    Article  PubMed  CAS  Google Scholar 

  84. Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3:1154–1169.

    Article  PubMed  CAS  Google Scholar 

  85. Stewart II, Thomson T, Figeys D. 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom 2001; 15:2456–2465.

    Article  PubMed  CAS  Google Scholar 

  86. Schneider LV, Hall MP. Stable isotope methods for high-precision proteomics. Drug Discov Today 2005; 10:353–363.

    Article  PubMed  CAS  Google Scholar 

  87. Beynon RJ, Pratt JM. Metabolic labeling of proteins for proteomics. Mol Cell Proteomics 2005;4:857–872.

    Article  PubMed  CAS  Google Scholar 

  88. Pan S, Zhang H, Rush J, et al. High throughput proteome screening for biomarker detection. Mol Cell Proteomics 2005; 4:182–190.

    PubMed  CAS  Google Scholar 

  89. Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol 2005; 6:577–583.

    Article  PubMed  CAS  Google Scholar 

  90. Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE. Comprehensive labelfree method for the relative quantification of proteins from biological samples. J Proteome Res 2005; 4:1442–1450.

    Article  PubMed  CAS  Google Scholar 

  91. Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 2004; 3: 367–378.

    Article  PubMed  CAS  Google Scholar 

  92. van der Greef J, Stroobant P, van der Heijden R. The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 2004; 8:559–565.

    Article  PubMed  Google Scholar 

  93. Davidov E, Clish CB, Oresic M, et al. Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. Omics 2004; 8: 267–288.

    Article  PubMed  CAS  Google Scholar 

  94. Guyton AC, Hall JE. The microcirculation and the lymphatic system: capillary fluid exchange, interstitial fluid, and lymph flow. In: Guyton AC, Hall JE, eds. Textbook of Medical Physiology, 10th ed. Philadelphia: WB Saunders, 2000: 162–174.

    Google Scholar 

  95. Guyton AC, Hall JE. Cerebral blood flow; the cerebrospinal fluid; and brain metabolism. In: Guyton AC, Hall JE, eds. Textbook of Medical Physiology, 10th ed. Philadelphia: WB Saunders, 2000:709–715.

    Google Scholar 

  96. Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 2005; 24:168–200.

    Article  PubMed  CAS  Google Scholar 

  97. Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 2004; 5:699–711.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ahn, SM., Simpson, R.J. (2007). Proteomic Strategies for Analyzing Body Fluids. In: Thongboonkerd, V. (eds) Proteomics of Human Body Fluids. Humana Press. https://doi.org/10.1007/978-1-59745-432-2_1

Download citation

Publish with us

Policies and ethics