Skip to main content

Pharmacology of Small-Conductance, Calcium-Activated K+Channels

  • Chapter
Potassium Channels in Cardiovascular Biology
  • 216 Accesses

Abstract

K+ channels are transmembrane proteins dedicated to allowing K+ fluxes through physiological membranes. Topologically, they can be described as transmembrane segments surrounding a pore-forming region directly involved in K+ selectivity and transfer. As originally depicted by Hodgkin and Huxley (1952a)-Hodgkin and Huxley (1952d), K+ channels are involved in the propagation of the action potential. Their opening is regulated by the level of membrane depolarization, and their role is to return the membrane to its resting potential. However, far beyond this unique role, K+ channels form the most diverse ion channel family described so far. They are present in nearly all cell types, and their biophysical as well as their pharmacological profiles are among the most complex ever seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abia, A., Lobaton, C. D., Moreno, A., and Garcia-Sancho, J., 1986, Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels, Biochim. Biophys. Acta 856:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Adelman, J. P., Shen, Z. K., Kavanaugh, M. P., Warren, R. A., Wu, Y. N., Lagrutta, A., Bond, C. T., and North, R. A., 1992, Calcium-activated K+ channels expressed from cloned complementary DNAs, Neuron 9:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Aiyar, J., Withka, J. M., Rizzi, J. P., Singleton, D. H., Andrews, G. C., Lin, W., Boyd, J., Hanson, D. G., Simon, M., Dethlefs, B., Lee, C. L., Hall, J. E., Gutman, G. A., and Chandy, K. G., 1995, Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins, Neuron 15:1169–1181.

    Article  PubMed  CAS  Google Scholar 

  • Aiyar, J., Rizzi, J. P., Gutman, G. A., and Chandy, K. G., 1996, The signature sequence of voltage-gated K + channels projects into the external vestibule, J. Biol. Chem. 271:31013–31016

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, N. S., Robertson, G. A., and Ganetzky, B., 1991, A component of calcium-activated K+ channels encoded by the Drosophila slo locus, Science 253:551–555.

    Article  PubMed  CAS  Google Scholar 

  • Auguste, P., Hugues, M., and Lazdunski, M., 1989, Polypeptide constitution of receptors for apamin, a neurotoxin which blocks a class of Ca2+-activated K+ channels, FEBS Lett. 248:150–154.

    Article  CAS  Google Scholar 

  • Auguste, P., Hugues, M., Gravé, B., Gesquire, J. C., Maes, P., Tartar, A., Romey, G., Schweitz, H., and Lazdunski, M., 1990. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2+-activated K+ channels, J. Biol. Chem. 265:4753–4759.

    PubMed  CAS  Google Scholar 

  • Auguste, P., Hugues, M., Mourre, C., Moinier, D., Tartar, A., and Lazdunski, M., 1992, Scyllatoxin, a blocker of Ca2+-activated K+ channels: Structure-function relationships and brain localization of the binding sites, Biochemistry 31:648–654.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann, C I., 1998, Neurobiology of the Caenorhabditis elegans genome, Science 282:2028–2033.

    Article  PubMed  CAS  Google Scholar 

  • Blanc, E., Fremont, V., Sizun, P., Meunie, S, Van Rietschoten, J., Thevand A., Bernassau, J. M., and Darbon, H., 1996, Solution structure of P01, a natural scorpion peptide structurally analogous to scorpion toxins specific for apamin-sensitive K+ channel, Proteins 24:359–369.

    Article  PubMed  CAS  Google Scholar 

  • Blanc, E., Sabatier, J. M., Kharrat, R., Meunier, S., el Ayeb, M., Van Rietschoten, J., and Darbon H., 1997, Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated K+ channels, Proteins 29:321–233.

    Article  PubMed  CAS  Google Scholar 

  • Buisine, E., Wieruszeski, J. M., Lippens, G., Wouters, D., Tartar, A., and Sautiere, P., 1997, Characterization of a new family of toxin-like peptides from the venom of the scorpion Leiurus quinquestriatus hebraeus. 1H-NMR structure of leiuropeptide II, J. Pept. Res. 49:545–555.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A. Tsunoda, S., McCobb, D. P., Wei., A,. and Salkoff, L., 1993, mSlo, a complex mouse gene encoding “maxi” calcium-activated K+ channels, Science 261:221–224.

    Article  PubMed  CAS  Google Scholar 

  • Bystrov, V. F., Okhanov, V. V., Miroshnikov, A. I., and Ovchinnikov. Y. A., 1980, Solution spatial structure of apamin as derived from NMR study, FEBS Lett 119:113–117.

    Article  PubMed  CAS  Google Scholar 

  • Castle, N. A., Haylett, D. G., Morgan, J. M., and Jenkinson, D. H., 1993, Dequalinium: A potent inhibitor of apamin-sensitive K+ channels in hepatocytes and of nicotinic responses in skeletal muscle, Eur. J. Pharmacol. 236:201–207.

    Article  PubMed  CAS  Google Scholar 

  • Chicchi, G. G., Gimenez-Gallego, G., Ber, E., Garcia, M. L., Winquist, R., and Cascieri, M., 1988, Purification and characterization of a unique potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom, J. Biol. Chem. 263:10192–10197.

    PubMed  CAS  Google Scholar 

  • Cornet, B., Bonmatin, J. M., Hetru, C., Hoffmann, J. A, Ptak, M., and Vovelle, F., 1995, Refined three dimensional structure of insect defensin A, Structure 3:435–448.

    Article  PubMed  CAS  Google Scholar 

  • Cotton, J., Crest, M., Bouet, F., Alessandri, N., Gola, M., Forest, E., Karlsson, E., Castaeda, O., Harvey, A. L., Vita, C., and Menez, A., 1997, A K+ channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels, Eur. J. Biochem. 244:192–202.

    Article  PubMed  CAS  Google Scholar 

  • Darbon, H., Blanc, E., and Sabatier, J. M., 1999, Three dimensional structure of scorpion toxins: Towards a new model of interaction with K+ channels, in: Perspectives in Drug Discovery and Design Vol. 15/16 (H. Darbon and J. M. Sabatier, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 41–60.

    Google Scholar 

  • Devaux, C., Knibiehler, M., Defendini, M. L., Mabrouk, K., Rochat, H., Van Rietschoten, J., Baty, D., and Granier, C., 1995, Recombinant and chemical derivatives of apamin: Implication of post-transcriptional C-terminal amidation of apamin in biological activity, Eur. J. Biochem. 231:544–550.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, D. A., Cabral, J. M., Pluetzner, R. A., Kuo A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R., 1998, The structure of the K+ channel: Molecular basis of K+ conduction and selectivity, Science 280:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Durell, S. R., and Guy, H. R., 1996, Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel, Neuropharmacolog 35:761–773.

    Article  CAS  Google Scholar 

  • Durell, S. R., Hao, Y., and Guy, H. R., 1998, Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations, J. Struct. Biol. 121:263–284.

    Article  PubMed  CAS  Google Scholar 

  • Fremont, V., Blanc, E., Crest, M., Martin-Eauclaire, M.-F., Gola, M., Darbon, H., and Van Rietschoten, J., 1997, Dipole moments of scorpion toxins direct the interaction towards small- or large-conductance Ca2+-activated K+ channels, Lett. Pept. Sci. 4:305–312.

    CAS  Google Scholar 

  • Galanakis, D., Davis C. A., Del Rey Herrero, B., Ganellin, C. R., Dunn, P. M., and Jenkinson D. H., 1995, Synthesis and structure-activity relationships of dequalinium analogues as K+ channel blockers: Investigations on the role of the charged heterocycle, J. Med. Chem. 38:595–606.

    Article  PubMed  CAS  Google Scholar 

  • Galanakis, D., Ganellin, R. C., Dunn, P. M., and Jenkinson, D. H., 1996, On the concept of a bivalent pharmacophore for SKCa channel blockers: Synthesis, pharmacological testing, and radioligand binding studies on mono-, bis-, and trisquinolinium compounds, Arch. Pharm. 329:524–528.

    Article  CAS  Google Scholar 

  • Goldstein, S. A. N., 1996, A structural vignette common to voltage sensors and conduction pores: Canaliculi, Neuron 16:717–722.

    Article  PubMed  CAS  Google Scholar 

  • Granier, C., Pedroso Muller, E., and Van Rietschoten, J., 1978, Use of synthetic analogs for a study on the structure-activity relationship of apamin, Eur. J. Biochem. 82:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Guy, H. R., and Conti, F., 1990, Pursuing the structure and function of voltage-gated channels, Trends Neurosci. 13:201–206.

    Article  PubMed  CAS  Google Scholar 

  • Habermann, E., and Fischer, K., 1979, Apamin, a centrally acting neurotoxic peptide: Binding and actions, Adv. Cytopharmacol. 3:387–394.

    PubMed  CAS  Google Scholar 

  • Hanner, M., Schmalhofer, W. A., Munujos, P., Knaus, H. G., Kaczorowski, G. J., and Garcia, M. L., 1997, The β subunit of the high-conductance calcium-activated K+ channel contributes to the high-affinity receptor for charybdotoxin, Proc. Natl. Acad. Sci, U.S.A. 94:2853–2858.

    Article  PubMed  CAS  Google Scholar 

  • Hanner, M., Vianna-Jorge, R., Kamassah, A., Schmalhofer, W. A., Knaus, H. G., Kaczorowski, G. J., and Garcia, M. L., 1998, The beta subunit of the high conductance calcium-activated K+ channel: Identification of residues involved in charybdotoxin binding, J. Biol. Chem. 273:16289–16296.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, A. L., 1997, Recent studies on dendrotoxins and K+ ion channels, Gen Pharmacol. 28:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, A. L., Bradley, K. N., Cochran, S. A., Rowan, E. G., Pratt, J. A., Quillfeldt, J. A., and Jerusalinsky D. A., 1998, What can toxins tell us for drug discovery?, Toxicon 36:1635–1640.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L. and MacKinnon, R., 1992, The aromatic binding site for tetraethylammonium ion on K+ channels, Neuron 8:483–491.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L., Lu, Z., Abramson, T., and MacKinnon, R., 1994, Mutations in the K+ channel signature sequence, Biophys. J. 66:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and K+ ions through the membrane of the giant axon of Loligo, J. Physiol. (London) 116:449–472.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A.F., 1952b, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116:473–496.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952c, The dual effect of membrane potential on sodium conductance in the giant axon of the squid, J. Physiol. (London) 116:497–506.

    CAS  Google Scholar 

  • Hermann, A. and Erxleben, C. 1987, Charbdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons. J. Gen. Physiol. 90(l):27–47.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952d, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  • Inisan, A. G., Meunier, S., Fedelli, O., Altbach, M., Fremont, V., Sabatier, J. M., Thevan, A., Bernassau, J.M., Cambillau, C., and Darbon, H., 1995, Structure-activity relationship study of a scorpion toxin with high affinity for apamin-sensitive K+ channels by means of the solution structure of analogues, Int. J. Pept. Protein Res. 45:441–450.

    Article  PubMed  CAS  Google Scholar 

  • Ishii T. M., Maylie J., and Adelman J. P., 1997, Determinants of apamin and d-tubocurarine block in SK K + channels, J. Biol. Chem. 272:23195–23200.

    Article  PubMed  CAS  Google Scholar 

  • Jan, L.Y., and Jan, Y. N., 1992, Structural elements involved in specific K+ channel functions, Annu. Rev. Physiol. 54:537–555.

    Article  PubMed  CAS  Google Scholar 

  • Jaravine, V. A., Nolde, D. E., Reibarkh, M. J., Korolkova, Y. V., Kozlov, S. A., Pluzhnikov, K. A., Grishin, E. V., and Arseniev, A. S., 1997, Three-dimensional structure of OSK1 from Orthochirus scrobiculosus scorpion venom, Biochemistry 36:1223–1232.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, I. D., and Sansom, M. S., 1997, The pore-lining region of Shaker voltage-gated K + channels: Comparison of beta-barrel and alpha-helix bundle models, Biophys. J. 73:581–602.

    Article  PubMed  CAS  Google Scholar 

  • Kharrat, R., Mansuelle, P., Sampieri, F., Crest, M., Martin-Eauclaire, M. F., Rochat, H., and El Ayeb, M., 1997, Maurotoxin, a new four disulfide bridges toxin from Scorpio maurus venom: Purification, structure and pharmacology on K+ channels, FEBS Lett. 406:284–290.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J., and Adelman, J. P., 1996, Small-conductance, calcium-activated K+ channels from mammalian brain, Science 273:1709–1714.

    Article  PubMed  Google Scholar 

  • Labbé-Jullié, C., Granier, C., Albericio, F., Defendini, M. L., Ceard, B., Rochat, H, and Van Rietschoten, J., 1991, Binding and toxicity of apamin: Characterization of the active site, Eur. J. Biochem. 196:639–645.

    Article  PubMed  Google Scholar 

  • Legros, C., Oughuideni, R., Darbon, H., Rochat, H., Bougis, P. E., and Martin-Eauclaire, M. F., 1996, Characterization of a new peptide from Tityus serrulatus scorpion venom which is a ligand of the apamin-binding site, FEBS Lett. 390:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Levèque, C., Marqueze, B., Couraud, F., and Seagar, M., 1990, Polypeptide components of the apamin receptor associated with a calcium activated K+ channel, FEBS Lett. 275:185–189.

    Article  PubMed  Google Scholar 

  • Lipkind, G. M., and Fozzard, H. A., 1997, A model of scorpion toxin binding to voltage-gated K+ channels, J. Membr. Biol. 158:187–196.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., Cohen, S. E., Kuo, A., Lee, A., and Chait, B. T., 1998, Structural conservation in prokaryotic and eukaryotic K+ channels,Science 280:106–109.

    Article  PubMed  CAS  Google Scholar 

  • Martins, J. C, Zhang, W., Tartar, A., Lazdunski, M., and Borremans, F., 1990, Solution conformation of leiurotoxin I (scyllatoxin) by 1H nuclear magnetic resonance, FEBS Lett. 260:249–253.

    Article  PubMed  CAS  Google Scholar 

  • Martins, J. C, Van de Ven, F. J. M., and Borremans, F. A. M., 1995, Determination of the three-dimensional solution structure of scyllatoxin by 1H nuclear magnetic resonance, J. Mol. Biol. 253:590–603.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, S., Bernassau, J. M., Martin-Eauclaire, M. F., Van Rietschoten, J., Cambillau, C., and Darbon, H., 1993, Solution structure of P05-NH2, a scorpion toxin analog with high affinity for the apamin-sensitive K+ channel, Biochemistry 32:11969–11976.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C., Moczydlowski, E., Latorre, R., and Philips, M., 1985, Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature 313:316–318.

    Article  PubMed  CAS  Google Scholar 

  • Park, C. S., and Miller, C., 1992a, Mapping function to structure in a channel-blocking peptide: Electrostatic mutants of charybdotoxin, Biochemistry 31:7749–7755.

    Article  PubMed  CAS  Google Scholar 

  • Park, C. S., and Miller, C., 1992b, Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel, Neuron 9:307–313.

    Article  PubMed  CAS  Google Scholar 

  • Pease, J. H., and Wemmer, D. E., 1988, Solution structure of apamin determined by nuclear magnetic resonance and distance geometry, Biochemistry 27:8491–8498.

    Article  PubMed  CAS  Google Scholar 

  • Pennington, M. W., Byrnes, M. E., Zaydenberg, I., Khaytin, I., De Chastonay, J., Krafte, D. S., Hill, R., Mahnir, V. M., Volberg, W. A., Gorczyca, W., and Kem, W. R., 1995, Chemical synthesis and characterization of ShK toxin: A potent K+ channel inhibitor from a sea anemone, Int. J. Pept. Protein Res. 46:354–358.

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan, R., Lewis, J. H., and MacKinnon, R., 1996, Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis, Neuron 16:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Rochat, H., Kharrat, R., Sabatier, J. M., Mansuelle, P., Cres, M., Martin-Eauclaire, M. F., Sampieri, F., Oughideni, R., Mabrou, K., Jacquet, G., Van Rietschoten, J., and El Ayeb, M., 1998, Maurotoxin, a four disulfide bridges scorpion toxin acting on K+ channels, Toxicon 36:1609–1611.

    Article  PubMed  CAS  Google Scholar 

  • Romi-Lebrun, R., Martin-Eauclaire, M. F., Escoubas, P., Wu, F. Q., Lebrun, B., Hisada, M., Nakajima, T. 1997, Characterization of four toxins from Buthus martens, scorpion venom, which act on apamin sensitive Ca2+ activated K+ channels. Eur. J. Biochem. 245(2):457–464.

    Article  PubMed  CAS  Google Scholar 

  • Rosa, J. C, Galanaki, D., Ganellin, C. R., Dunn, P. M., and Jenkinson, D. H., 1998, Bis-quinolinium cyclophanes: 6,10-diaza-3(l,3),8(l,4)-dibenzena-l,5(l,4)-diquinolinacyclodecaphane(UCL 1684), the first nanomolar, non-peptidic blocker of the apamin-sensitive Ca2+-activated K+ channel, J. Med. Chem. 41:2–5.

    Article  PubMed  CAS  Google Scholar 

  • Sabatier, J. M., Zerrouck, H., Darbon, H., Mabrouk, K., Benslimane, A., Rochat, H., Martin-Eauclaire, M. F., and Van Rietschoten, J., 1993, P05, a new leiurotoxin I-like scorpion toxin: Synthesis and structure-activity relationships of the α-amidated analog, a ligand of Ca2+-activated K+ channels with increased affinity, Biochemistry 32:2763–2770.

    Article  PubMed  CAS  Google Scholar 

  • Sabatier, J. M., Frmont, V., Mabrouk, K., Crest, M., Darbon, H., Rochat, H., Van Rietschoten, J., and Martin-Eauclaire, M. F., 1994, Leiurotoxin I, a scorpion toxin specific for Ca2+-activated K+ channels, Int. J. Pept. Protein Res. 43:486–495.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, B. E., 1979, Solid phase synthesis of 13-lysine-apamin, 14-apamin, and the corresponding guanidinated derivatives, Int. J. Pept. Protein Res. 13:327–333.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Johnson, J. H., Hammerland, L G., Kelbaugh, P. R., Volkmann, R. A., Saccomano, N.A., and Mueller A. L., 1997, Heteropodatoxins: Peptides isolated from spider venom that block Kv4.2 K + channels, Mol Pharmacol 51:491–498.

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi, H., Hugues, M., Norman, R., Ellory, C., Borsotto, M., and Lazdunski, M., 1984, Molecular properties of the apamin-binding component of the Ca2+ -dependent K+ channel, radiation- inactivation, affinity labeling and solubilization. Eur. J.Biochem. 142:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J. M., Beress, L., and Lazdunski, M., 1995, Kalicludines and kaliseptine, J. Biol. Chem. 270:25121–25126.

    Article  PubMed  CAS  Google Scholar 

  • Seagar, M., Labbé-Jullié, C., Granier, C., Goll, A., Glossmann, A., Van Rietschoten, J. and Couraud, F., 1986, Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K + channel subunits and target size analysis, Biochemistry 25:4051–4057.

    Article  PubMed  CAS  Google Scholar 

  • Shon, K. J., Stocker, M., Terlau H., Stuhmer W., Jacobsen R., Walker, C., Grilley M., Watkins M., Hillyard, D. R., Gray, W. R., and Olivera, B. M., 1998, K-Conotoxin PVIIA is a peptide inhibiting the Shaker K + channel, J. Biol. Chem. 273:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, K. J., and MacKinnon, R., 1995, An inhibitor of the Kv2.1 K+ channel isolated from the venom of a Chilean tarantula, Neuron 15:941–949.

    Article  PubMed  CAS  Google Scholar 

  • Vergara, C., Latorre, R., Marrion, N. V., and Adelman, J. P., 1998, Calcium-activated K+ channels, Curr. Opin. Neurobiol. 8:321–329.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, J. P., Schweitz, H., and Lazdunski, M., 1975, Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system, Biochemistry 14:2521–2525.

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth, J. D. F., Doorty, K. B., and Strong, P. N., 1994, Comparable 30-kDa apamin binding polypeptides may fulfill equivalent roles within putative subtypes of small conductance Ca2+ -activated K+ channels, J. Biol. Chem. 269:18053–18061.

    PubMed  CAS  Google Scholar 

  • Wadsworth, J. D. F., Doorty, K. B., Ganellin, C. R., and Strong, P.N., 1996, Photolabile derivatives of 125I-apamin: Defining the structural criteria required for labeling high and low molecular mass polypeptides associated with small conductance Ca2+-activated K+ channels, Biochemistry 35:7917– 7927.

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth, J. D., Torelli, S., Doorty, K. B., and Strong P. N., 1997, Structural diversity among subtypes of small-conductance Ca2+-activated K+ channels, Arch. Biochem. Biophys. 346:151–160.

    Article  PubMed  CAS  Google Scholar 

  • Wallner, M., Meera, P., and Toro, L., 1996, Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N- terminus, Proc. Natl Acad. Sci., USA 93:14922–14927.

    Article  PubMed  CAS  Google Scholar 

  • Wei, A., Jegla,, T., and Salkoff, L., 1996, Eight K+ families revealed by the C. elegans project, Neuropharmacol. 35:805–829.

    Article  CAS  Google Scholar 

  • Yang, P. K., Lee, C. Y., and Hwang, M. J., 1997, Shaker pore structure as predicted by annealed atomic simulation using symmetry and novel geometric restraints, Biophys. J. 72:2479–2489.

    Article  PubMed  CAS  Google Scholar 

  • Yool, A., and Schwartz, T. L., 1991, Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349:700–704.

    Article  PubMed  CAS  Google Scholar 

  • Zerrouk, H., Mansuelle, P., Benslimane, A., Rochat, H., and Martin-Eauclaire, M. F., 1993, Characterization of a new leiurotoxin I-like scorpion toxin P05 from Androctonus mauretanicus mauretanicus, FEBS Lett. 320:389–392.

    Google Scholar 

  • Zerrouk, H., Laraba-Djebari, F., Fremont, V., Meki, A., Darbon, H., Mansuelle, P., Oughuideni, R., Van Rietschoten, J., Rochat, H, and Martin-Eauclaire, M. F., 1996, Characterization of POl, a new peptide ligand of the apamin-sensitive Ca2+-activated K+ channel, Int. J. Pept. Protein Res. 48:514–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blanc, E., Darbon, H. (2001). Pharmacology of Small-Conductance, Calcium-Activated K+Channels. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics