Skip to main content

Metabolism of Nutritive Sweeteners in Humans

  • Chapter
  • First Online:
Fructose, High Fructose Corn Syrup, Sucrose and Health

Part of the book series: Nutrition and Health ((NH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Temussi PA. Sweet, bitter and umami receptors: a complex relationship. Trends Biochem Sci. 2009;34(6):296–302.

    Article  CAS  PubMed  Google Scholar 

  2. Mintz SW. Sweetness and power. The place of sugar in modern history. New York: Penguin Books; 1985. ISBN ISBN 978-0-14-009233-2.

    Google Scholar 

  3. White JS. Straight talk about high-fructose corn syrup: what it is and what it ain’t. Am J Clin Nutr. 2008;88(6):1716S–21.

    Article  CAS  PubMed  Google Scholar 

  4. Brunzell JD. Use of fructose, xylitol, or sorbitol as a sweetener in diabetes mellitus. Diabetes Care. 1978;1(4):223–30.

    Article  CAS  PubMed  Google Scholar 

  5. Schoch W. Effect of hydrogen ion concentration on sucrose inversion in determination of sugar content of forage and sugar beets. Mitt Lebensmittelunters Hyg. 1951;42(3):242–50.

    CAS  PubMed  Google Scholar 

  6. Drozdowski LA, Thomson AB. Intestinal sugar transport. World J Gastroenterol. 2006;12(11):1657–70.

    CAS  PubMed  Google Scholar 

  7. Wright EM, Turk E, Martin MG. Molecular basis for glucose-galactose malabsorption. Cell Biochem Biophys. 2002;36(2–3):115–21.

    Article  CAS  PubMed  Google Scholar 

  8. Douard V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol. 2013;591(Pt 2):401–14.

    Article  CAS  PubMed  Google Scholar 

  9. Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes. 2005;54(10):3056–62.

    Article  CAS  PubMed  Google Scholar 

  10. Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61(1):187–96.

    Article  CAS  PubMed  Google Scholar 

  11. Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U, et al. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem. 2009;284(8):5056–66.

    Article  CAS  PubMed  Google Scholar 

  12. DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181–91.

    Article  CAS  PubMed  Google Scholar 

  13. Holloway PA, Parsons DS. Absorption and metabolism of fructose by rat jejunum. Biochem J. 1984;222(1):57–64.

    CAS  PubMed  Google Scholar 

  14. Latulippe ME, Skoog SM. Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion. Crit Rev Food Sci Nutr. 2011;51(7):583–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994;219(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  16. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298(2):E141–5.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206(Pt 12):2049–57.

    Article  CAS  PubMed  Google Scholar 

  18. Postic C, Shiota M, Magnuson MA. Cell-specific roles of glucokinase in glucose homeostasis. RPHR. 2001;56:195–217.

    CAS  PubMed  Google Scholar 

  19. Herman RH, Zakim D. Fructose metabolism. IV. Enzyme deficiencies: essential fructosuria, fructose intolerance, and glycogen-storage disease. Am J Clin Nutr. 1968;21(6):693–8.

    CAS  PubMed  Google Scholar 

  20. Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, Hayward BE, Asipu A, Bonthron DT. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem. 2009;57(8):763–74.

    Article  CAS  PubMed  Google Scholar 

  21. Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58:S754–65.

    Google Scholar 

  22. Espinoza J, Clark SB, Hritz A, Rosensweig NS. Regulation of rat proximal intestinal glycolytic enzyme activity by ileal perfusion with glucose. Gastroenterology. 1976;71(2):295–8.

    CAS  PubMed  Google Scholar 

  23. Rajas F, Bruni N, Montano S, Zitoun C, Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bjorkman O, Crump M, Phillips RW. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. J Nutr. 1984;114(8):1413–20.

    CAS  PubMed  Google Scholar 

  25. Bismut H, Hers HG, Van Schaftingen E. Conversion of fructose to glucose in the rabbit small intestine. A reappraisal of the direct pathway. Eur J Biochem. 1993;213(2):721–6.

    Article  CAS  PubMed  Google Scholar 

  26. Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, Adeli K. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem. 2002;277(35):31646–55.

    Article  CAS  PubMed  Google Scholar 

  27. Halse R, Bonavaud SM, Armstrong JL, McCormack JG, Yeaman SJ. Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells. Diabetes. 2001;50(4):720–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kelley D, Mitrakou A, Marsh H, Schwenk F, Benn J, Sonnenberg G, Arcangeli M, Aoki T, Sorensen J, Berger M, et al. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988;81:1563–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev. 2001;17:250–72.

    Article  CAS  PubMed  Google Scholar 

  30. Petersen KF, Cline GW, Gerard DP, Magnusson I, Rothman DL, Shulman GI. Contribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans. Metabolism. 2001;50(5):598–601.

    Article  CAS  PubMed  Google Scholar 

  31. Tappy L, Schneiter P. Measurement of substrate oxidation in man. Diabetes Metab. 1997;23(5):435–42.

    CAS  PubMed  Google Scholar 

  32. Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol metab. 2004;287(2):E199–206.

