Skip to main content

Abstract

Xerostomia, the sensation of a dry mouth, most often results from a decreased secretion of the salivary glands (salivary hypofunction). Long-term, moderate to severe xerostomia has significant, negative effects on the quality of life of surviving cancer patients. In this chapter we focus on salivary hypofunction resulting from therapeutic radiation received by head and neck cancer patients. Specifically, we address the frequency of its occurrence, the mechanisms by which it likely occurs, as well as available and future approaches for prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jensen SB, Pedersen AML, Vissink A, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer. 2010;18:1039–60.

    Article  PubMed  CAS  Google Scholar 

  2. Jensen SB, Pedersen AML, Vissink A, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: management strategies and economic impact. Support Care Cancer. 2010;18:1061–79.

    Article  PubMed  CAS  Google Scholar 

  3. Cox JD, Steitz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for research and treatment of cancer. Int J Radiat Oncol Biol Phys. 1995;31:1341–6.

    Article  PubMed  CAS  Google Scholar 

  4. Van Nostrand D. Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis. 2011;17:154–61.

    Article  PubMed  Google Scholar 

  5. Nieuw Amerongen A, Veerman EC. Saliva—the defender of the oral cavity. Oral Dis. 2002;8:12–22.

    Article  Google Scholar 

  6. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, et al. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–6.

    Article  PubMed  Google Scholar 

  7. Ho KF, Farnell DJJ, Routledge JA, et al. Developing a CTCAEs patient questionnaire for late toxicity after head and neck radiotherapy. Eur J Cancer. 2009;45:1992–8.

    Article  PubMed  CAS  Google Scholar 

  8. Ship JA, Fox PC, Baum BJ. How much saliva is enough? J Am Dent Assoc. 1991;122:63–9.

    PubMed  CAS  Google Scholar 

  9. Dawes C. Physiological factors affecting salivary flow rate, oral sugar clearance, and the sensation of dry mouth in man. J Dent Res. 1987;66:648–53.

    PubMed  Google Scholar 

  10. Wolff MS, Kleinberg I. The effect of ammonium glycopyrrolate (Robinul®)-induced xerostomia on oral mucosal wetness and flow of gingival crevicular fluid in humans. Arch Oral Biol. 1999;44:97–102.

    Article  PubMed  CAS  Google Scholar 

  11. Dawes C, Odlum O. Salivary status in a treated head and neck cancer patient group. J Can Dent Assoc. 2004;70:397–400.

    PubMed  Google Scholar 

  12. Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  13. Zhou L, Yuan R, Lanata S. Molecular mechanisms of irradiation-induced apoptosis. Front Biosci. 2003;8:d9–19.

    Article  PubMed  CAS  Google Scholar 

  14. Verheij M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev. 2008;27:471–80.

    Article  PubMed  Google Scholar 

  15. Vissink A, ‘s-Gravenmade EJ, Ligeon EE, et al. A functional and chemical study of radiation effects on rat parotid and submandibular/sublingual glands. Radiat Res. 1990;124:259–65.

    Google Scholar 

  16. O’Connell AC. Natural history and prevention of radiation injury. Adv Dent Res. 2000;14:57–61.

    Article  PubMed  Google Scholar 

  17. Kashima H, Kirkham W, Andrews J. Postirradiation sialadenitis. Am J Roentgenol. 1965;94:271–91.

    Google Scholar 

  18. Wolf RO, Taylor LL, Brace K. Effects of irradiation of the parotid gland and pancreas on human isoamylases. Am J Clin Pathol. 1970;54:214–8.

    PubMed  CAS  Google Scholar 

  19. Anderson MW, Izutsu KT, Rice JC. Parotid gland pathophysiology after mixed gamma and neutron irradiation of cancer patients. Oral Surg Oral Med Oral Pathol. 1981;52:495–500.

    Article  PubMed  CAS  Google Scholar 

  20. Baum BJ, Bodner L, Fox PC, et al. Therapy-induced dysfunction of salivary glands: implications for oral health. Spec Care Dentist. 1985;5:274–2747.

    Article  PubMed  CAS  Google Scholar 

  21. Maier H, Bihl H. Effect of radioactive iodine therapy on parotid gland function. Acta Otolaryngol. 1987;103:318–24.

    Google Scholar 

  22. Epstein JB, Chin EA, Jacobson JJ, et al. The relationships among fluoride, cariogenic oral flora, and salivary flow rate during radiation therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86:286–92.

    Article  PubMed  CAS  Google Scholar 

  23. Moller P, Perrier M, Ozsahin M, et al. A prospective study of salivary gland function in patients undergoing radiotherapy for squamous cell carcinoma of the oropharynx. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:173–89.

    Article  PubMed  Google Scholar 

  24. Braam PM, Roesink JM, Raaijmakers CP, et al. Quality of life and salivary output in patients with head-and-neck cancer five years after radiotherapy. Radiat Oncol. 2007;2(3):1–8.

    Google Scholar 

  25. Chambers MS, Tomsett KL, Artopoulou II, et al. Salivary flow rates measured during radiation therapy in head and neck cancer patients: a pilot study assessing salivary sediment formation. J Prosthet Dent. 2008;100:142–6.

    Article  PubMed  Google Scholar 

  26. Stephens LC, Ang KK, Schultheiss TE, et al. Target cell and mode of radiation injury in rhesus salivary glands. Radiother Oncol. 1986;7:165–74.

    Article  PubMed  CAS  Google Scholar 

  27. Vissink A, Kalicharan D, S-Gravenmade EJ, et al. Acute irradiation effects on morphology and function of rat submandibular glands. J Oral Pathol Med. 1991;20:449–56.

    Article  PubMed  CAS  Google Scholar 

  28. Nagler RM. Effects of head and neck radiotherapy on major salivary glands—animal studies and human implications. In Vivo. 2003;17:369–75.

    PubMed  CAS  Google Scholar 

  29. Pena LA, Fuks Z, Kolesnick RN. Radiation- induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000;60:321–7.

    PubMed  CAS  Google Scholar 

  30. Fuks Z, Alfieri A, Haimovitz-Friedman A, et al. Intravenous basic fibroblast growth factor protects the lung but not mediastinal organs against radiation-induced apoptosis in vivo. Cancer J Sci Am. 1995;1:62–72.

    PubMed  CAS  Google Scholar 

  31. Paris F, Fuke Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293:293–7.

    Article  PubMed  CAS  Google Scholar 

  32. Cotrim AP, Sowers A, Mitchell JB, Baum BJ. Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther. 2007;15:2101–6.

    Article  PubMed  CAS  Google Scholar 

  33. Xu J, Yan X, Gao R, Mao L, Cotrim AP, Zheng C, et al. Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig. Int J Radiat Oncol Biol Phys. 2010;78:897–903.

    Article  PubMed  CAS  Google Scholar 

  34. Franzen L, Forsgren S, Gustafsson H, et al. Irradiation-induced effects on the innervation of rat salivary glands: changes in enkephalin- and bombesin-like immunoreactivity in ganglionic cells and intraglandular nerves. Cell Tissue Res. 1993;271:529–36.

    Article  PubMed  CAS  Google Scholar 

  35. Aalto Y, Forsgren S, Kjorell U, et al. Time- and dose-related changes in the expression of substance P in salivary glands in response to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1995;30:297–305.

    Article  Google Scholar 

  36. Knox SM, Lombaert IMA, Reed X, et al. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science. 2010;329:1645–7.

    Article  PubMed  CAS  Google Scholar 

  37. Zeilstra LJW, Vissink A, Konings AWT, Coppes RP. Radiation induced cell loss in rat submandibular gland and its relation to gland function. Int J Radiat Biol. 2000;76:419–29.

    Article  PubMed  CAS  Google Scholar 

  38. Lombaert IM, Brunsting JF, Wierenga PK, et al. Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool. Stem Cells. 2008;26:2595–601.

    Article  PubMed  CAS  Google Scholar 

  39. Zheng C, Cotrim AP, Rowzee A, Swaim W, Sowers A, Mitchell JB, et al. Prevention of radiation-induced salivary hypofunction following hKGF gene delivery to murine submandibular glands. Clin Cancer Res. 2011;17:2842–51.

    Article  PubMed  CAS  Google Scholar 

  40. Leung SW, Lee TF, Chien CY, et al. Health-related Quality of life in 640 head and neck cancer survivors after radiotherapy using EORTC QLQ-C30 and QLQ-H&N35 questionnaires. BMC Cancer. 2011;11:128.

    Article  Google Scholar 

  41. Genden EM, Varvaris MA. Head and neck cancer: an evidence-based team approach. New York: Thieme Medical Publishers; 2008.

    Google Scholar 

  42. Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12:127–36.

    Article  PubMed  Google Scholar 

  43. Stachiw N, Hornig J, Gillespie MB. Minimally-invasive submandibular transfer (MIST) for prevention of radiation-induced xerostomia. Laryngoscope. 2010;20 Suppl 4:S184.

    Article  Google Scholar 

  44. Atkinson JC, Grisius M, Massey W. Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am. 2005;49:309–26.

    Article  PubMed  Google Scholar 

  45. Citrin D, Cotrim AP, Hyodo F, et al. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15:360–71.

    Article  PubMed  Google Scholar 

  46. Brizel DM, Overgaard J. Does amifostine have a role in chemoradiation treatment? Lancet Oncol. 2003;4:378–81.

    Article  PubMed  CAS  Google Scholar 

  47. Anné PR, Machtay M, Rosenthal DI, et al. A Phase II of subcutaneous amifostine and radiation therapy in patients with head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2007;67:445–52.

    Article  PubMed  Google Scholar 

  48. Ma C, Xie J, Chen Q, et al. Amifostine for salivary glands in high-dose radioactive iodine treated differentiated thyroid cancer. Cochrane Database Syst Rev. 2009;7:4.

    Google Scholar 

  49. Mitchell JB, DeGraff W, Kaufman D, et al. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol. Arch Biochem Biophys. 1991;289:62–71.

    Article  PubMed  CAS  Google Scholar 

  50. Vitolo JM, Cotrim AP, Sowers AL, et al. The stable nitroxide tempol facilitates salivary gland protection during head and neck irradiation in a mouse model. Clin Cancer Res. 2004;10:1807–12.

    Article  PubMed  CAS  Google Scholar 

  51. Cotrim AP, Hyodo F, Matsumoto K, et al. Differential radiation protection of salivary glands versus tumor by tempol with accompanying tissue assessment of tempol by magnetic resonance imaging. Clin Cancer Res. 2007;13:4928–33.

    Article  PubMed  CAS  Google Scholar 

  52. Goffman T, Cuscela D, Glass J, et al. Topical application of nitroxide protects radiation-induced alopecia in guinea pigs. Int J Radiat Oncol Biol Phys. 1992;22(4):803–6.

    Article  PubMed  CAS  Google Scholar 

  53. Metz JM, Smith D, Mick R, et al. A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res. 2004;10:6411–7.

    Article  PubMed  CAS  Google Scholar 

  54. Lombaert IMA, Brunsting JF, Wierenga PK, et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3(e2063):1–8.

    Google Scholar 

  55. Sreebny LM, Vissink A. Dry mouth—the malevolent symptom: a clinical guide. Ames: Wiley-Blackwell; 2010.

    Google Scholar 

  56. Strietzel FP, Lafaurie GI, Bautista GR, et al. Efficacy and safety of an intraoral electrostimulation device for xerostomia relief. Arthritis Rheum. 2011;63:180–90.

    Article  PubMed  Google Scholar 

  57. Mastrangeli A, O’Connell B, Aladib W, et al. Direct in vivo adenovirus-mediated gene transfer to salivary glands. Am J Physiol. 1994;266:G1146–55.

    PubMed  CAS  Google Scholar 

  58. Delporte C, O’Connell BC, He X, et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A. 1997;1997(94):3268–73.

    Article  Google Scholar 

  59. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991;88:11110–4.

    Article  PubMed  CAS  Google Scholar 

  60. Shan Z, Li J, Zheng C, et al. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther. 2005;11:444–51.

    Article  PubMed  CAS  Google Scholar 

  61. Zheng C, Goldsmith CM, Mineshiba F, et al. Toxicity and biodistribution of a first-generation recombinant adenoviral vector, encoding aquaporin-1, after retroductal delivery to a single rat submandibular gland. Hum Gene Ther. 2006;17:1122–33.

    Article  PubMed  CAS  Google Scholar 

  62. Baum BJ, Zheng C, Alevizos I, et al. Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncol. 2010;46:4–8.

    Article  PubMed  CAS  Google Scholar 

  63. Lombaert IMA, Wierenga PK, Kok T, et al. Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res. 2006;12:1804–12.

    Article  PubMed  CAS  Google Scholar 

  64. Sumita Y, Liu Y, Khalili S, et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43:80–7.

    Article  PubMed  CAS  Google Scholar 

  65. Yaniv A, Neumann Y, David R, et al. Establishment of immortal multipotent rat salivary progenitor cell line toward salivary gland regeneration. Tissue Eng. 2011;17C:69–78.

    Google Scholar 

  66. Burt RK, Loh Y, Pearce W, et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA. 2008;299:925–36.

    Article  PubMed  CAS  Google Scholar 

  67. Tran SD, Redman RS, Barrett AJ, et al. Microchimerism in salivary glands after blood- and marrow-derived stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:429–33.

    Article  PubMed  Google Scholar 

  68. Feng J, van der Zwaag M, Stokman MA, et al. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71.

    Article  PubMed  CAS  Google Scholar 

  69. Tatsuishi Y, Hirota M, Kishi T, et al. Human salivary gland stem/progenitor cells remain dormant even after irradiation. Int J Mol Med. 2009;24:361–6.

    PubMed  CAS  Google Scholar 

  70. Vissink A, Mitchell KB, Baum BJ, et al. Clinical management of salivary gland hypofunction and xerostomia in head and neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys. 2010;78:983–91.

    Article  PubMed  Google Scholar 

  71. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  PubMed  CAS  Google Scholar 

  72. Arany PR, Mooney DJ. At the edge of translation—materials to program cells for directed differentiation. Oral Dis. 2011;17:241–51.

    Article  PubMed  CAS  Google Scholar 

  73. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  74. Wang S, Cukierman E, Swaim WD, et al. Extracellular matrix protein-induced changes in human salivary epithelial cell organization and proliferation on a model biological substratum. Biomaterials. 1999;20:1043–9.

    Article  PubMed  CAS  Google Scholar 

  75. Aframian DJ, Cukierman E, Nikolovski MS, et al. The growth and morphological behavior of salivary epithelial cells on matrix protein-coated biodegradable substrata. Tissue Eng. 2000;9:209–15.

    Article  Google Scholar 

  76. Chen MH, Hsu YH, Lin CP, et al. Interactions of acinar cells on biomaterials with various surface properties. J Biomed Mater Res A. 2005;74:254–62.

    PubMed  Google Scholar 

  77. Joraku A, Sullivan CA, Yoo JJ, et al. Tissue engineering of functional salivary gland tissue. Laryngoscope. 2005;115:244–8.

    Article  PubMed  Google Scholar 

  78. Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. Tissue Eng. 2008;14:187–98.

    Article  Google Scholar 

  79. Baum BJ, Wang S, Cukierman E, et al. Re-engineering the functions of a terminally differentiated epithelial cell in vivo. Ann N Y Acad Sci. 1999;875:294–300.

    Article  PubMed  CAS  Google Scholar 

  80. Tran SD, Sugito T, Dipasquale G, et al. Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland. Tissue Eng. 2006;12:2939–48.

    Article  PubMed  CAS  Google Scholar 

  81. Yuen WW, Du NR, Chan CH, et al. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc Natl Acad Sci U S A. 2010;107:17933–8.

    Article  PubMed  CAS  Google Scholar 

  82. Lu P, Werb Z. Patterning mechanisms of branched organs. Science. 2008;322:1506–8.

    Article  PubMed  CAS  Google Scholar 

  83. Onodera T, Sakai T, Hsu JC, et al. Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science. 2010;329:562–5.

    Article  PubMed  CAS  Google Scholar 

  84. Kaplan MD, Baum BJ. The functions of saliva. Dysphagia. 1993;8:225–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The Division of Intramural Research of the National Institute of Dental and Craniofacial Research has supported all of the authors’ research. We also thank Drs. John A. Chiorini and Deborah E. Citrin for their helpful comments on an earlier version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Baum D.M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cotrim, A.P., Zheng, C., Baum, B.J. (2013). Xerostomia. In: Sonis, S., Keefe, D. (eds) Pathobiology of Cancer Regimen-Related Toxicities. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5438-0_13

Download citation

Publish with us

Policies and ethics