Skip to main content

Mechanisms of Cancer Related Fatigue

  • Chapter
  • First Online:
Pathobiology of Cancer Regimen-Related Toxicities

Abstract

One of the most prevalent and distressing symptoms associated with cancer and cancer therapy is fatigue. Fatigue significantly impairs patients’ quality of life and in some cases may last years following treatment. Despite a clear need, there is currently no pharmaceutical therapy approved to treat fatigue. Development of treatments for fatigue would benefit from an understanding of the mechanisms driving fatigue. While the mechanism of fatigue is unknown, recent research has led to several plausible hypotheses. This chapter reviews the hypothesized mechanisms of fatigue and the strength of evidence for each. There are multiple factors that are likely to influence fatigue including tumor burden, treatment, and psychological reactions associated with cancer diagnosis. Each of these influences has several physiological effects which may act independently or may converge on related pathways to produce fatigue. Anemia, cytokine dysregulation, dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, serotonin dysregulation, adenosine triphosphate depletion, and impaired neurogenesis are all possible outcomes of cancer and cancer treatment which may impact fatigue. Of these, the interplay between cytokines and the HPA axis are particularly intriguing. The influence of cytokines on behavior has been extensively studied in animal models which have demonstrated that an increase in proinflammatory cytokines leads to a suite of symptoms called “sickness behaviors” which are similar to human symptoms of fatigue (i.e., listlessness, lethargy, and decreased consumatory behavior). Cytokines are partially regulated by the HPA axis. The HPA axis is part of the neuroendocrine system which controls reactions to stressors and regulates homeostasis of body processes including the immune system, mood, and energy storage. Given the large number of stressors related to a diagnosis of cancer, patients may experience dysregulation of the HPA axis due to chronic stress. Therefore, increases in cytokines, combined with deregulation of cytokines from the HPA axis, and chronic activation of the HPA axis may cause fatigue. Clinically, this hypothesis is supported by evidence of elevated cytokines and abnormal levels of the stress hormone cortisol in cancer patients. However, further evidence is needed to conclusively determine the mechanisms of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campos MP, et al. Cancer-related fatigue: a practical review. Ann Oncol. 2011;22(6): 1273–9.

    Article  PubMed  CAS  Google Scholar 

  2. Curt GA. The impact of fatigue on patients with cancer: overview of FATIGUE 1 and 2. Oncologist. 2000;5 Suppl 2:9–12.

    Article  Google Scholar 

  3. Patarca-Montero R. Handbook of cancer-related fatigue. Haworth research series on malaise, fatigue, and debilitation. New York: Haworth Medical Press; 2004, xi. p. 483.

    Google Scholar 

  4. Meyerowitz BE, Sparks FC, Spears IK. Adjuvant chemotherapy for breast carcinoma: ­psychosocial implications. Cancer. 1979;43(5):1613–8.

    Article  PubMed  CAS  Google Scholar 

  5. Richardson A, Ream EK. Self-care behaviours initiated by chemotherapy patients in response to fatigue. Int J Nurs Stud. 1997;34(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  6. Ashbury FD, et al. A Canadian survey of cancer patients’ experiences: are their needs being met? J Pain Symptom Manage. 1998;16(5):298–306.

    Article  PubMed  CAS  Google Scholar 

  7. Bernhard J, Ganz PA. Psychosocial issues in lung cancer patients (Part 2). Chest. 1991;99(2):480–5.

    Article  PubMed  CAS  Google Scholar 

  8. Hurny C, et al. “Fatigue and malaise” as a quality-of-life indicator in small-cell lung cancer patients. The Swiss Group for Clinical Cancer Research (SAKK). Support Care Cancer. 1993;1(6):316–20.

    Article  PubMed  CAS  Google Scholar 

  9. Schwartz AL, et al. Fatigue patterns observed in patients receiving chemotherapy and radiotherapy. Cancer Invest. 2000;18(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  10. Dhruva A, et al. Trajectories of fatigue in patients with breast cancer before, during, and after radiation therapy. Cancer Nurs. 2010;33(3):201–12.

    Article  PubMed  Google Scholar 

  11. Miaskowski C, et al. Trajectories of fatigue in men with prostate cancer before, during, and after radiation therapy. J Pain Symptom Manage. 2008;35(6):632–43.

    Article  PubMed  Google Scholar 

  12. Bower JE, et al. Fatigue in long-term breast carcinoma survivors: a longitudinal investigation. Cancer. 2006;106(4):751–8.

    Article  PubMed  Google Scholar 

  13. Redmond K. Advances in supportive care. Eur J Cancer Care (Engl). 1996;5(2 Suppl):1–7.

    Article  CAS  Google Scholar 

  14. Jacobsen PB. Assessment of fatigue in cancer patients. J Natl Cancer Inst Monogr. 2004;32:93–7.

    Article  PubMed  Google Scholar 

  15. Cella D, et al. Progress toward guidelines for the management of fatigue. Oncology (Williston Park). 1998;12(11A):369–77.

    CAS  Google Scholar 

  16. Cella D, et al. Cancer-related fatigue: prevalence of proposed diagnostic criteria in a United States sample of cancer survivors. J Clin Oncol. 2001;19(14):3385–91.

    PubMed  CAS  Google Scholar 

  17. Sadler IJ, et al. Preliminary evaluation of a clinical syndrome approach to assessing cancer-related fatigue. J Pain Symptom Manage. 2002;23(5):406–16.

    Article  PubMed  Google Scholar 

  18. Minton O, Stone P. A systematic review of the scales used for the measurement of cancer-related fatigue (CRF). Ann Oncol. 2009;20(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  19. Glaus A. Fatigue in patients with cancer. Analysis and assessment. Recent Results Cancer Res. 1998;145:I–XI, 1–172.

    Google Scholar 

  20. Wood LJ, et al. The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol Res Nurs. 2006;8(2):157–69.

    Article  PubMed  CAS  Google Scholar 

  21. Servaes P, Verhagen S, Bleijenberg G. Determinants of chronic fatigue in disease-free breast cancer patients: a cross-sectional study. Ann Oncol. 2002;13(4):589–98.

    Article  PubMed  CAS  Google Scholar 

  22. Rubin GJ, Hardy R, Hotopf M. A systematic review and meta-analysis of the incidence and severity of postoperative fatigue. J Psychosom Res. 2004;57(3):317–26.

    Article  PubMed  Google Scholar 

  23. Schroeder D, Hill GL. Postoperative fatigue: a prospective physiological study of patients undergoing major abdominal surgery. Aust N Z J Surg. 1991;61(10):774–9.

    PubMed  CAS  Google Scholar 

  24. Rubin GJ, Cleare A, Hotopf M. Psychological factors in postoperative fatigue. Psychosom Med. 2004;66(6):959–64.

    Article  PubMed  Google Scholar 

  25. Christensen T, Hougard F, Kehlet H. Influence of pre- and intra-operative factors on the occurrence of postoperative fatigue. Br J Surg. 1985;72(1):63–5.

    Article  PubMed  CAS  Google Scholar 

  26. Berger AM. Patterns of fatigue and activity and rest during adjuvant breast cancer ­chemotherapy. Oncol Nurs Forum. 1998;25(1):51–62.

    PubMed  CAS  Google Scholar 

  27. Silberfarb PM, et al. Psychological response of patients receiving two drug regimens for lung carcinoma. Am J Psychiatry. 1983;140(1):110–1.

    PubMed  CAS  Google Scholar 

  28. Genre D, et al. Quality of life of breast cancer patients receiving high-dose-intensity ­chemotherapy: impact of length of cycles. Support Care Cancer. 2002;10(3):222–30.

    Article  PubMed  CAS  Google Scholar 

  29. Chan CW, Molassiotis A. The impact of fatigue on Chinese cancer patients in Hong Kong. Support Care Cancer. 2001;9(1):18–24.

    Article  PubMed  CAS  Google Scholar 

  30. Berglund G, et al. Late effects of adjuvant chemotherapy and postoperative radiotherapy on quality of life among breast cancer patients. Eur J Cancer. 1991;27(9):1075–81.

    Article  PubMed  CAS  Google Scholar 

  31. Jereczek-Fossa BA, Marsiglia HR, Orecchia R. Radiotherapy-related fatigue. Crit Rev Oncol Hematol. 2002;41(3):317–25.

    Article  PubMed  Google Scholar 

  32. Higgins SC, et al. Effect of pretreatment distress on daily fatigue after chemotherapy for breast cancer. J Oncol Pract. 2008;4(2):59–63.

    Article  PubMed  Google Scholar 

  33. Broeckel JA, et al. Characteristics and correlates of fatigue after adjuvant chemotherapy for breast cancer. J Clin Oncol. 1998;16(5):1689–96.

    PubMed  CAS  Google Scholar 

  34. Burrows M, Dibble SL, Miaskowski C. Differences in outcomes among patients experiencing different types of cancer-related pain. Oncol Nurs Forum. 1998;25(4):735–41.

    PubMed  CAS  Google Scholar 

  35. Wang XS, et al. Clinical factors associated with cancer-related fatigue in patients being treated for leukemia and non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(5):1319–28.

    Article  PubMed  Google Scholar 

  36. Jacobsen PB, Stein K. Is fatigue a long-term side effect of breast cancer treatment? Cancer Control. 1999;6(3):256–63.

    PubMed  Google Scholar 

  37. Jacobsen PB, Donovan KA, Weitzner MA. Distinguishing fatigue and depression in patients with cancer. Semin Clin Neuropsychiatry. 2003;8(4):229–40.

    PubMed  Google Scholar 

  38. Bower JE, et al. Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J Clin Oncol. 2011;29(26):3517–22.

    Article  PubMed  Google Scholar 

  39. Lee BN, et al. A cytokine-based neuroimmunologic mechanism of cancer-related symptoms. Neuroimmunomodulation. 2004;11(5):279–92.

    Article  PubMed  CAS  Google Scholar 

  40. Miller AH, et al. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol. 2008;26(6):971–82.

    Article  PubMed  CAS  Google Scholar 

  41. Goldstein D, et al. Fatigue states after cancer treatment occur both in association with, and independent of, mood disorder: a longitudinal study. BMC Cancer. 2006;6:240.

    Article  PubMed  Google Scholar 

  42. Coiffier B. The impact and management of anaemia in haematological malignancies. Med Oncol. 2000;17 Suppl 1:S2–10.

    PubMed  Google Scholar 

  43. Groopman JE, Itri LM. Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst. 1999;91(19):1616–34.

    Article  PubMed  CAS  Google Scholar 

  44. Monti M, et al. Use of red blood cell transfusions in terminally ill cancer patients admitted to a palliative care unit. J Pain Symptom Manage. 1996;12(1):18–22.

    Article  PubMed  CAS  Google Scholar 

  45. Cella D. The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale: a new tool for the assessment of outcomes in cancer anemia and fatigue. Semin Hematol. 1997;34 (3 Suppl 2):13–9.

    PubMed  CAS  Google Scholar 

  46. Demetri GD, et al. Quality-of-life benefit in chemotherapy patients treated with epoetin alfa is independent of disease response or tumor type: results from a prospective community oncology study. Procrit Study Group. J Clin Oncol. 1998;16(10):3412–25.

    PubMed  CAS  Google Scholar 

  47. Yellen SB, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage. 1997;13(2):63–74.

    Article  PubMed  CAS  Google Scholar 

  48. Agnihotri P, et al. Chronic anemia and fatigue in elderly patients: results of a randomized, double-blind, placebo-controlled, crossover exploratory study with epoetin alfa. J Am Geriatr Soc. 2007;55(10):1557–65.

    Article  PubMed  Google Scholar 

  49. Ryan JL, et al. Mechanisms of cancer-related fatigue. Oncologist. 2007;12 Suppl 1:22–34.

    Article  PubMed  CAS  Google Scholar 

  50. Charu V, et al. Efficacy and safety of every-2-week darbepoetin alfa in patients with anemia of cancer: a controlled, randomized, open-label phase II trial. Oncologist. 2007;12(6):727–37.

    Article  PubMed  CAS  Google Scholar 

  51. Holzner B, et al. The impact of hemoglobin levels on fatigue and quality of life in cancer patients. Ann Oncol. 2002;13(6):965–73.

    Article  PubMed  CAS  Google Scholar 

  52. Schubert C, et al. The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun. 2007;21(4):413–27.

    Article  PubMed  CAS  Google Scholar 

  53. Dantzer R. Cytokine, sickness behavior, and depression. Neurol Clin. 2006;24(3):441–60.

    Article  PubMed  Google Scholar 

  54. Ek M, et al. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci. 1998;18(22):9471–9.

    PubMed  CAS  Google Scholar 

  55. Bonfiglio JJ, et al. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved. Neuroendocrinology. 2011;94(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  56. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.

    PubMed  Google Scholar 

  57. Bower JE, Ganz PA, Aziz N. Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom Med. 2005;67(2):277–80.

    Article  PubMed  Google Scholar 

  58. Petrovsky N, McNair P, Harrison LC. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine. 1998;10(4):307–12.

    Article  PubMed  CAS  Google Scholar 

  59. Vgontzas AN, Chrousos GP. Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol Metab Clin North Am. 2002;31(1):15–36.

    Article  PubMed  CAS  Google Scholar 

  60. Del Priore G, et al. Adrenal function following high-dose steroids in ovarian cancer patients. Gynecol Oncol. 1995;59(1):102–4.

    Article  PubMed  CAS  Google Scholar 

  61. Morrow GR, et al. Reduction in serum cortisol after platinum based chemotherapy for cancer: a role for the HPA axis in treatment-related nausea? Psychophysiology. 2002;39(4):491–5.

    Article  PubMed  Google Scholar 

  62. Schmiegelow M, et al. Assessment of the hypothalamo-pituitary-adrenal axis in patients treated with radiotherapy and chemotherapy for childhood brain tumor. J Clin Endocrinol Metab. 2003;88(7):3149–54.

    Article  PubMed  CAS  Google Scholar 

  63. Barsevick A, et al. I’m so tired: biological and genetic mechanisms of cancer-related fatigue. Qual Life Res. 2010;19(10):1419–27.

    Article  PubMed  Google Scholar 

  64. Wang XS. Pathophysiology of cancer-related fatigue. Clin J Oncol Nurs. 2008;12(5 Suppl): 11–20.

    Article  PubMed  Google Scholar 

  65. Bailey SP, Davis JM, Ahlborn EN. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol. 1993;74(6):3006–12.

    PubMed  CAS  Google Scholar 

  66. Blomstrand E, et al. Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol Scand. 1989;136(3):473–81.

    Article  PubMed  CAS  Google Scholar 

  67. Wichers M, Maes M. The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. Int J Neuropsychopharmacol. 2002;5(4):375–88.

    Article  PubMed  CAS  Google Scholar 

  68. Roscoe JA, et al. Effect of paroxetine hydrochloride (Paxil) on fatigue and depression in breast cancer patients receiving chemotherapy. Breast Cancer Res Treat. 2005;89(3):243–9.

    Article  PubMed  CAS  Google Scholar 

  69. Morrow GR, et al. Differential effects of paroxetine on fatigue and depression: a randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program. J Clin Oncol. 2003;21(24):4635–41.

    Article  PubMed  CAS  Google Scholar 

  70. Dimeo F, et al. Correlation between physical performance and fatigue in cancer patients. Ann Oncol. 1997;8(12):1251–5.

    Article  PubMed  CAS  Google Scholar 

  71. Akechi T, et al. Fatigue and its associated factors in ambulatory cancer patients: a preliminary study. J Pain Symptom Manage. 1999;17(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  72. Brown DJ, McMillan DC, Milroy R. The correlation between fatigue, physical function, the systemic inflammatory response, and psychological distress in patients with advanced lung cancer. Cancer. 2005;103(2):377–82.

    Article  PubMed  Google Scholar 

  73. Lee JQ, et al. Differences in physical performance between men and women with and without lymphoma. Arch Phys Med Rehabil. 2003;84(12):1747–52.

    Article  PubMed  Google Scholar 

  74. Collins P, et al. Muscle UCP-3 mRNA levels are elevated in weight loss associated with ­gastrointestinal adenocarcinoma in humans. Br J Cancer. 2002;86(3):372–5.

    Article  PubMed  CAS  Google Scholar 

  75. Forsyth LM, et al. Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol. 1999;82(2):185–91.

    Article  PubMed  CAS  Google Scholar 

  76. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev. 2005;85(2):523–69.

    Article  PubMed  CAS  Google Scholar 

  77. Clark PJ, et al. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience. 2008;155(4):1048–58.

    Article  PubMed  CAS  Google Scholar 

  78. Mustafa S, et al. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci. 2008;28(2):323–30.

    Article  PubMed  Google Scholar 

  79. Seigers R, et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res. 2008;186(2):168–75.

    Article  PubMed  CAS  Google Scholar 

  80. Bremner JD, et al. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157(1):115–8.

    PubMed  CAS  Google Scholar 

  81. Colla M, et al. Hippocampal volume reduction and HPA-system activity in major depression. J Psychiatr Res. 2007;41(7):553–60.

    Article  PubMed  Google Scholar 

  82. ElBeltagy M, et al. Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav Brain Res. 2010;208(1):112–7.

    Article  PubMed  CAS  Google Scholar 

  83. Konat GW, et al. Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab Brain Dis. 2008;23(3):325–33.

    Article  PubMed  CAS  Google Scholar 

  84. Macleod JE, et al. Cancer chemotherapy impairs contextual but not cue-specific fear memory. Behav Brain Res. 2007;181(1):168–72.

    Article  PubMed  CAS  Google Scholar 

  85. Winocur G, et al. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav. 2006;85(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  86. Cramp F, Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2008(2):CD006145.

    Google Scholar 

  87. Galvao DA, Newton RU. Review of exercise intervention studies in cancer patients. J Clin Oncol. 2005;23(4):899–909.

    Article  PubMed  Google Scholar 

  88. Kangas M, Bovbjerg DH, Montgomery GH. Cancer-related fatigue: a systematic and meta-analytic review of non-pharmacological therapies for cancer patients. Psychol Bull. 2008;134(5):700–41.

    Article  PubMed  Google Scholar 

  89. Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101(4):1237–42.

    Article  PubMed  Google Scholar 

  90. Hanna A, et al. A phase II study of methylphenidate for the treatment of fatigue. Support Care Cancer. 2006;14(3):210–5.

    Article  PubMed  Google Scholar 

  91. Lower EE, et al. Efficacy of dexmethylphenidate for the treatment of fatigue after cancer chemotherapy: a randomized clinical trial. J Pain Symptom Manage. 2009;38(5): 650–62.

    Article  PubMed  CAS  Google Scholar 

  92. Roth AJ, et al. Methylphenidate for fatigue in ambulatory men with prostate cancer. Cancer. 2010;116(21):5102–10.

    Article  PubMed  CAS  Google Scholar 

  93. Butler Jr JM, et al. A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy. Int J Radiat Oncol Biol Phys. 2007;69(5):1496–501.

    Article  PubMed  CAS  Google Scholar 

  94. Mar Fan HG, et al. A randomised, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer. 2008;16(6):577–83.

    Article  PubMed  Google Scholar 

  95. Bruera E, et al. Patient-controlled methylphenidate for cancer fatigue: a double-blind, randomized, placebo-controlled trial. J Clin Oncol. 2006;24(13):2073–8.

    Article  PubMed  CAS  Google Scholar 

  96. Moraska AR, et al. Phase III, randomized, double-blind, placebo-controlled study of long-acting methylphenidate for cancer-related fatigue: North Central Cancer Treatment Group NCCTG-N05C7 trial. J Clin Oncol. 2010;28(23):3673–9.

    Article  PubMed  CAS  Google Scholar 

  97. Minton O, et al. Drug therapy for the management of cancer-related fatigue. Cochrane Database Syst Rev. 2010(7):CD006704.

    Google Scholar 

  98. Engber TM, et al. Differential patterns of regional c-Fos induction in the rat brain by ­amphetamine and the novel wakefulness-promoting agent modafinil. Neurosci Lett. 1998; 241(2–3): 95–8.

    Article  PubMed  CAS  Google Scholar 

  99. Blackhall L, et al. A pilot study evaluating the safety and efficacy of modafinal for cancer-related fatigue. J Palliat Med. 2009;12(5):433–9.

    Article  PubMed  Google Scholar 

  100. Spathis A, et al. Modafinil for the treatment of fatigue in lung cancer: a pilot study. Palliat Med. 2009;23(4):325–31.

    Article  PubMed  CAS  Google Scholar 

  101. Jean-Pierre P, et al. A phase 3 randomized, placebo-controlled, double-blind, clinical trial of the effect of modafinil on cancer-related fatigue among 631 patients receiving chemotherapy: a University of Rochester Cancer Center Community Clinical Oncology Program Research base study. Cancer. 2010;116(14):3513–20.

    Article  PubMed  CAS  Google Scholar 

  102. Gielissen MF, et al. Effects of cognitive behavior therapy in severely fatigued disease-free cancer patients compared with patients waiting for cognitive behavior therapy: a randomized controlled trial. J Clin Oncol. 2006;24(30):4882–7.

    Article  PubMed  Google Scholar 

  103. Dimeo F, et al. Effects of an endurance and resistance exercise program on persistent cancer-related fatigue after treatment. Ann Oncol. 2008;19(8):1495–9.

    Article  PubMed  CAS  Google Scholar 

  104. Dimeo F, et al. Effects of aerobic exercise on the physical performance and incidence of treatment-related complications after high-dose chemotherapy. Blood. 1997;90(9):3390–4.

    PubMed  CAS  Google Scholar 

  105. Dimeo FC, et al. Aerobic exercise in the rehabilitation of cancer patients after high dose chemotherapy and autologous peripheral stem cell transplantation. Cancer. 1997;79(9): 1717–22.

    Article  PubMed  CAS  Google Scholar 

  106. Schneider CM, et al. Effects of supervised exercise training on cardiopulmonary function and fatigue in breast cancer survivors during and after treatment. Cancer. 2007;110(4):918–25.

    Article  PubMed  Google Scholar 

  107. Swenson KK, Nissen MJ, Henly SJ. Physical activity in women receiving chemotherapy for breast cancer: adherence to a walking intervention. Oncol Nurs Forum. 2010;37(3):321–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Zombeck Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zombeck, J.A. (2013). Mechanisms of Cancer Related Fatigue. In: Sonis, S., Keefe, D. (eds) Pathobiology of Cancer Regimen-Related Toxicities. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5438-0_12

Download citation

Publish with us

Policies and ethics