Skip to main content

Molecular Pharmacology of ATP-Sensitive K+Channels: How and Why?

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

ATP-sensitive K+ (KATP) channels are recognized by their biophysical fingerprint, unique heteromultimeric structure, and distinct nucleotide-dependent regulation (Noma, 1983; Aguilar-Bryan and Bryan, 1999; Seino, 1999). These weakly inwardly rectifying, high-conductance, potassium-selective channels are kept closed by intracellular ATP and activated by intracellular ADP. Thereby, KATP channels set the membrane potential according to changes in the cellular metabolic state (Weiss and Venkatesh, 1993; O’Rourke et al., 1994; Dzeja and Terzic, 1998). KATP channels are distributed in the plasmalemma of various metabolically active tissues, including the heart (Noma, 1983), pancreatic β-cells (Ashcroft, 1996), skeletal (Vivaudou et al., 1991) and smooth (Quayle et al., 1997) muscle, and the brain (Spanswick et al., 1997). A related channel has been recognized in the inner membrane of mitochondria (Inoue et al., 1991; Paucek et al., 1992), underscoring the role of KATP channels in signaling networks that transduce intracellular metabolic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, M. R., Jahangir, A., Alekseev, A. E., and Terzic, A., 1999, Channel opathies of inwardly rectifying potassium channels, FASEB J. 13:1901–1910.

    PubMed  CAS  Google Scholar 

  • Aguilar-Bryan, L., and Bryan, J., 1999, Molecular biology of adenosine triphosphate-sensitive potassium channels, Endocr. Rev. 20:101–135.

    PubMed  CAS  Google Scholar 

  • Aguilar-Bryan, L., Nichols, C., Wechsler, S., Clement, J., Boyd, A., Gonzalez, G., Herrerasosa, H., Nguy, K., Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A., and Bryan, J., 1998, Toward understanding the assembly and structure of KATp channels, Physiol. Rev.78:227–245.

    PubMed  CAS  Google Scholar 

  • Alekseev, A. E., Brady, P., and Terzic, A., 1998, Ligand-insensitive state of cardiac ATP-sensitive K+ channels -Basis for channel opening, J. Gen. Physiol. 111:381–394.

    PubMed  CAS  Google Scholar 

  • Amoroso, S., Schmid-Antomarchi, H., Fosset, M., and Lazdunski, M., 1990, Glucose, sulfonylureas and neurotransmitter release:Role of ATP-sensitive potassium channels, Science 247:852–854.

    PubMed  CAS  Google Scholar 

  • Arena, J. P., and Kass, R. S., 1989, Activation of ATP-sensitive K channels in heart cells by pinacidil;Dependence on ATP, Am. J. Physiol. 257:H2092-H2096.

    PubMed  CAS  Google Scholar 

  • Ashcroft, F. M., 1996, Mechanisms of the glycaemic effects of sulfonylureas, Horm. Metab. Res. 28:456–463.

    PubMed  CAS  Google Scholar 

  • Ashcroft, S. J. H., and Ashcroft, F. M., 1992, The sulfonylurea receptor, Biochim. Biophys. Acta 1175:45–49.

    PubMed  CAS  Google Scholar 

  • Ashcroft, F. M., and Gribble, F. M., 1998, Correlating structure and function in ATP-sensitive K+ channels, Trends Neurosci. 21:288–294.

    PubMed  CAS  Google Scholar 

  • Atwal, K. S., Grover, G. J., Lodge, N., Normandin, D., Traeger, S. C., Sleph, P., Cohen, R., Bryson, C., and Dickinson, K., 1998, Binding of ATP-sensitive potassium channel (KATP) openers to cardiac membranes. Correlation of binding affinities with cardioprotective and smooth muscle relaxing potencies, J. Med. Chem. 41:271–275.

    PubMed  CAS  Google Scholar 

  • Babenko, A. P., Gonzalez, G., Aguilar-Bryan, L., and Bryan, J., 1998, Reconstituted human cardiac KATP channels;Functional identity with the native channels from the sarcolemma of human ventricular cells, Circ. Res. 83:1132–1143.

    PubMed  CAS  Google Scholar 

  • Baukrowitz, T., Schulte, U., Oliver, D., Herlitze, S., Krauter, T., Tucker, S. J., Ruppersberg, J. P., and Fakler, B., 1998, PIP2 and PIP as determinants for ATP inhibition of KATP channels, Science 282:1141–1144.

    PubMed  CAS  Google Scholar 

  • Belles, B., Hescheler, J., and Trube, G., 1987, Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide, Pflügers Arch. 409:582–588.

    PubMed  CAS  Google Scholar 

  • Bernardi, H., Fosset, M., and Lazdunski, M., 1992, ATP/ADP binding sites are present in the sulfonylurea binding protein associated with brain ATP-sensitive K+ channels, Biochemistry 31:6328– 6332.

    PubMed  CAS  Google Scholar 

  • Brady, P. A. and Terzic, A., 1998, The sulfonylurea controversy;More questions from the heart, J. Am. Coll. Cardiol. 31:950–956.

    PubMed  CAS  Google Scholar 

  • Brady, P. A. Alekseev, A. E., and Terzic, A., 1998, Operative condition-dependent response of cardiac ATP sensitive K+ channels toward sulfonylureas, Circ. Res. 82:272–278.

    PubMed  CAS  Google Scholar 

  • Bray, K. M., and Quast, U., 1992, A specific binding site for K+ channel openers in rat aorta, J. Biol. Chem. 267:11689–11692.

    PubMed  CAS  Google Scholar 

  • Bryan, J., and Nelson, D., 1995, Cloning of the beta cell high-affinity sulfonylurea receptor;A regulator of insulin secretion, Science 268:423–426.

    PubMed  Google Scholar 

  • Bryan, J., and Aguilar-Bryan, L., 1997, The ABCs of ATP-sensitive potassium channels;More pieces of the puzzle, Curr. Opin. Cell. Biol. 9:553–559.

    PubMed  CAS  Google Scholar 

  • Chutkow, W. A., Simon, M., LeBeau, M., and Burant, C., 1996, Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATp channels, Diabetes Care145:1439–1445.

    Google Scholar 

  • Clement, J. P., Kunjilwar, K., Gonzalez, G., Schwanstecher, M., Panten, U., Aguilar-Bryan, L., and Bryan, J., 1997, Association and stoichiometry of KATP channel subunits, Neuron 18:827–838.

    PubMed  CAS  Google Scholar 

  • Daut, J., Maier-Rudolph, W., von Beckerath, N., Mehrke, G., Gunther, K., and Goedel-Meinen, L., 1990, Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels, Science 247:1341–1344.

    PubMed  CAS  Google Scholar 

  • Davies, N. W., Standen, N. B., and Stanfield, P. R., 1991, ATP-dependent potassium channels of muscle cells.Their properties, regulation, and possible functions, J. Bioenerg. Biomembr. 23:509–535.

    CAS  Google Scholar 

  • Decking, U. K., Arens, S., Schlieper, G., Schulze, K., and Schrader, J., 1997, Dissociation between adenosine release, MV02, and energy status in working guinea pig hearts, Am. J. Physiol. 272:H371-H381.

    PubMed  CAS  Google Scholar 

  • Deutsch, N., Klitzner, T. S., Lamp, S. T., and Weiss, J. N., 1991, Activation of cardiac ATP-sensitive K+ current during hypoxia: Correlation with tissue ATP levels, Am. J. Physiol. 261:H671-H676.

    PubMed  CAS  Google Scholar 

  • de Weille, J. R., Schmid-Antomarchi, H., Fosset, M., and Lazdunski, M., 1989, Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP, Proc. Natl. Acad. Sci. USA. 86:2971–2975.

    PubMed  Google Scholar 

  • D’hahan, N., Jacquet, H., Moreau, C., Catty, P., and Vivaudou, M., 1999a, A transmembrane domain of the sulfonylurea receptor mediates activation of ATP-sensitive K+ channels by K+ channel openers, Mol. Pharmacol. 56:308–315.

    PubMed  Google Scholar 

  • D’hahan, N., Moreau, C., Prost, A. L., Jacquet, H., Alekseev, A. E., Terzic, A., and Vivaudou, M., 1999b. Pharmacological plasticity of cardiac ATP-sensitive potassium channels towards diazoxide revealed by ADP, Proc. Natl. Acad. Sci. U.S.A. 96:12162–12167.

    PubMed  Google Scholar 

  • Dickinson, K. E. J., Bryson, C. C., Cohen, R. B., Rogers, L., Green, D. W., and Atwal, K. S., 1997, Nucleotide regulation and characteristics of potassium channel opener binding to skeletal muscle membranes, Mol. Pharmacol 52:473–481.

    PubMed  CAS  Google Scholar 

  • Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R., 1998, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Science 280:69–77.

    PubMed  CAS  Google Scholar 

  • Dunne, M. J., Bullett, M. J., Li, G., Wollheim, C. B., and Petersen, O. H., 1989, Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein, EMBO J. 8:413–420.

    PubMed  CAS  Google Scholar 

  • Dunne, M. J., Kane, C., Shepherd, R. M., Sanchez, J. A., James, R .F., Johnson, P. R., Aynsley-Green, A., Lu, S., Clement, J. P., Lindley, K. J., Seino, S., and Aguilar-Bryan, L, 1997, Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N. Engl. J. Med. 336:703–706,

    PubMed  CAS  Google Scholar 

  • Dzeja, P. P., and Terzic, A., 1998, Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels, FASEB J. 12:523–529.

    PubMed  CAS  Google Scholar 

  • Edwards, G., and Weston, A. H., 1993, The pharmacology of ATP-sensitive potassium channels,Annu. Rev. Pharmacol Toxicol. 33:597–637.

    PubMed  CAS  Google Scholar 

  • Elvir-Mairena, J. R., Jovanovic, A., Gomez, L. A., Alekseev, A. E., and Terzic, A., 1996, Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity, J. Biol. Chem. 271:31903–31908.

    PubMed  CAS  Google Scholar 

  • Escande, D., Thuringer, D., Leguern, S., and Cavero, I., 1988, The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K+ channels in isolated cardiac myocytes, Biochem. Biophys. Res. Commun. 154:620–625.

    CAS  Google Scholar 

  • Findlay, I., 1992, Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle, J. Pharmacol Exp. Ther. 262:71–79.

    PubMed  CAS  Google Scholar 

  • Forestier, C., Depresle, Y., and Vivaudou, M., 1993, Intracellular protons control the affinity of skeletal muscle ATP-sensitive K+ channels for potassium-channel-openers, FEBS Lett.325:276–80.

    PubMed  CAS  Google Scholar 

  • Forestier, C., Pierrard, J., and Vivaudou, M., 1996, Mechanism of action of K+ channel openers on skeletal muscle KATP channels;Interactions with nucleotides and protons, J. Gen. Physiol. 107:489–502.

    PubMed  CAS  Google Scholar 

  • Fosset, M., de Weille, J. R., Green, R. D., Schmid-Antomarchi, H., and Lazdunski, M., 1988, Antidiabetic sulfonylureas control action potential properties in heart cells via high-affinity receptors that are linked to ATP-dependent K+ channels, J. Biol. Chem. 263: 7933–7936.

    PubMed  CAS  Google Scholar 

  • Garlid, K. D., Paucek, P., Yarov-yarovoy, V., Sun, X., and Schindler, P.A., 1996, The mitochondrial K-ATP channel as a receptor for potassium channel openers, J. Biol. Chem. 271:8796–8799.

    PubMed  CAS  Google Scholar 

  • Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., D’Alonzo, A. J., Lodge, N. J., Smith, M. A., and Grover, G. J., 1997, Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels-possible mechanism of cardioprotection, Circ. Res. 81:1072–1082.

    PubMed  CAS  Google Scholar 

  • Garratt, K. N., Brady, P. A., Hassinger, N. L., Grill, D. E., Terzic, A., and Holmes, D. R., 1999, Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction, J. Am. Coll. Cardiol. 33: 119–124.

    PubMed  CAS  Google Scholar 

  • Gribble, F. M., Tucker, S. J. and Ashcroft, F. M., 1997a, The essential role of the Walker A motifs of SUR1 in KATP channel activation by MgADP and diazoxide, EMBO J. 16: 1145–1152.

    PubMed  CAS  Google Scholar 

  • Gribble, F. M., Tucker, S. J., and Ashcroft, F. M., 1997b, The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: Areinterpretation, J. Physiol. (London) 504:35–45.

    CAS  Google Scholar 

  • Gribble, F., Tucker, S., Seino, S., and Ashcroft, F., 1998, Tissue specificity of sulfonylureas;Studies on cloned cardiac and ?-cell KATP channels, Diabetes 47:1412–1418.

    PubMed  CAS  Google Scholar 

  • Gribble, F. M., Ashfield, R., and Ashcroft, F. M., 1999, Identification of the high affinity tolbutamide site on the SUR1 subunit of the KATP channel, Biophys. J. 76:A14.

    Google Scholar 

  • Gross, G J., and Fryer, R. M., 1999, Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning, Circ. Res. 84:973–979.

    PubMed  CAS  Google Scholar 

  • Grover, G. J., 1997, Pharmacology of ATP-sensitive potassium channel openers in models of myocardial ischemia and reperfusion, Can. J. Physiol. Pharmacol.75:309–315.

    PubMed  CAS  Google Scholar 

  • Hambrock, A., Loffler-Walz, C., Kurachi, Y., and Quast, U., 1998, Mg2+ and ATP dependence of KATP channel modulator binding to the recombinant sulphonylurea receptor, SUR2B, Br. J. Pharmacol. 125:577–583.

    PubMed  CAS  Google Scholar 

  • Hani, E. H., Boutin, P., Durand, E., Inoue, H., Permutt, M. A., Velho, G., and Froguel, P., 1998, Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR):A meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians, Diabetologia 41:1511–1515.

    PubMed  CAS  Google Scholar 

  • Heron, L., Virsolvy, A., Peyrollier, K., Gribble, F., LeCam, A., Ashcroft, F., and Bataille, D., 1998, Human α-endosulfine, a possible regulator of sulfonylurea-sensitive KATP channel;Molecular cloning, expression and biological properties, Proc. Natl. Acad. Sci. USA 95:8387–8391.

    PubMed  CAS  Google Scholar 

  • Hoffman, F.J., Lenfers, J.B., Niemers, E., Pleiss, U., Scriabine, A., and Janis, R.A., 1993, High affinity binding of a potassium channel agonist to intact rat insulinoma cells, Biochem. Biophys. Res. Commun. 190:551–558.

    PubMed  CAS  Google Scholar 

  • Holmuhamedov, E. L., Jovanovic, S., Dzeja, P. P., Jovanovic, A., and Terzic, A., 1998, Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am. J. Physiol. 44: H1567-H1576.

    Google Scholar 

  • Holmuhamedov, E. L., Wang, L., and Terzic, A., 1999, ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria, J. Physiol. (London) 519:347–360.

    CAS  Google Scholar 

  • Inagaki, N., Gonoi, T., Clement, J. P., Namba, N., Inazawa, J., Gonzalez, G., Aguilar-Bryan, L., Seino, S., and Bryan, J., 1995, Reconstitution of IKATP:An inward rectifier subunit plus the sulfonylurea receptor, Science 270:1166–1170.

    PubMed  CAS  Google Scholar 

  • Inagaki, N., Gonoi, T., Clement, J., Wang, C. Z., Aguilar-Bryan, L., Bryan, J., and Seino, S., 1996, A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels, Neuron 16:1011–1017.

    PubMed  CAS  Google Scholar 

  • Inoue, I., Nagase, H., Kishi, K., and Higuti, T., 1991, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature 352:244–247.

    PubMed  CAS  Google Scholar 

  • Isomoto, S., Kondo, C., Yamada, M., Matsumoto, S., Higashiguchi, O., Horio, Y., Matsuzawa, Y., and Kurachi, Y., 1996, A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type KATP channel, J. Biol. Chem. 271:24321–24324.

    PubMed  CAS  Google Scholar 

  • Jaburek, M., Yarov-Yarovoy, V., Paucek, P., and Garlid, K.D., 1998, State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate, J. Biol. Chem. 273:13578–13582.

    PubMed  CAS  Google Scholar 

  • John, S. A., Monck, J. R., Weiss, J .N., and Ribalet, B., 1998, The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK293), J. Physiol. (London) 510:333–345.

    CAS  Google Scholar 

  • Jovanovic, A., and Terzic, A., 1995, Diadenosine-hexaphosphate is an inhibitory ligand of myocardial ATP-sensitive K+ channels, Eur. J. Pharmacol. 286:R1-R2.

    PubMed  CAS  Google Scholar 

  • Jovanovic, A., and Terzic, A., 1996, Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K + channels in patches excised from ventricular myocytes, Br. J. Pharmacol. 17:233–235.

    Google Scholar 

  • Jovanovic, A., Alekseev, A.E. and Terzic, A., 1996, Cardiac ATP sensitive K+ channel:A target for diadenosine 5 ’,5”-P-l,P-5-pentaphosphate, Naunyn-Schmiedeberg ’s Arch. Pharmacol 353:241–244.

    CAS  Google Scholar 

  • Jovanovic, A., Alekseev, A. E., and Terzic, A., 1997, Intracellular diadenosine polyphosphates;A novel family of inhibitory ligands of the ATP-sensitive K+ channel, Biochem. Pharmacol. 54:219–225.

    PubMed  CAS  Google Scholar 

  • Jovanovic, A., Jovanovic, S., Carrasco, A. J., and Terzic, A., 1998a, Acquired resistance of a mammalian cell line to hypoxia-reoxygenation through cotransfection of Kir6.2 and SUR1 clones, Lab. Invest. 78:1101–1107.

    PubMed  CAS  Google Scholar 

  • Jovanovic, A., Jovanovic, S., Lorenz, E., and Terzic, A., 1998b, Recombinant cardiac ATP-sensitive K+ channel subunits confer resistance to chemical hypoxia-reoxygenation injury, Circulation 98:1548–1555.

    PubMed  CAS  Google Scholar 

  • Jovanovic, A., Jovanovic, S., Mays, D. C., Lipsky, J. J., and Terzic, A., 1998c, Diadenosine 5 ’,5 ’-Pl,P5- pentaphosphate harbors the properties of a signaling molecule in the heart, FEBS Lett. 423:314–318.

    PubMed  CAS  Google Scholar 

  • Jovanovic, N., Jovanovic, S., Jovanovic, A., and Terzic, A., 1999, Gene delivery of Kir6.2/SUR2A in conjunction with pinacidil handles intracellular Ca2+ homeostasis under metabolic stress. FASEB J. 13:923–929.

    PubMed  CAS  Google Scholar 

  • Kaubisch, N., Hammer, R., Wollheim, C., Renold, A., and Offord, R., 1982, Specific receptors for sulfonylureas in brain and in a beta-cell tumor of the rat, Biochem. Pharmacol. 31:1171–1174.

    PubMed  CAS  Google Scholar 

  • Keung, E. C., and Li, Q., 1991, Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes, J Clin. Invest. 88:1772–1777.

    PubMed  CAS  Google Scholar 

  • Kirsch, M., Baufreton, C., Fernandez, C., Brunet, S., Pasteau, F., Astier, A., and Loisance, D. Y., 1998, Preconditioning with eromakalim improves long-term myocardial preservation for heart transplantation, Ann. Thorac. Surg. 66:417–424.

    PubMed  CAS  Google Scholar 

  • Lachgar, S., Charveron, M., Gall, Y., and Bonafe, J., 1998, Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells, Br. J. Dermatol. 138:407–411.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Sato, T., O’Rourke, B., and Marban, E., 1998, Mitochondrial ATP-dependent potassium channels: Novel effectors of cardioprotection?, Circulation 97:2463–2469.

    PubMed  CAS  Google Scholar 

  • Loffler-Walz, C., and Quast, U., 1998, Binding of KATP channel modulators in rat cardiac membranes, Br. J. Pharmacol. 123:1395–1402.

    PubMed  CAS  Google Scholar 

  • Lopez, J. R., Jahangir, R., Jahangir, A., Shen, W. K., and Terzic, A., 1996, Potassium channel openers prevent potassium-induced calcium loading of cardiac cells: Possible implications in cardioplegia, J. Thorac. Cardiovasc. Surg. 112:820–831.

    PubMed  CAS  Google Scholar 

  • Lorenz, E., and Terzic, A., 1999, Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A, J. Mol. Cell. Cardiol. 31:425–434.

    PubMed  CAS  Google Scholar 

  • Lorenz, E., Alekseev, A. E., Krapivinsky, G. B., Carrasco, A. J., Clapham, D. E., and Terzic, A., 1998, Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel, Mol. Cell. Biol. 18:1652–1659.

    PubMed  CAS  Google Scholar 

  • Martin, S., Yule, D., Dunne, M., and Petersen, O., 1989, Vasopressin directly closes ATP-sensitive potassium channels evoking membrane depolarization and an increase in the free intracellular Ca2+ concentration in insulin-secreting cells, EMBO J. 8:3595–3599.

    PubMed  CAS  Google Scholar 

  • Miki, T., Tashiro, F., Iwanaga, T., Nagashima, K., Yoshitomi, H., Aihara, H., Nitta, Y., Gonoi, T., Inagaki, N., Miyazaki, J., and Seino, S., 1997, Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel, Proc. Natl. Acad. Sci. U.S.A. 94:11969–11973.

    PubMed  CAS  Google Scholar 

  • Miki, T., Nagashima, K., Tashiro, F., Kotake, K., Yoshitomi, H., Tamamoto, A., Gonoi, T., Iwanaga, T., Miyazaki, J., and Seino, S., 1998, Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice, Proc. Natl. Acad. Sci. U.S.A. 95:10402–10406.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Huang, Y., Brayden, J. E., Hescheler, J., and Standen, N. B., 1990, Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels, Nature 344:770–773.

    PubMed  CAS  Google Scholar 

  • Nestorowicz, A., Glaser, B., Wilson, B., Shyng, S., Nichols, C., Stanley, C., Thornton, P., and Permutt, M., 1998, Genetic heterogeneity in familial hyperinsulinism, Hum. Mol. Genet. 7:1119–1128.

    PubMed  CAS  Google Scholar 

  • Nichols, C. G., and Lederer, W. J., 1991, Adenosine triphosphate-sensitive potassium channels in the cardiovascular system, Am. J. Physiol. 261:H1675-HI686.

    PubMed  CAS  Google Scholar 

  • Nichols, C. G., Shyng, S., Nestorowicz, A., Glaser, B., Clement, J., Gonzalez, G., Aguilar-Bryan, L., Permutt, M., and Bryan, J., 1996, Adenosine diphosphate as an intracellular regulator of insulin secretion, Science 272:1785–1787.

    PubMed  CAS  Google Scholar 

  • Noma, A., 1983, ATP-regulated K+ channels in cardiac muscle, Nature 305:147–148.

    PubMed  CAS  Google Scholar 

  • Notsu, T., Tanaka, I., Takano, M., and Noma, A., 1992, Blockade of the ATP-sensitive K+ channel by 5-hydroxydecanoate in guinea pig ventricular myocytes, J. Pharmacol. Exp. Ther. 260:702–708.

    PubMed  CAS  Google Scholar 

  • Okuyama, Y., Yamada, M., Kondo, C., Satoh, E., Isomoto, S., Shindo, T., Horio, Y., Kitakaze, M., Hori, M., and Kurachi, Y., 1998, The effects of nucleotides and potassium channel openers on the SUR2A/Kir6.2 complex K+ channel expressed in a mammalian cell line, HEK293T cells, Pflügers Arch. 435:595–603.

    PubMed  CAS  Google Scholar 

  • Olson, L. K., Schroeder, W., Robertson, R P., Goldberg, N. D., and Walseth, T. F., 1996, Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-T15 cells, J. Biol. Chem. 271:16544–16552.

    PubMed  CAS  Google Scholar 

  • O’Rourke, B., Ramza, B., and Marban, E., 1994, Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells, Science 265:962–966.

    Google Scholar 

  • Paucek, P., Mironova, G., Mahdi, F., Beavis, A., Woldegiorgis, G., and Garlid, K .D., 1992, Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria, J. Biol. Chem. 267:26062–26069.

    PubMed  CAS  Google Scholar 

  • Proks, P., and Ashcroft, F. M., 1997, Phentolamine block of KATP channels is mediated by Kir6.2, Proc. Natl. Acad. Sci. U.S.A. 94:11716–11720.

    PubMed  CAS  Google Scholar 

  • Quast, U., Bray, K. M., Andres, H., Manley, P. W., Baumlin, Y., and Dosogne, J., 1993, Binding of the K + channel opener [3H]P1075 in rat isolated aorta.Relationship to functional effects of openers and blockers, Mol. Pharmacol. 43:474–481.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., Nelson, M. T., and Standen, N. B., 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol. Rev. 77:1165–1232.

    PubMed  CAS  Google Scholar 

  • Repunte, V. P., Nakamura, H., Fujita, A., Horio, Y., Findlay, I., Pott L., and Kurachi, Y., 1999, Extracellular links in Kir subunits control the unitary conductance of SUR/Kir6.0 ion channels, EMBO J. 18:3317–3324.

    PubMed  CAS  Google Scholar 

  • Ribalet, B., Mirell, C. J., Johnson, D. G., and Levin, S. R., 1996, Sulfonylurea binding to a low-affinity site inhibits the Na/K-ATPase and the KATP channel in insulin-secreting cells, J. Gen. Physiol. 107:231–241.

    PubMed  CAS  Google Scholar 

  • Ripoll, C., Martin, F., Rovira, J. M., Pintor, J., MirasPortugal, M. T., and Soria, B., 1996, Diadenosine polyphosphates:A novel class of glucose-induced intracellular messengers in the pancreatic beta-cell, Diabetes 45:1431–1434.

    PubMed  CAS  Google Scholar 

  • Sanchez, J. A., Gonoi, T., Inagaki, N., Katada, T., and Seino, S., 1998, Modulation of reconstituted ATP-sensitive K+-channels by GTP-binding proteins in a mammalian cell line, J. Physiol. (London) 507:315–324.

    CAS  Google Scholar 

  • Schmid-Antomarchi, H., de Weille, J., Fosset, M., and Lazdunski, M., 1987, The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells, J. Biol. Chem. 262:15840–15844.

    PubMed  CAS  Google Scholar 

  • Schwanstecher, M., Loser, S., Rietze, I., and Panten, U., 1991, Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets, Naunyn-Schmiedeberg’s Arch. Pharmacol. 343:83–89.

    CAS  Google Scholar 

  • Schwanstecher, C., Dickel, C., and Panten, U., 1992, Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic β cells by their combined actions at inhibitory and stimulatory receptors, Mol. Pharmacol. 41:480–486.

    PubMed  CAS  Google Scholar 

  • Schwanstecher, M., Schwanstecher, C., Dickel, C., Chudziak, F., Moshiri, A., and Panten, U., 1994, Location of the sulphonylurea receptor at the cytoplasmic face of the beta-cell membrane, Br. J. Pharmacol. 113:903–911.

    PubMed  CAS  Google Scholar 

  • Schwanstecher, M., Sieverding, C., Dorschner, H., Gross, I., Aguilar-Bryan, L., Schwanstecher, C., and Bryan, J., 1998, Potassium channel openers require ATP to bind to and act through sulfonylurea receptors, EMBO J. 17:5529–5535.

    PubMed  CAS  Google Scholar 

  • Seino, S., 1999, ATP-sensitive potassium channels: A model of heteromultimeric potassium channel/receptor assemblies, Annu. Rev. Physiol. 61:337–362.

    PubMed  CAS  Google Scholar 

  • Senior, A. E. and Gadsby, D. C., 1997, ATP hydrolysis cycles and mechanism in P-glycoprotein and CFTR, Semin. Cancer Biol. 8:143–150.

    PubMed  CAS  Google Scholar 

  • Sheppard, D. N., and Welsh, M. J., 1992, Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents, J. Gen. Physiol. 100:573–591.

    PubMed  CAS  Google Scholar 

  • Shindo, T., Yamada, M., Isomoto, S., Horio, Y., and Kurachi, Y., 1998, SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil, Br. J. Pharmacol 124:985–991.

    PubMed  CAS  Google Scholar 

  • Shyng, S. L., and Nichols, C. G., 1997, Octameric stochiometry of the KATP channel complex, J. Gen. Physiol. 110:655–664.

    PubMed  CAS  Google Scholar 

  • Shyng, S. L. and Nichols, C. G., 1998, Membrane phospholipid control of nucleotide sensitivity of KATP channels, Science 282:1138–1141.

    PubMed  CAS  Google Scholar 

  • Shyng, S. L., Ferrigni, T., and Nichols, C. G., 1997, Regulation of KATP channel activity by diazoxide and MgADP.Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor, J. Gen. Physiol. 110:643–654.

    PubMed  CAS  Google Scholar 

  • Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. and Ashford, M. L. J., 1997, Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels, Nature 390:521–525.

    PubMed  CAS  Google Scholar 

  • Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science 245:177–180.

    PubMed  CAS  Google Scholar 

  • Sturgess, N. C., Ashford, M., Cook, D., and Hales, C., 1985, The sulphonylurea receptor may be an ATP-sensitive potassium channel, Lancet 8453:474–475.

    Google Scholar 

  • Suzuki, M., Kotake, K., Fujikura, K., Inagaki, N., Suzuki, T., Gonoi, T., Seino, S., and Takata, K., 1997, Kir6.1:A possible subunit of ATP-sensitive K+ channels in mitochondria, Biochem. Biophys. Res. Commun. 241:693–697.

    PubMed  CAS  Google Scholar 

  • Szewczyk, A., 1997, Intracellular targets for antidiabetic sulfonylureas and potassium channel openers, Biochem. Pharmacol. 54:961–965.

    PubMed  CAS  Google Scholar 

  • Terzic, A., 1999, New frontiers of cardioprotection. Clin. Pharmacol. Ther. 66:105–109.

    PubMed  CAS  Google Scholar 

  • Terzic, A., Tung, R. T., Inanobe, A., Katada, T., and Kurachi, Y., 1994, G Proteins activate ATP-sensitive K+ channels by antagonizing ATP-dependent gating, Neuron 12:885–893.

    PubMed  CAS  Google Scholar 

  • Terzic, A., Jahangir, A., and Kurachi, Y., 1995, Cardiac ATP-sensitive K+ channels:Regulation by intracellular nucleotides and K+ channel-opening drugs, Am. J. Physiol. 38:C525-C545.

    Google Scholar 

  • Thomas, P., Cote, G., Wohllk, N., Haddad, B., Mathew, P., Rabl, W., Aguilar-Bryan, L., Gagel, R., and Bryan, J., 1995, Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy, Science 268:426–429.

    PubMed  CAS  Google Scholar 

  • Thuringer, D., and Escande, D., 1989, Apparent competition between ATP and the potassium channel opener RP 49356 on ATP-sensitive K+ channels of cardiac myocytes, Mol. Pharmacol 5(5):897–902.

    Google Scholar 

  • Trube, G., Rorsman, P., and Ohno-Shosaku, T., 1986, Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells, Pflügers Arch. 407:493–499.

    PubMed  CAS  Google Scholar 

  • Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, S., and Ashcroft, F. M., 1997, Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor, Nature 387:179–183.

    PubMed  CAS  Google Scholar 

  • Tucker, S. J., Gribble, F. M., Proks, P., Trapp, S., Ryder, T.J., Haug, T., Reimann, F., and Ashcroft, F. M., 1998, Molecular determinants of KATP channel inhibition by ATP, EMBO J. 17:3290–3296.

    PubMed  CAS  Google Scholar 

  • Ueda, K., Inagaki, N. and Seino, S., 1997, MgADP antagonism to Mg2+-independent ATP binding of the sulfonylurea receptor SUR1, J. Biol. Chem. 272:22983–22986.

    PubMed  CAS  Google Scholar 

  • Virsolvy-Vergine, A., Leray, H., Kuroki, S., Lupo, B., Dufour, M., and Bataille, D., 1992, Endosulfine, an endogenous peptidic ligand for the sulfonylurea receptor: Purification and partial characterization from ovine brain, Proc. Natl. Acad. Sci. U.S.A. 89:6629–6633.

    PubMed  CAS  Google Scholar 

  • Vivaudou, M., and Forestier, C., 1995, Modification by protons of frog skeletal muscle KATP channels: Effects on ion conduction and nucleotide inhibition, J. Physiol. (London) 486:629–645.

    CAS  Google Scholar 

  • Vivaudou, M., Arnoult, C., and Villaz, M., 1991, Skeletal muscle ATP-sensitive potassium channels recorded from sarcolemmal blebs of split fibers: ATP inhibition is reduced by magnesium and ADP, J. Membrane Biol. 122:165–175.

    CAS  Google Scholar 

  • Weiss, J. N., and Venkatesh, N., 1993, Metabolic regulation of cardiac ATP-sensitive K+ channels, Cardiovasc. Drug Ther. 7:499–505.

    Google Scholar 

  • Yamada, M., Isomoto, S., Matsumoto, S., Kondo, C., Shindo, T., Horio, Y., and Kurachi, Y., 1997, Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel, J. Physiol. (London) 499:715–720.

    CAS  Google Scholar 

  • Yao, X. Q., Chang, A.Y., Boulpaep, E. L., Segal, A. S., and Desir, G. V., 1996, Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney, J. Clin. Invest. 97:2525–2533.

    PubMed  CAS  Google Scholar 

  • Yokoshiki, H., Sunagawa, M., Seki, T., and Sperelakis, N., 1998, ATP-sensitive K+ channels in pancreatic, cardiac and vascular smooth muscle cells, Am. J. Physiol. 43:C25-C37.

    Google Scholar 

  • Zunkler, B. J., Lins, S., Ohno-Shosaku, T., Trube, G., and Panten, U., 1988, Cytosolic ADP enhances the sensitivity to tolbutamide of ATP-dependent K+ channels from pancreatic β-cells, FEBS Lett. 239:241–244.

    PubMed  CAS  Google Scholar 

  • Zunkler, B. J., Trube, G., and Panten, U., 1989, How do sulfonylureas approach their receptor in the β-cell membrane?, Naunyn-Schmiedeberg’s Arch. Pharmacol. 340:328–332.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terzic, A., Vivaudou, M. (2001). Molecular Pharmacology of ATP-Sensitive K+Channels: How and Why?. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics