Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 639))

Our knowledge regarding the newborn infant’s capacity to adapt when exposed to deficiency or excess of micronutrients is very limited. Infants may be born with low stores of micronutrients, due to maternal deficiency during pregnancy, and may further be exposed to a low intake of micronutrients, either from breast-milk or from weaning foods low in micronutrients or with low bioavailability. On the other side of the spectrum, infants may be exposed to micronutrient supplements, provided in an effort to counteract perceived deficiencies. In adults, homeostatic regulation of intestinal absorption of micronutrients, such as iron (Fe), copper (Cu) and zinc (Zn), is well developed and up- and down-regulation of absorption occurs. Whether such homeostatic regulation occurs in newborn infants is not known, or, if absent at birth, when it develops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Domellöf M, Cohen RJ, Dewey KG, Hernell O, Rivera LL, Lömerdal B (2001) Iron supplementation of breast-fed Honduran and Swedish infants from 4 to 9 months of age. J Pediatr 138:679–687.

    Article  PubMed  Google Scholar 

  2. Dewey KG, Domellöf M, Cohen RJ, Rivera LL, Hernell O, Lönnerdal B (2002) Iron supplementation affects growth and morbidity of breast-fed infants: results of a randomized trial in Sweden and Honduras. J Nutr 132:3249–3255.

    PubMed  CAS  Google Scholar 

  3. Domellöf M, Lönnerdal B, Abrams SA, Hernell O (2002) Iron absorption in breast-fed infants: effects of age, iron status, iron supplements and complementary foods. Am J Clin Nutr 76:198–204.

    PubMed  Google Scholar 

  4. Domellöf M, Dewey KG, Lönnerdal B, Cohen RJ, Hernell O (2002) The diagnostic criteria for iron deficiency in infants should be re-evaluated. J Nutr 132:3680–3686.

    PubMed  Google Scholar 

  5. Leong W-I, Bowlus CL, Tallkvist J, Lönnerdal B (2003) Iron supplementation during infancy — effects on expression of iron transporters, iron absorption, and iron utilization in rat pups. Am J Clin Nutr 78:1203–1211.

    PubMed  CAS  Google Scholar 

  6. Leong W-I, Bowlus CL, Tallkvist J, Lönnerdal B (2003) DMT1 and FPN1 expression during infancy: developmental regulation of iron absorption. Am J Physiol: Gastroenterol Liver Physiol 285:G1153–G1161.

    CAS  Google Scholar 

  7. Fransson G-B, Lönnerdal B (1980) Iron in human milk. J Pediatr 96:380–384.

    Article  PubMed  CAS  Google Scholar 

  8. Davidson LA, Lönnerdal B (1987) Persistence of human milk proteins in the breast fed infant. Acta Paediatr Scand 76:733–740.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki YA, Shin K, Lönnerdal B (2001) Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry 40:15771–15779.

    Article  PubMed  CAS  Google Scholar 

  10. Lönnerdal B (1998) Copper nutrition during infancy and childhood. Am J Clin Nutr 67:S1046–S1053.

    Google Scholar 

  11. Olivares M, Lönnerdal B, Abrams SA, Pizarro F, Uauy R (2002) Age and copper intake do not affect copper absorption, measured with the use of 65Cu as a tracer. Am J Clin Nutr 76:641–645.

    PubMed  CAS  Google Scholar 

  12. Lönnerdal B, Bell JG, Keen CL (1985) Copper absorption from human milk, cow’s milk and infant formulas using a suckling rat model. Am J Clin Nutr 42:836–844.

    PubMed  Google Scholar 

  13. Varada KR, Harper RG, Wapnir RA (1993) Development of copper intestinal absorption in the rat. Biochem Med Metab Biol 50:277–83.

    Article  PubMed  CAS  Google Scholar 

  14. Lee J, Prohaska JR, Dagenais SL, Glover TW, Thiele DJ (2000) Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene 254:87–96.

    Article  PubMed  CAS  Google Scholar 

  15. Mercer JFB (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69.

    Article  PubMed  CAS  Google Scholar 

  16. Bauerly K, Kelleher SL, Lönnerdal B (2004) Functional and molecular responses of suckling rat pups and human intestinal Caco-2 cells to copper treatment. J Nutr Biochem 15:155–162.

    Article  PubMed  CAS  Google Scholar 

  17. Bauerly K, Kelleher SL, Lönnerdal B (2005) Effects of copper supplementation on copper absorption, tissue distribution, and copper transporter expression in an infant rat model. Am J Physiol 288:G1007–1014.

    CAS  Google Scholar 

  18. Olivares M, Pizarro F, Speisky H, Lönnerdal B, Uauy R (1998) Copper in infant nutrition: safety of WHO provisional guideline value for copper content of drinking water. J Pediatr Gastroenterol Nutr 26:251–257.

    Article  PubMed  CAS  Google Scholar 

  19. Lönnerdal B (2000) Dietary factors affecting zinc absorption. J Nutr 130:Suppl:1378S–1383S.

    PubMed  Google Scholar 

  20. Krebs N, Reidinger CJ, Miller LV, Hambidge KM (1996) Zinc homeostasis in breast-fed infants. Pediatr Res 39:661–665.

    Article  PubMed  CAS  Google Scholar 

  21. Krebs NF (1999) Zinc transfer to the breastfed infant. J Mammary Gland Biol Neoplasia 4:259–268.

    Article  PubMed  CAS  Google Scholar 

  22. Brown KH (2001) Identifying populations at risk of zinc deficiency: the use of supplementation trials. Nutr Rev 59:80–84.

    PubMed  Google Scholar 

  23. Brown KH, Peerson JM, Allen LH (1998) Effect of zinc supplementation on children’s growth: a meta-analysis of intervention trials. Bibl Nutr Dieta 54:76–83.

    PubMed  CAS  Google Scholar 

  24. Bhutta ZA, Black RE, Brown KH et al (1999) Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J Pediatr 135:689–697.

    Article  PubMed  CAS  Google Scholar 

  25. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73.

    Article  PubMed  CAS  Google Scholar 

  26. Dufner-Beattie J, Wang F, Kuo Gitschier J, Eide D, Andrews GK (2003) The acrodermatits enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278:33474–33481.

    Article  PubMed  CAS  Google Scholar 

  27. Murgia C, Vespignani I, Cerase J, Nobili F, Perozzi G (1999) Cloning, expression and vesicular localization of transporter Dri27/ZnT4 in intestinal tissue and cells. Am J Physiol 277:G1231–G1239.

    PubMed  CAS  Google Scholar 

  28. Palmiter RD, Cole TB, Findley SD (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791.

    PubMed  CAS  Google Scholar 

  29. Rossander-Hulthén L, Brune M, Sandström B, Lönnerdal B, Hallberg L (1991) Competitive inhibition of iron absorption by manganese and zinc in humans. Am J Clin Nutr 54:152–156.

    Google Scholar 

  30. Lind T, Lönnerdal B, Stenlund H et al (2003) A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: interactions between iron and zinc. Am J Clin Nutr 77:883–890.

    PubMed  CAS  Google Scholar 

  31. Lind T, Lönnerdal B, Stenlund H et al (2004) A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: effects on growth and development. Am J Clin Nutr 80:729–736.

    PubMed  CAS  Google Scholar 

  32. O’Neill NC, Tanner MS (1989) Uptake of copper from brass vessels by bovine milk and its relevance to Indian childhood cirrhosis. J Pediatr Gastroenterol Nutr 9:167–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Lönnerdal, B., Kelleher, S.L. (2009). Micronutrient Transfer: Infant Absorption. In: Goldberg, G., Prentice, A., Prentice, A., Filteau, S., Simondon, K. (eds) Breast-Feeding: Early Influences on Later Health. Advances in Experimental Medicine and Biology, vol 639. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8749-3_3

Download citation

Publish with us

Policies and ethics