Skip to main content

Steps in a Statistical Test: Using the Binomial Distribution to Make Decisions About Hypotheses

  • Chapter
  • First Online:
Statistics in Criminal Justice
  • 76k Accesses

Abstract

When we Make Inferences to a population, we rely on a statistic in our sample to make a decision about a population parameter. At the heart of our decision is a concern with Type I error. Before we reject our null hypothesis, we want to be fairly confident that it is in fact false for the population we are studying. For this reason, we want the observed risk of a Type I error in a test of statistical significance to be as small as possible. But how do statisticians calculate that risk? How do they define the observed significance level associated with the outcome of a test?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Anthony Braga, “Solving Violent Crime Problems: An Evaluation of the Jersey City Police Department’s Pilot Program to Control Violent Crime Places,” unpublished dissertation, Rutgers University, Newark, NJ, 1996.

  2. 2.

    Problem-oriented policing is an important new approach to police work formulated by Herman Goldstein of the University of Wisconsin Law School. See H. Goldstein, Problem-Oriented Policing (New York: McGraw-Hill, 1990).

  3. 3.

    The correction factor adjusts your test to account for the fact that you have not allowed individuals to be selected from the population more than once. Not including a correction factor makes it more difficult to reject the null hypothesis. That is, the inclusion of a correction factor will make it easier for you to reject the null hypothesis. One problem criminal justice scholars face in using a correction factor is that they often want to infer to populations that are beyond their sampling frame. For example, a study of police patrol at hot spots in a particular city may sample 50 of 200 hot spots in the city during a certain month. However, researchers may be interested in making inferences to hot spots generally in the city (not just those that exist in a particular month) or even to hot spots in other places. For those inferences, it would be misleading to adjust the test statistic based on the small size of the sampling frame. For a discussion of how to correct for sampling without replacement, see Paul S. Levy and Stanley Lemeshow, Sampling of Populations: Methods and Applications (New York: Wiley, 1991).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weisburd, D., Britt, C. (2014). Steps in a Statistical Test: Using the Binomial Distribution to Make Decisions About Hypotheses. In: Statistics in Criminal Justice. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9170-5_8

Download citation

Publish with us

Policies and ethics