Skip to main content

Scan Statistic and Multiple Scan Statistic

  • Chapter
Scan Statistics and Applications

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

The scan statistic and multiple scan statistic can be used in many areas of science. In this chapter, a survey of results on scan statistic for the continuous conditional case is presented. We discuss the exact distribution and asymptotic results, and study various approximations and bounds. Moreover, a general expression for the kth moment of the multiple scan statistic and a computational approach for its distribution are covered. Numerical results comparing various approximations in the literature are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barton, D. E. and David, F. N. (1956). Some notes on ordered random intervalsJournal of the Royal Statistical Society Series B 1879–94.

    MathSciNet  MATH  Google Scholar 

  2. Barton, D. E. and Mallows, C. L. (1965). Some aspects of the random sequenceAnnals of Mathematical Statistics 36236–260.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, M. and Eagleson, G. K. (1983). A Poisson limit theorem for incomplete symmetric statisticsJournal of Applied Probability 2047–60.

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, M. and Eagleson, G. K. (1985). A useful upper bound for the tail probabilities of the scan statistic when the sample size is largeJournal of the American Statistical Association 80886–889.

    Article  MathSciNet  Google Scholar 

  5. Cressie, N. (1977). On some properties of the scan statistic on the circle and the lineAnnals of Probability 14272–283.

    MathSciNet  MATH  Google Scholar 

  6. Cressie, N. (1980). The asymptotic distribution of the scan statistic under uniformityAnnals of Probability 8828–840.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cressie, N. (1984). Using the scan statistic to test uniformityColloquia Mathematica Societatis Járos Bolyai 45pp. 87–100, Debrecen, Hungary.

    MathSciNet  Google Scholar 

  8. Darling, D. A. (1953). On a class of problems related to the random division of an intervalAnnals of Mathematical Statistics 24239–253.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dembo, A. and Karlin, S. (1992). Poisson approximation for r-scan processesAnnals of Applied Probability 2329–357.

    Article  MathSciNet  MATH  Google Scholar 

  10. Galambos, J. (1975). Methods for proving Bonferroni-type inequalitiesJournal of the London Mathematical Society 9561–564.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gates, D. J. and Westcott, M. (1984). On the distributions of scan statisticsJournal of the American Statistical Association 79423–429.

    Article  MathSciNet  MATH  Google Scholar 

  12. Glaz, J. (1989). Approximations and bounds for the distribution of the scan statisticJournal of the American Statistical Association 84560–566.

    Article  MathSciNet  MATH  Google Scholar 

  13. Glaz, J. (1992a). Approximations for tail probabilities and moments of the scan statisticComputational Statistics & Data Analysis 14213–227.

    Article  MathSciNet  MATH  Google Scholar 

  14. Glaz, J. (1992b). Extreme order statistics for a sequence of dependent random variables, InStochastic Inequalities(Eds., M. Shaked and Y. L. Tong), pp. 100–115, IMS Lecture Notes - Monograph Series, Hayward, CA.

    Chapter  Google Scholar 

  15. Glaz, J. (1993). Approximations for the tail probabilities and moments of the scan statisticStatistics in Medicine 121845–1852.

    Article  Google Scholar 

  16. Glaz, J. and Balakrishnan, N. (1999). Introduction to scan statisticsChapter 1 of this volume.

    Google Scholar 

  17. Glaz, J. and Naus, J. (1983). Multiple clusters on the lineCommunications in Statistics-Theory and Methods 121961–1986.

    Article  MathSciNet  MATH  Google Scholar 

  18. Glaz, J., Naus, J., Roos, M. and Wallenstein, S. (1994). Poisson approximations for the distribution and moments of ordered m-spacingsJournal of Applied Probability 31271–281.

    Article  MathSciNet  Google Scholar 

  19. Hoover, D. R. (1990). Subset complement addition upper bounds-an improved inclusion-exclusion methodJournal of Statistical Planning and Inference 24195–202.

    Article  MATH  Google Scholar 

  20. Huffer, F. and Lin, C. T. (1997a). Approximating the distribution of the scan statistic using moments of the number of clumpsJournal of the American Statistical Association 921466–1475.

    Article  MathSciNet  MATH  Google Scholar 

  21. Huffer, F. and Lin, C. T. (1997b). Computing the exact distribution of the extremes of sums of consecutive spacingsComputational Statistics é4 Data Analysis 26117–132.

    Article  MathSciNet  MATH  Google Scholar 

  22. Huffer, F. and Lin, C. T. (1999). Using moments to approximate the distribution of the scan statisticChapter 7,of this volume.

    Google Scholar 

  23. Hunter, D. (1976). An upper bound for the probability of a unionJournal of Applied Probability 13597–603.

    Article  MathSciNet  MATH  Google Scholar 

  24. Huntington, R. J. and Naus, J. I. (1975). A simpler expression for lath nearest neighbor coincidence probabilitiesAnnals of Probability 3894–896.

    Article  MathSciNet  MATH  Google Scholar 

  25. Karlin, S. and McGregor, J. (1959). Coincidence probabilitiesPacific Journal of Mathematics 91141–1164.

    MathSciNet  MATH  Google Scholar 

  26. Knox, E. G. and Lancashire, R. (1982). Detection of minimal epidemicsStatistics in Medicine 1183–189.

    Article  Google Scholar 

  27. Krauth, J. (1988). An improved upper bound for the tail probability of the scan statistic for testing non-random clustering, InClassification and Related Methods of Data Analysis: Proceedings of the First Conference of the International Federation of Classification Societies (IFCS) Technical University of Aachen F.R.G. 29 June—I July 1987(Ed., H. H. Bock), pp. 237–244, New York: North-Holland.

    Google Scholar 

  28. Krauth, J. (1991). Lower bounds for the tail probabilities of the scan statistic, InClassification, Data Analysis, and Knowledge Organization Models and Methods With Applications: Proceedings of the 14th Annual Conference of the Gesellschaft fur Klassification [sic] e. V.,University of Marburg March 12–14, 1990(Eds., H. H. Bock and P. Ihm), pp. 61–67, New York: Springer-Verlag.

    Google Scholar 

  29. Kwerel, S. M. (1975). Most stringent bounds on aggregated probabilities of partially specified dependent probability systemsJournal of the American Statistical Association 70472–479.

    Article  MathSciNet  MATH  Google Scholar 

  30. Loader, C. R. (1991). Large-deviation approximations to the distribution of scan statisticsAdvances in Applied Probability 23751–771.

    Article  MathSciNet  MATH  Google Scholar 

  31. Naus, J. I. (1965). The distribution of the size of the maximum cluster of points on a lineJournal of the American Statistical Association 60532–538.

    Article  MathSciNet  Google Scholar 

  32. Naus, J. I. (1966). Some probabilities, expectations and variances for the size of the largest clusters and smallest intervalsJournal of the American Statistical Association 611191–1199.

    Article  MathSciNet  MATH  Google Scholar 

  33. Naus, J. I. (1982). Approximations for distributions of scan statisticsJournal of the American Statistical Association 77177–183.

    Article  MathSciNet  MATH  Google Scholar 

  34. Neff, N. D. and Naus, J. I. (1980). The distribution of the size of the maximum cluster of points on a lineIMS Series of Selected Tables in Mathematical StatisticsVolume 6, Providence, RI: American Mathematical Society.

    MATH  Google Scholar 

  35. Parzen, E. (1960).Modern Probability Theory and Its ApplicationsNew York: John Wiley&Sons.

    MATH  Google Scholar 

  36. Prékopa, A. (1988). Boole-Bonferroni inequalities and linear programmingOperations Research 36145–162.

    Article  MathSciNet  MATH  Google Scholar 

  37. Roos, M. (1993). Compound Poisson approximations for the number of extreme spacingsAdvances in Applied Probability 25847–874.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wallenstein, S. R. and Naus, J. I. (1974). Probabilities for the size of largest clusters and smallest intervalsJournal of the American Statistical Association 69690–697.

    Article  MathSciNet  MATH  Google Scholar 

  39. Wallenstein, S. and Neff, N. (1987). An approximation for the distribution of the scan statisticStatistics in Medicine 6197–207.

    Article  Google Scholar 

  40. Wallenstein, S., Naus, J. and Glaz, J. (1993). Power of the scan statistic for detection of clusteringStatistics in Medicine 121829–1843.

    Article  Google Scholar 

  41. Worsley, K. J. (1982). An improved Bonferroni inequality and applicationsBiometrika 69297–302.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, CT. (1999). Scan Statistic and Multiple Scan Statistic. In: Glaz, J., Balakrishnan, N. (eds) Scan Statistics and Applications. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1578-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1578-3_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7201-4

  • Online ISBN: 978-1-4612-1578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics