Skip to main content

Microcirculation

  • Chapter
Biomechanics

Abstract

In the preceding chapters we studied the flow of blood in large blood vessels in which the main feature is a balance between the pressure forces, inertia forces, and forces of tissue and muscle. Only in the boundary layer are the viscous friction forces important. The boundary layer thickness grows with increasing distance from the entry section, and in a long tube the boundary layer on the wall eventually becomes so thick as to fill the entire tube. However, arteries divide and divide again. The vessel diameter decreases with each division, and soon the Reynolds and Womersley numbers become quite small, the entry length becomes only a small multiple of the vessel diameter, and the flow becomes fully developed even in relatively short vessels, and the analysis given in Section 3.2 becomes applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aroesty, J., and Gross, J.F. (1970). Convection and diffusion in the microcirculation. Microvasc. Res. 2: 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Atherton, A., and Born, G.V.R. (1972). Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J. Physiol. 222: 447–474.

    PubMed  CAS  Google Scholar 

  • Baker, M., and Wayland, H. (1974). On-line volumetric flow rate and velocity profile measurement for blood microvessels. Microvasc. Res. 7: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Bayliss, W.M. (1902). On the local reactions of the arterial wall to changes in internal pressure. J. Physiol. (Lond.) 28: 220–231.

    CAS  Google Scholar 

  • Bungay, P.M., and Brenner, H. (1973). The motion of a closely-fitting sphere in a fluid-filled tube. Int. J. Multiphase Flow 1: 25–56.

    Article  Google Scholar 

  • Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.

    Google Scholar 

  • Chen, T.C., and Skalak, R. (1970). Spheroidal particle flow in a cylindrical tube. Appl. Sci. Res. 22: 403–441.

    Google Scholar 

  • Desjardins, G, and Duling, B.R. (1987). Microvessel hematocrit: measurement and implications for capillary oxygen transport. Am. J. Physiol. 252: H494–H503.

    PubMed  CAS  Google Scholar 

  • Desjardins, C., and Duling, B.R. (1990). Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258: H647–H654.

    PubMed  CAS  Google Scholar 

  • Duling, B.R., and Desjardins, G (1987). Capillary hematocrit—what does it mean? News in Physiol. Sci. 2: 66–69.

    Google Scholar 

  • Fischer, T.M., Stohr-Liesen, M., and Schmid-Schönbein, H. (1978). The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202: 894–896.

    Article  PubMed  CAS  Google Scholar 

  • Folkow, B. (1964). Description of the myogenic hypothesis. Circ. Res. 15: I.279–I.285.

    Google Scholar 

  • Folkow, B., and Neil, E. (1971). Circulation. Oxford University Press, London.

    Google Scholar 

  • Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y.C. (1973). Stochastic flow in capillary blood vessels. Microvasc. Res. 5: 34–48.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer Verlag, New York.

    Google Scholar 

  • Fung, Y.C. (1993). Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  • Gaehtgens, P. (1980). Flow of blood through narrow capillaries: Rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology J. 17: 183–189.

    CAS  Google Scholar 

  • Greenfield, A.D.M. (1964). Blood flow through the human forearm and digits as influenced by subatmospheric pressure and venous pressure. Circ. Res. 14:I.0–I.75.

    Google Scholar 

  • Hele-Shaw, H.S. (1897, 1898). Phil. Trans. Roy. Inst. Nav. Arch. 41: 21. 42: 49.

    Google Scholar 

  • Hele-Shaw, H.S., and Hag, A. (1898). Royal Soc. Phil. Trans. A 195: 303.

    Google Scholar 

  • Hochmuth, R.M., and Sutera, S.P. (1970). Spherical caps in low Reynolds-number tube flow. Chem. Eng. Sci. 25: 593–604.

    Article  CAS  Google Scholar 

  • Hyman, W.A., and Skalak, R. (1972). Non-Newtonian behavior of a suspension of liquid drops in fluid flow. Am. Inst. Chem. Eng. J. 18: 149–154.

    Article  CAS  Google Scholar 

  • Jendrucko, R.J., and Lee, J.S. (1973). The measurement of hematocrit of blood flowing in glass capillaries by microphotometry. Microvasc. Res. 6: 316–331.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P.C. (1978). Peripheral Circulation. Wiley, New York.

    Google Scholar 

  • Johnson, P.C. (1980). The myogenic response. In Handbook of Physiology, Sec. 2. The Cardiovascular System, Vol. 2. Vascular Smooth Muscle (D.F. Bohr, A.P. Somlyo, and H.V. Sparks, Jr., eds.). American Physiological Society, Bethesda, MD, pp. 409–442.

    Google Scholar 

  • Johnson, P. G (1991). The myogenic response. News in Physiol. Sci. 6: 41–42.

    Google Scholar 

  • Johnson, P.C., and Intaglietta, M. (1976). Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles. Am. J. Physiol. 231: 1686–1698.

    PubMed  CAS  Google Scholar 

  • Kaley, G., and Altura, B.M. (1977). Microcirculation, Vols. 1 & 2. University Park Press, Baltimore, MD.

    Google Scholar 

  • Klitzman, B., and Duling, B.R. (1979). Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am. J. Physiol. 237: H481–H490.

    PubMed  CAS  Google Scholar 

  • Lamb, H. (1932). Hydrodynamics, 6th ed. Cambridge University Press. Reprinted by Dover, New York.

    Google Scholar 

  • Lee, J.S., and Fung, Y.C. (1969). Stokes flow around a circular cylindrical post confined between two parallel plates. J. Fluid Mech. 37: 657–670.

    Article  Google Scholar 

  • Lee, T.Q., Schmid-Schönbein, G.W., and Zweifach, B.W. (1983). An application of an improved dual-slit photometric analyzer for volumetric flow rate measurements in microvessels. Microvasc. Res. 26: 351–361.

    Article  PubMed  CAS  Google Scholar 

  • Lew, H.S., and Fung, Y.C. (1969a). On the low-Reynolds-number entry flow into a circular cylindrical tube. J. Biomech. 2: 105–119.

    Article  PubMed  CAS  Google Scholar 

  • Lew, H.S., and Fung, Y.C. (1969b). The motion of the plasma between the red blood cells in the bolus flow. J. Biorheology 6: 109–119.

    CAS  Google Scholar 

  • Lew, H.S., and Fung, Y.C. (1969c). Flow in an occluded circular cylindrical tube with permeable wall. Z. Angew. Math. Physik 20: 750–766.

    Article  Google Scholar 

  • Lew, H.S., and Fung, Y.C. (1979a). Plug effect of erythrocytes in capillary blood vessels. Biophys. J. 10: 80–99.

    Article  Google Scholar 

  • Lew, H.S., and Fung, Y.C. (1970b). Entry flow into blood vessels at arbitrary Reynolds number. J. Biomech. 3: 23–38.

    Article  PubMed  CAS  Google Scholar 

  • Lighthill, M.J. (1968). Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J. Fluid Mech. 34: 113–143.

    Article  Google Scholar 

  • Lipowsky, H.H., and Zweifach, B.W. (1977). Methods for the simultaneous measurement of pressure differentials and flow in single unbranched vessels of the microcirculation for rheological studies. Microvasc. Res. 14: 345–361.

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky, H.H., and Zweifach, B.W. (1978). Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow rates. Microvasc. Res. 15: 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky, H.H., Usami, S., and Chien, S. (1980). In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc. Res. 19: 297–319.

    Article  PubMed  CAS  Google Scholar 

  • Majno, G. (1965). Ultrastructure of the vascular membrane. In Handbook of Physiology, Sec. 2 Circulation, Vol. 3. (W.F. Hamilton, and P. Dow, eds.). American Physiological Society, Washington, D.C. pp. 2293–2375.

    Google Scholar 

  • Nellis, S.N., and Zweifach, B.W. (1977). A method for determining segmental resistances in the microcirculation from pressure-flow measurements. Circ. Res. 40: 546–556.

    Article  PubMed  CAS  Google Scholar 

  • Norberg, K.A., and Hamberger, B. (1964). The sympathetic adrenergic neuron. Acta Physiol. Scand. 63 (Suppl. 238).

    Google Scholar 

  • Oseen, C.W (1910). Über die Stokessche Formel und liber die verwandte Aufgabe in der Hydrodynamik. Arkiv Mat. Astron. Fysik 6(29).

    Google Scholar 

  • Prothero, J., and Burton, A.C. (1961, 1962). The physics of blood flow in capillaries. I. The nature of the motion. Biophys. J., 1: 567–579. II. The capillary resistance to flow. Biophys. J. 2: 199-212.

    Article  Google Scholar 

  • Proudman, I., and Pearson, J.R.A. (1957). Expansions at small Reynolds number for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2: 237–262.

    Article  Google Scholar 

  • Rothe, CF., Nash, F.D., and Thompson, D.E. (1971). Patterns in autoregulation of renal blood flow in the dog. Am. J. Physiol. 220: 1621–1626.

    PubMed  CAS  Google Scholar 

  • Rouse, H. (1959). Advanced Fluid Mechanics. Wiley, New York.

    Google Scholar 

  • Sagawa, K., Kumoda, M., and Schramm, L.P. (1974). Nervous control of the circulation. In Cardiovascular Physiology, Vol. 1 (A.C. Guyton and C.E. Jones, eds). Butterworths, London, pp. 197–232.

    Google Scholar 

  • Schlichting, H. (1962). Boundary Layer Theory. McGraw-Hill, New York.

    Google Scholar 

  • Schmid-Schönbein, H., and Wells, R.E. (1969). Fluid drop-like transition of erythrocytes under shear. Science 165: 288–291.

    Article  Google Scholar 

  • Schmid-Schönbein, G.W., Fung, Y.C., and Zweifach, B. (1975). Vascular endothelium-leucocyte interaction: Sticking shear force in venules. Circ. Res. 36: 173–184.

    Article  Google Scholar 

  • Schmid-Schönbein, G.W., Skalak, R., Usami, S., and Chien, S. (1980a). Cell distribution in capillary networks. Microvasc. Res. 19: 18–44.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G.W., Usami, S., Skalak, R., and Chien, S. (1980b). The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res. 19: 45–70.

    Article  PubMed  Google Scholar 

  • Secomb, T.W, and Skalak, R. (1982). A two-dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 24: 194–203.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, R., Chen, P.H., and Chien, S. (1972). Effect of hematocrit and rouleaux on apparent viscosity in capillaries. Biorheology 9: 67–82.

    PubMed  CAS  Google Scholar 

  • Skalak, R., Tozeren, A., Zarda, P.R., and Chien, S. (1973). Strain energy function of red cell membranes. Biophys. J. 13: 245–264.

    Article  PubMed  CAS  Google Scholar 

  • Smaje, L., Zweifach, B.W., and Intaglietta, M. (1970). Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc. Res. 2: 96–110.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, G.G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philosophical Soc. 9: 8; Mathematical and Physical Papers, Vol. 3, pp. 1-141.

    Google Scholar 

  • Stokes, G. (1898). Rep. British. Assoc. A 144 (also, papers, Vol. 3, p. 278).

    Google Scholar 

  • Targ, S.M. (1951). Basic Problems of the Theory of Laminar Flows (in Russian). Moscow.

    Google Scholar 

  • Tong, P., and Fung, Y.C. (1971). Slow viscous flow and its application to biomechanics. J. Appl. Mech. 38: 721–728.

    Article  Google Scholar 

  • Tözeren, H., and Skalak, R. (1978). The steady flow of closely fitting incompressible elastic spheres in a tube. J. Fluid Mech. 87: 1–16.

    Article  Google Scholar 

  • Tözeren, H., and Skalak, R. (1979). Flow of elastic compressible spheres in tubes. J. Fluid Mech. 95: 743–760.

    Article  Google Scholar 

  • Wang, H., and Skalak, R. (1969). Viscous flow in a cylindrical tube containing a line of spherical particles. J. Fluid Mech. 38: 75–96.

    Article  Google Scholar 

  • Wayland, H. (1982). A physicist looks at the microcirculation. Microvasc. Res. 23: 139–170.

    Article  PubMed  CAS  Google Scholar 

  • Wiedeman, M.P., Tuma, R.E, and Mayrovitz, H.N. (1981). An Introduction to Microcirculation. Academic Press, New York.

    Google Scholar 

  • Wiederhielm, C.A., Woodbury, J.W, Kirk, S., and Rushmer, R.F. (1964). Pulsatile pressure in microcirculation of the frog’s mesentery. Am. J. Physiol. 207: 173–176.

    PubMed  CAS  Google Scholar 

  • Yen, R.T., and Fung, Y.C. (1978). Effect of velocity distribution on red cell distribution in capillary blood vessels. Am. J. Physiol. 235: H251–H257.

    PubMed  CAS  Google Scholar 

  • Yih, C.S. (1977). Fluid Mechanics. Corrected edition, West River Press, Ann Arbor, MI.

    Google Scholar 

  • Zarda, P.R., Chien, S., and Skalak, R. (1977). Interaction of a viscous incompressible fluid with an elastic body. In Computational Methods for Fluid-Structure Inter-action Problems (T. Belytschko and T.L. Geers, eds.), American Society of Mechanical Engineers, New York, pp. 65–82.

    Google Scholar 

  • Zweifach, B.W. (1974). Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed. Circ. Res. 34: 843–857. II. Direct measurement of capillary pressure in splanchmic mesenteries. Circ. Res. 34: 858-868.

    Article  PubMed  CAS  Google Scholar 

  • Zweifach, B.W., and Lipowsky, H.H. (1977). Quantitative studies of microcirculatory structure and function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circ. Res. 41: 380–390.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1997). Microcirculation. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2696-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2842-9

  • Online ISBN: 978-1-4757-2696-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics