Skip to main content

Dermatitis and Alopecia

  • Chapter
  • First Online:
Pathobiology of Cancer Regimen-Related Toxicities

Abstract

A fundamental shift in chemotherapeutic approach has occurred over the last several decades. A new class of so-called targeted agents, designed to target aberrant molecular pathways responsible for promoting carcinogenesis, was added to the arsenal of cytotoxic drugs that target rapidly proliferating tumor cells. These advances improved patient care and decreased morbidity and mortality. While systemic adverse events such as bone marrow suppression and gastrointestinal toxicities have diminished with the use of targeted agents, the spectrum of dermatologic toxicities have expanded. Mechanisms underlying the development of such a variety of cutaneous adverse events remain to be elucidated, but a significant amount of data shedding light on potential pathophysiology has accumulated. This chapter will review these data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Vokes EE, Chu E. Anti-EGFR therapies: clinical experience in colorectal, lung, and head and neck cancers. Oncology (Williston Park). 2006;20:15–25.

    Google Scholar 

  3. Perez-Soler R, Delord JP, Halpern A, et al. HER1/EGFR inhibitor-associated rash: future directions for management and investigation outcomes from the HER1/EGFR inhibitor rash management forum. Oncologist. 2005;10:345–56.

    Article  PubMed  CAS  Google Scholar 

  4. Roe E, Garcia Muret MP, Marcuello E, Capdevila J, Pallares C, Alomar A. Description and management of cutaneous side effects during cetuximab or erlotinib treatments: a prospective study of 30 patients. J Am Acad Dermatol. 2006;55:429–37.

    Article  PubMed  Google Scholar 

  5. Busam KJ, Capodieci P, Motzer R, Kiehn T, Phelan D, Halpern AC. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol. 2001;144:1169–76.

    Article  PubMed  CAS  Google Scholar 

  6. Lynch Jr TJ, Kim ES, Eaby B, Garey J, West DP, Lacouture ME. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: an evolving paradigm in clinical management. Oncologist. 2007;12:610–21.

    Article  PubMed  CAS  Google Scholar 

  7. Nanney LB, Stoscheck CM, King Jr LE, Underwood RA, Holbrook KA. Immunolocalization of epidermal growth factor receptors in normal developing human skin. J Invest Dermatol. 1990;94:742–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nanney LB, Magid M, Stoscheck CM, King Jr LE. Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. J Invest Dermatol. 1984;83:385–93.

    Article  PubMed  CAS  Google Scholar 

  9. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21:2787–99.

    Article  PubMed  CAS  Google Scholar 

  10. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet. 2002;3:199–209.

    Article  PubMed  CAS  Google Scholar 

  11. Rodeck U, Jost M, Kari C, et al. EGF-R dependent regulation of keratinocyte survival. J Cell Sci. 1997;110(Pt 2):113–21.

    PubMed  CAS  Google Scholar 

  12. Lorch JH, Klessner J, Park JK, et al. Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. J Biol Chem. 2004;279:37191–200.

    Article  PubMed  CAS  Google Scholar 

  13. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2002;20:110–24.

    Article  PubMed  CAS  Google Scholar 

  14. Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 2002;20:4292–302.

    Article  PubMed  CAS  Google Scholar 

  15. Nardone B, Nicholson K, Newman M, et al. Histopathologic and immunohistochemical characterization of rash to human epidermal growth factor receptor 1 (HER1) and HER1/2 inhibitors in cancer patients. Clin Cancer Res. 2010;16:4452–60.

    Article  PubMed  CAS  Google Scholar 

  16. Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer. 2006;6:803–12.

    Article  PubMed  CAS  Google Scholar 

  17. Murillas R, Larcher F, Conti CJ, Santos M, Ullrich A, Jorcano JL. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. EMBO J. 1995;14:5216–23.

    PubMed  CAS  Google Scholar 

  18. Surguladze D, Deevi D, Claros N, et al. Tumor necrosis factor-alpha and interleukin-1 antagonists alleviate inflammatory skin changes associated with epidermal growth factor receptor antibody therapy in mice. Cancer Res. 2009;69:5643–7.

    Article  PubMed  CAS  Google Scholar 

  19. Han SS, Lee M, Park GH, et al. Investigation of papulopustular eruptions caused by cetuximab treatment shows altered differentiation markers and increases in inflammatory cytokines. Br J Dermatol. 2009;162:371–9.

    Article  PubMed  Google Scholar 

  20. Guttman-Yassky E, Mita A, De Jonge M, et al. Characterisation of the cutaneous pathology in non-small cell lung cancer (NSCLC) patients treated with the EGFR tyrosine kinase inhibitor erlotinib. Eur J Cancer. 2010;46:2010–9.

    Article  PubMed  CAS  Google Scholar 

  21. Eilers Jr RE, Gandhi M, Patel JD, et al. Dermatologic infections in cancer patients treated with epidermal growth factor receptor inhibitor therapy. J Natl Cancer Inst. 2010;102:47–53.

    Article  PubMed  CAS  Google Scholar 

  22. Amitay-Laish I, David M, Stemmer SM. Staphylococcus coagulase-positive skin inflammation associated with epidermal growth factor receptor-targeted therapy: an early and a late phase of papulopustular eruptions. Oncologist. 2010;15:1002–8.

    Article  PubMed  Google Scholar 

  23. Gerber PA, Kukova G, Buhren BA, Homey B. Density of Demodex folliculorum in patients receiving epidermal growth factor receptor inhibitors. Dermatology. 2011;222:144–7.

    Article  PubMed  CAS  Google Scholar 

  24. Pastore S, Mascia F, Gulinelli S, et al. Stimulation of purinergic receptors modulates chemokine expression in human keratinocytes. J Invest Dermatol. 2007;127:660–7.

    Article  PubMed  CAS  Google Scholar 

  25. Niyonsaba F, Ushio H, Nakano N, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127:594–604.

    Article  PubMed  CAS  Google Scholar 

  26. Osio A, Mateus C, Soria JC, et al. Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors. Br J Dermatol. 2009;161:515–21.

    Article  PubMed  CAS  Google Scholar 

  27. Hu JC, Sadeghi P, Pinter-Brown LC, Yashar S, Chiu MW. Cutaneous side effects of epidermal growth factor receptor inhibitors: clinical presentation, pathogenesis, and management. J Am Acad Dermatol. 2007;56:317–26.

    Article  PubMed  Google Scholar 

  28. Segaert S, Van Cutsem E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors. Ann Oncol. 2005;16:1425–33.

    Article  PubMed  CAS  Google Scholar 

  29. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6:328–40.

    Article  PubMed  CAS  Google Scholar 

  30. Malik SN, Siu LL, Rowinsky EK, et al. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin Cancer Res. 2003;9:2478–86.

    PubMed  CAS  Google Scholar 

  31. Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7:535–47.

    Article  PubMed  CAS  Google Scholar 

  32. Gerber PA, Buhren BA, Cevikbas F, Bolke E, Steinhoff M, Homey B. Preliminary evidence for a role of mast cells in epidermal growth factor receptor inhibitor-induced pruritus. J Am Acad Dermatol. 2010;63:163–5.

    Article  PubMed  Google Scholar 

  33. Vincenzi B, Tonini G, Santini D. Aprepitant for erlotinib-induced pruritus. N Engl J Med. 2010;363:397–8.

    Article  PubMed  CAS  Google Scholar 

  34. Leveque D. Aprepitant for erlotinib-induced pruritus. N Engl J Med. 2010;363:1680–1; author reply 1681.

    Article  PubMed  Google Scholar 

  35. Gerber PA, Buhren BA, Homey B. More on aprepitant for erlotinib-induced pruritus. N Engl J Med. 2011;364:486–7.

    Article  PubMed  CAS  Google Scholar 

  36. Porta C, Paglino C, Imarisio I, Bonomi L. Uncovering Pandora’s vase: the growing problem of new toxicities from novel anticancer agents. The case of sorafenib and sunitinib. Clin Exp Med. 2007;7:127–34.

    Article  PubMed  CAS  Google Scholar 

  37. Autier J, Escudier B, Wechsler J, Spatz A, Robert C. Prospective study of the cutaneous adverse effects of sorafenib, a novel multikinase inhibitor. Arch Dermatol. 2008;144:886–92.

    Article  PubMed  CAS  Google Scholar 

  38. Lipworth AD, Robert C, Zhu AX. Hand-foot syndrome (hand-foot skin reaction, palmar-plantar erythrodysesthesia): focus on sorafenib and sunitinib. Oncology. 2009;77:257–71.

    Article  PubMed  CAS  Google Scholar 

  39. Yang CH, Lin WC, Chuang CK, et al. Hand-foot skin reaction in patients treated with sorafenib: a clinicopathological study of cutaneous manifestations due to multitargeted kinase inhibitor therapy. Br J Dermatol. 2008;158:592–6.

    Article  PubMed  CAS  Google Scholar 

  40. Lacouture ME, Reilly LM, Gerami P, Guitart J. Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. Ann Oncol. 2008;19:1955–61.

    Article  PubMed  CAS  Google Scholar 

  41. Chu D, Lacouture ME, Fillos T, Wu S. Risk of hand-foot skin reaction with sorafenib: a systematic review and meta-analysis. Acta Oncol. 2008;47:176–86.

    Article  PubMed  CAS  Google Scholar 

  42. Chu D, Lacouture ME, Weiner E, Wu S. Risk of hand-foot skin reaction with the multitargeted kinase inhibitor sunitinib in patients with renal cell and non-renal cell carcinoma: a meta-analysis. Clin Genitourin Cancer. 2009;7:11–9.

    Article  PubMed  Google Scholar 

  43. Balagula Y, Wu S, Su X, Feldman DR, Lacouture ME. The risk of hand foot skin reaction to pazopanib, a novel multikinase inhibitor: a systematic review of literature and meta-analysis. Invest New Drugs. 2011;30:1773–81.

    Article  PubMed  CAS  Google Scholar 

  44. Lee WJ, Lee JL, Chang SE, et al. Cutaneous adverse effects in patients treated with the multitargeted kinase inhibitors sorafenib and sunitinib. Br J Dermatol. 2009;161:1045–51.

    Article  PubMed  CAS  Google Scholar 

  45. Lai SE, Kuzel T, Lacouture ME. Hand-foot and stump syndrome to sorafenib. J Clin Oncol. 2007;25:341–3.

    Article  PubMed  Google Scholar 

  46. Jain L, Gardner ER, Figg WD, Chernick MS, Kong HH. Lack of association between excretion of sorafenib in sweat and hand-foot skin reaction. Pharmacotherapy. 2010;30:52–6.

    Article  PubMed  CAS  Google Scholar 

  47. Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem. 1994;42:1417–25.

    Article  PubMed  CAS  Google Scholar 

  48. Ponten F, Ren Z, Nister M, Westermark B, Ponten J. Epithelial-stromal interactions in basal cell cancer: the PDGF system. J Invest Dermatol. 1994;102:304–9.

    Article  PubMed  CAS  Google Scholar 

  49. Strumberg D, Awada A, Hirte H, et al. Pooled safety analysis of BAY 43-9006 (sorafenib) monotherapy in patients with advanced solid tumours: is rash associated with treatment outcome? Eur J Cancer. 2006;42:548–56.

    Article  PubMed  CAS  Google Scholar 

  50. Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24:25–35.

    Article  PubMed  CAS  Google Scholar 

  51. Breccia M, Carmosino I, Russo E, Morano SG, Latagliata R, Alimena G. Early and tardive skin adverse events in chronic myeloid leukaemia patients treated with imatinib. Eur J Haematol. 2005;74:121–3.

    Article  PubMed  CAS  Google Scholar 

  52. Schenone S, Bondavalli F, Botta M. Antiangiogenic agents: an update on small molecule VEGFR inhibitors. Curr Med Chem. 2007;14:2495–516.

    Article  PubMed  CAS  Google Scholar 

  53. Munehiro A, Yoneda K, Nakai K, et al. Bevacizumab-induced hand-foot syndrome: circumscribed type. Br J Dermatol. 2010;162:1411–3.

    Article  PubMed  CAS  Google Scholar 

  54. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol. 2005;7:870–9.

    Article  PubMed  CAS  Google Scholar 

  55. Heldin CH, Backstrom G, Ostman A, et al. Binding of different dimeric forms of PDGF to human fibroblasts: evidence for two separate receptor types. EMBO J. 1988;7:1387–93.

    PubMed  CAS  Google Scholar 

  56. Erber R, Thurnher A, Katsen AD, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 2004;18:338–40.

    PubMed  CAS  Google Scholar 

  57. Judith R, Nithya M, Rose C, Mandal AB. Application of a PDGF-containing novel gel for cutaneous wound healing. Life Sci. 2010;87:1–8.

    Article  PubMed  CAS  Google Scholar 

  58. van der Veldt AA, de Boer MP, Boven E, et al. Reduction in skin microvascular density and changes in vessel morphology in patients treated with sunitinib. Anticancer Drugs. 2010;21:439–46.

    Article  PubMed  CAS  Google Scholar 

  59. Boone SL, Jameson G, Von Hoff D, Lacouture ME. Blackberry-induced hand-foot skin reaction to sunitinib. Invest New Drugs. 2009;27:389–90.

    Article  PubMed  CAS  Google Scholar 

  60. Azad NS, Posadas EM, Kwitkowski VE, et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 2008;26:3709–14.

    Article  PubMed  CAS  Google Scholar 

  61. Mukohara T, Nakajima H, Mukai H, et al. Effect of axitinib (AG-013736) on fatigue, thyroid-stimulating hormone, and biomarkers: a phase I study in Japanese patients. Cancer Sci. 2010;101:963–8.

    Article  PubMed  CAS  Google Scholar 

  62. Drevs J, Siegert P, Medinger M, et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25:3045–54.

    Article  PubMed  CAS  Google Scholar 

  63. Annunziata CM, Walker AJ, Minasian L, et al. Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR2. Clin Cancer Res. 2010;16:664–72.

    Article  PubMed  CAS  Google Scholar 

  64. Eskens FA, Steeghs N, Verweij J, et al. Phase I dose escalation study of telatinib, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor 2 and 3, platelet-derived growth factor receptor beta, and c-Kit, in patients with advanced or metastatic solid tumors. J Clin Oncol. 2009;27:4169–76.

    Article  PubMed  CAS  Google Scholar 

  65. Baack BR, Burgdorf WH. Chemotherapy-induced acral erythema. J Am Acad Dermatol. 1991;24:457–61.

    Article  PubMed  CAS  Google Scholar 

  66. Nagore E, Insa A, Sanmartin O. Antineoplastic therapy-induced palmar plantar erythrodysesthesia (‘hand-foot’) syndrome. Incidence, recognition and management. Am J Clin Dermatol. 2000;1:225–34.

    Article  PubMed  CAS  Google Scholar 

  67. Hueso L, Sanmartin O, Nagore E, et al. [Chemotherapy-induced acral erythema: a clinical and histopathologic study of 44 cases]. Actas Dermosifiliogr. 2008;99:281–90.

    Article  PubMed  CAS  Google Scholar 

  68. Jacobi U, Waibler E, Schulze P, et al. Release of doxorubicin in sweat: first step to induce the palmar-plantar erythrodysesthesia syndrome? Ann Oncol. 2005;16:1210–1.

    Article  PubMed  CAS  Google Scholar 

  69. Martschick A, Sehouli J, Patzelt A, et al. The pathogenetic mechanism of anthracycline-induced palmar-plantar erythrodysesthesia. Anticancer Res. 2009;29:2307–13.

    PubMed  CAS  Google Scholar 

  70. Lotem M, Hubert A, Lyass O, et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol. 2000;136:1475–80.

    Article  PubMed  CAS  Google Scholar 

  71. Ferrero JM, Lassalle S, Mari M, et al. Hand-foot syndrome (HFS) in patients receiving capecitabine: a pharmacological explanation. J Clin Oncol. 2006 ASCO Annual Meeting Proceedings Part I. 2006;24(18S)2019.

    Google Scholar 

  72. Saif MW, Elfiky A, Diasio R. Hand-foot syndrome variant in a dihydropyrimidine dehydrogenase-deficient patient treated with capecitabine. Clin Colorectal Cancer. 2006;6:219–23.

    Article  PubMed  Google Scholar 

  73. Zhang RX, Wu XJ, Lu SX, Pan ZZ, Wan DS, Chen G. The effect of COX-2 inhibitor on capecitabine-induced hand-foot syndrome in patients with stage II/III colorectal cancer: a phase II randomized prospective study. J Cancer Res Clin Oncol. 2011;137:953–7.

    Article  PubMed  CAS  Google Scholar 

  74. Beard JS, Smith KJ, Skelton HG. Combination chemotherapy with 5-fluorouracil, folinic acid, and alpha-interferon producing histologic features of graft-versus-host disease. J Am Acad Dermatol. 1993;29:325–30.

    Article  PubMed  CAS  Google Scholar 

  75. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4:529–36.

    Article  PubMed  CAS  Google Scholar 

  76. Dorr W, Hendry JH. Consequential late effects in normal tissues. Radiother Oncol. 2001;61:223–31.

    Article  PubMed  CAS  Google Scholar 

  77. Hymes SR, Strom EA, Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment. J Am Acad Dermatol. 2006;54:28–46.

    Article  PubMed  Google Scholar 

  78. Denham JW, Hauer-Jensen M. The radiotherapeutic injury—a complex ‘wound’. Radiother Oncol. 2002;63:129–45.

    Article  PubMed  Google Scholar 

  79. Dormand EL, Banwell PE, Goodacre TE. Radiotherapy and wound healing. Int Wound J. 2005;2:112–27.

    Article  PubMed  Google Scholar 

  80. Cox R, Masson WK, Weichselbaum RR, Nove J, Little JB. The repair of potentially lethal damage in x-irradiated cultures of normal and ataxia telangiectasia human fibroblasts. Int J Radiat Biol Relat Stud Phys Chem Med. 1981;39:357–65.

    Article  PubMed  CAS  Google Scholar 

  81. Archambeau JO, Pezner R, Wasserman T. Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys. 1995;31:1171–85.

    Article  PubMed  CAS  Google Scholar 

  82. Bernstein EF, Harisiadis L, Salomon GD, et al. Healing impairment of open wounds by skin irradiation. J Dermatol Surg Oncol. 1994;20:757–60.

    PubMed  CAS  Google Scholar 

  83. Simonen P, Hamilton C, Ferguson S, et al. Do inflammatory processes contribute to radiation induced erythema observed in the skin of humans? Radiother Oncol. 1998;46:73–82.

    Article  PubMed  CAS  Google Scholar 

  84. Mendelsohn FA, Divino CM, Reis ED, Kerstein MD. Wound care after radiation therapy. Adv Skin Wound Care. 2002;15:216–24.

    Article  PubMed  Google Scholar 

  85. Canney PA, Dean S. Transforming growth factor beta: a promotor of late connective tissue injury following radiotherapy? Br J Radiol. 1990;63:620–3.

    Article  PubMed  CAS  Google Scholar 

  86. Quarmby S, Kumar P, Kumar S. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions. Int J Cancer. 1999;82:385–95.

    Article  PubMed  CAS  Google Scholar 

  87. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47:277–90.

    Article  PubMed  CAS  Google Scholar 

  88. Harper JL, Franklin LE, Jenrette JM, Aguero EG. Skin toxicity during breast irradiation: pathophysiology and management. South Med J. 2004;97:989–93.

    Article  PubMed  Google Scholar 

  89. Chon BH, Loeffler JS. The effect of nonmalignant systemic disease on tolerance to radiation therapy. Oncologist. 2002;7:136–43.

    Article  PubMed  Google Scholar 

  90. Trueb RM. Chemotherapy-induced alopecia. Semin Cutan Med Surg. 2009;28:11–4.

    Article  PubMed  CAS  Google Scholar 

  91. Jankovic SM, Jankovic SV. The control of hair growth. Dermatol Online J. 1998;4:2.

    PubMed  CAS  Google Scholar 

  92. Yun SJ, Kim SJ. Hair loss pattern due to chemotherapy-induced anagen effluvium: a cross-sectional observation. Dermatology. 2007;215:36–40.

    Article  PubMed  CAS  Google Scholar 

  93. Bodo E, Tobin DJ, Kamenisch Y, et al. Dissecting the impact of chemotherapy on the human hair follicle: a pragmatic in vitro assay for studying the pathogenesis and potential management of hair follicle dystrophy. Am J Pathol. 2007;171:1153–67.

    Article  PubMed  CAS  Google Scholar 

  94. Crounse RG, Van Scott EJ. Changes in scalp hair roots as a measure of toxicity from cancer chemotherapeutic drugs. J Invest Dermatol. 1960;35:83–90.

    PubMed  CAS  Google Scholar 

  95. Kligman AM. Pathologic dynamics of human hair loss I. Telogen effuvium. Arch Dermatol. 1961;83:175–98.

    Article  PubMed  CAS  Google Scholar 

  96. Schilli MB, Paus R, Menrad A. Reduction of intrafollicular apoptosis in chemotherapy-induced alopecia by topical calcitriol-analogs. J Invest Dermatol. 1998;111:598–604.

    Article  PubMed  CAS  Google Scholar 

  97. Goldberg MT, Tackaberry LE, Hardy MH, Noseworthy JH. Nuclear aberrations in hair follicle cells of patients receiving cyclophosphamide. A possible in vivo assay for human exposure to genotoxic agents. Arch Toxicol. 1990;64:116–21.

    Article  PubMed  CAS  Google Scholar 

  98. Botchkarev VA. Molecular mechanisms of chemotherapy-induced hair loss. J Investig Dermatol Symp Proc. 2003;8:72–5.

    Article  PubMed  CAS  Google Scholar 

  99. Perego P, Corna E, De Cesare M, et al. Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem. 2001;8:31–7.

    Article  PubMed  CAS  Google Scholar 

  100. Olsen A. Chemotherapy-induced alopecia: overview and methodology for characterizing hair changes and regrowth. In: Olver IN, editor. The MASCC textbook of cancer supportive care and survivorship. New York: Springer; 2011.

    Google Scholar 

  101. Wang J, Lu Z, Au JL. Protection against chemotherapy-induced alopecia. Pharm Res. 2006;23:2505–14.

    Article  PubMed  CAS  Google Scholar 

  102. Trueb RM. Chemotherapy-induced anagen effluvium: diffuse or patterned? Dermatology. 2007;215:1–2.

    PubMed  Google Scholar 

  103. Bleiker TO, Nicolaou N, Traulsen J, Hutchinson PE. ‘Atrophic telogen effluvium’ from cytotoxic drugs and a randomized controlled trial to investigate the possible protective effect of pretreatment with a topical vitamin D analogue in humans. Br J Dermatol. 2005;153:103–12.

    Article  PubMed  CAS  Google Scholar 

  104. Trueb RM. Chemotherapy-induced alopecia. Curr Opin Support Palliat Care. 2010;4:281–4.

    Article  PubMed  Google Scholar 

  105. Tallon B, Blanchard E, Goldberg LJ. Permanent chemotherapy-induced alopecia: case report and review of the literature. J Am Acad Dermatol. 2010;63:333–6.

    Article  PubMed  Google Scholar 

  106. Hendrix S, Handjiski B, Peters EM, Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol. 2005;125:42–51.

    Article  PubMed  CAS  Google Scholar 

  107. Tran D, Sinclair RD, Schwarer AP, Chow CW. Permanent alopecia following chemotherapy and bone marrow transplantation. Australas J Dermatol. 2000;41:106–8.

    Article  PubMed  CAS  Google Scholar 

  108. Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72:548–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario E. Lacouture .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balagula, Y., Lacouture, M.E. (2013). Dermatitis and Alopecia. In: Sonis, S., Keefe, D. (eds) Pathobiology of Cancer Regimen-Related Toxicities. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5438-0_8

Download citation

Publish with us

Policies and ethics