    Article  CAS  PubMed  Google Scholar 

  33. Schneeberger D, Tappy L, Temler E, Jéquier E. Effects of muscarinic blockade on insulin secretion and on glucose-induced thermogenesis in lean and obese human subjects. Eur J Clin Invest. 1991;21:608–15.

    Article  CAS  PubMed  Google Scholar 

  34. Delarue J, Normand S, Pachiaudi C, Beylot M, Lamisse F, Riou JP. The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia. 1993;36:338–45.

    Article  CAS  PubMed  Google Scholar 

  35. Tran C, Jacot-Descombes D, Lecoultre V, Fielding BA, Carrel G, Le KA, Schneiter P, Bortolotti M, Frayn KN, Tappy L. Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. Br J Nutr. 2010;104(8):1139–47.

    Article  CAS  PubMed  Google Scholar 

  36. Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 2008;138(6):1039–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Sun SZ, Empie MW. Fructose metabolism in humans—what isotopic tracer studies tell us. Nutr Metab (Lond). 2012;9(1):89.

    Article  Google Scholar 

  38. Nilsson LH, Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest. 1974;33:5–10.

    Article  CAS  PubMed  Google Scholar 

  39. Hultman E, Nilson LH. Factors influencing carbohydrate metabolism in man. Nutr Metabol. 1975;18 Suppl 1:45–64.

    Article  Google Scholar 

  40. Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, Schneiter P. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.

    Article  CAS  PubMed  Google Scholar 

  41. Björkman O, Gunnarsson R, Hagström E, Felig P, Wahren J. Splanchnic and renal exchange of infused fructose in insulin-deficient type 1 diabetic patients and healthy controls. J Clin Invest. 1989;83:52–9.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Tounian P, Schneiter P, Henry S, Jequier E, Tappy L. Effects of infused fructose on endogenous glucose production, gluconeogenesis, and glycogen metabolism. Am J Physiol (Endocr Metab). 1994;267(5 Pt 1):E710–7.

    CAS  Google Scholar 

  43. Bjorkman O, Felig P. Role of the kidney in the metabolism of fructose in 60-h fasted humans. Diabetes. 1982;31(6 Pt 1):516–20.

    Article  CAS  PubMed  Google Scholar 

  44. Keller U. The sugar substitutes fructose and sorbite: an unnecessary risk in parenteral nutrition. Schweiz Med Wochenschr. 1989;119(4):101–6.

    CAS  PubMed  Google Scholar 

  45. Van den Berghe G. Inborn errors of fructose metabolism. Ann Rev Nutr. 1994;14:41–58.

    Article  Google Scholar 

  46. Lecoultre V, Egli L, Theytaz F, Schneiter P: Diabetes Care. 2013;36:e149–e150.

    Google Scholar 

  47. Flatt JP. The biochemistry of energy expenditure. In: Bray G, editor. Recent advances in obesity research II. 0th ed. London: John Libbey; 1980. p. 211–8.

    Google Scholar 

  48. Tappy L, Lecoultre V, Egli L, Schneider PM: BMC Nutr Metab. 2013; 10:54. doi:10.1186/1743-7075-10-54.

  49. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138–43.

    PubMed  Google Scholar 

  50. Guo ZK, Cella LK, Baum C, Ravussin E, Schoeller DA. De novo lipogenesis in adipose tissue of lean and obese women: application of deuterated water and isotope ratio mass spectrometry. Int J Obesity. 2000;24:932–7.

    Article  CAS  Google Scholar 

  51. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55(2):628–34.

    CAS  PubMed  Google Scholar 

  52. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jequier E. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988;48(2):240–7.

    CAS  PubMed  Google Scholar 

  53. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr. 1999;53 Suppl 1:S53–65.

    Article  PubMed  Google Scholar 

  54. Egli L, Lecoultre V, Theytaz F, Campos V, Hodson L, Schneiter P, Mittendorfer B, Patterson BW, Fielding BA, Gerber PA, et al. Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes. 2013;62(7):2259–65.

    Article  CAS  PubMed  Google Scholar 

  55. McDevitt RM, Bott SJ, Harding M, Coward WA, Bluck LJ, Prentice AM. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. Am J Clin Nutr. 2001;74(6):737–46.

    CAS  PubMed  Google Scholar 

  56. Steinman B, Santer R. Disorders of fructose metabolism. In: Saudubray JM, Van Den Berghe G, Walter JH, editors. Inborn metabolic diseases. 5th ed. Heidelberg: Springer; 2012. p. 159–62.

    Google Scholar 

  57. Bouteldja N, Timson DJ. The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis. 2010;33(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  58. Richardson RM, Little JA, Patten RL, Goldstein MB, Halperin ML. Pathogenesis of acidosis in hereditary fructose intolerance. Metabolism. 1979;28(11):1133–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grant numbers 320030-135782 and 320030-138428 from the Swiss National Foundation for Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Tappy M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tappy, L., Egli, L., Tran, C. (2014). Metabolism of Nutritive Sweeteners in Humans. In: Rippe, J. (eds) Fructose, High Fructose Corn Syrup, Sucrose and Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8077-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8077-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4899-8076-2

  • Online ISBN: 978-1-4899-8077-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics