Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 639))

Osteoporosis is a skeletal disorder characterised by low bone mass and micro-architectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture.1 It is a widespread condition, often unrecognised in clinical practice, which may have devastating health consequences through its association with fragility fractures. The term ‘osteoporosis’ was first used in the nineteenth century as a histologic description for aged bone tissue, but its clinical consequences were not appreciated until Sir Astley Cooper recognised that hip fractures might result from an age-related reduction in bone mass or quality over 150 years ago. Since one disadvantage of a fracture-based definition is that diagnosis and treatment will be delayed when prevention is considered optimal treatment, an expert panel convened by the World Health Organisation (WHO) has suggested that both low bone mineral density (BMD) and fracture be combined in a stratified definition of osteoporosis.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Consensus Development Conference (1991) Prophylaxis and treatment of osteoporosis. Osteoporosis Int 1:114–117.

    Article  Google Scholar 

  2. World Health Organisation, 1994, Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical Report Series, WHO, Geneva.

    Google Scholar 

  3. Melton, L.J. III, 1995, How many women have osteoporosis now? J Bone Min Res 10:175–177.

    Google Scholar 

  4. Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75.

    Article  PubMed  CAS  Google Scholar 

  5. Dennison E & Cooper C (1996) The epidemiology of osteoporosis. Br J Clin Practice 50:33–36.

    CAS  Google Scholar 

  6. Ralston SH (1998) Do genetic markers aid in risk assessment? Osteoporosis Int 8:S37–S42.

    Google Scholar 

  7. Matkovic V, Jelic T, Wardlaw GM et al (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. J Clin Invest 93:799–808.

    Article  PubMed  CAS  Google Scholar 

  8. Newton John HF, Morgan BD (1970) The loss of bone with age: osteoporosis and fractures. Clin Orthop 71:229–232.

    Google Scholar 

  9. Ferrari S, Rizzoli R, Slosman D, Bonjour JP (1998) Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 83:358–361.

    Article  PubMed  CAS  Google Scholar 

  10. DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8:309–334.

    Article  PubMed  CAS  Google Scholar 

  11. Karaplis AC, Luz A, Glowacki J et al (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289.

    Article  PubMed  CAS  Google Scholar 

  12. Bhaumick B, Bala RM (1991) Differential effects of insulin-like growth factors I and II on growth, differentiation and glucoregulation in differentiating chondrocyte cells in culture. Acta Endocrinol (Copenh) 125:201–211.

    CAS  Google Scholar 

  13. Sylvia VL, Del Toro F, Hardin RR, Dean DD, Boyan BD, Schwartz Z (2001) Characterization of PGE(2) receptors (EP) and their role as mediators of lalpha, 25-(OH)(2)D(3) effects on growth zone chondrocytes. J Steroid Biochem Mol Biol 78:261–274.

    Article  PubMed  CAS  Google Scholar 

  14. Quarto R, Campanile G, Cancedda R, Dozin B (1997) Modulation of commitment, proliferation, and differentiation of chondrogenic cells in defined culture medium. Endocrinology 138:4966–4976.

    Article  PubMed  CAS  Google Scholar 

  15. Ducy P (2000) Cbfal: a molecular switch in osteoblast biology. Dev Dyn 219:461–471.

    Article  PubMed  CAS  Google Scholar 

  16. Widdowson EM, Southgate DAT, Hey E (1988) Fetal growth and body composition. In: Perinatal Nutrition (BS Landblad ed). New York: Academic Press 4:14.

    Google Scholar 

  17. Schauberger CW, Pitkin RM (1979) Maternal-perinatal calcium relationships. Obstet Gynecol 53:74–76.

    PubMed  CAS  Google Scholar 

  18. Forester F, Daffos F, Rainaut M, Bruneau M, Trivin F (1987) Blood chemistry of normal human fetuses at mid-trimester of pregnancy. Paed Res 21:579.

    Article  Google Scholar 

  19. Ardawi MS, Nasrat HA, BAAqueel HS (1997) Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrinol 137:402–409.

    Article  PubMed  CAS  Google Scholar 

  20. Purdie DW, Aaron JE, Selby PL (1988) Bone histology and mineral homeostasis in human pregnancy. Br J Obstet Gynaecol 95:849–854.

    PubMed  CAS  Google Scholar 

  21. Gambacciani M, Spinetti A, Gallo R, Cappagli B, Teti GC, Facchini V (1995) Ultrasonographic bone characteristics during normal pregnancy: longitudinal and cross-sectional evaluation. Am J Obstet Gynecol 173:890–893.

    Article  PubMed  CAS  Google Scholar 

  22. Black AJ, Topping J, Durham B, Farquharson RG, Fraser WD (2000) A detailed assessment of alterations in bone turnover, calcium homeostasis, and bone density in normal pregnancy. J Bone Miner Res 15:557–563.

    Article  PubMed  CAS  Google Scholar 

  23. Hosking DJ (1996) Calcium homeostasis in pregnancy. Clin Endocrinol (Oxf) 45:1–6.

    Article  CAS  Google Scholar 

  24. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM (1996) Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 93:15233–15238.

    Article  PubMed  CAS  Google Scholar 

  25. Namgung R, Tsang RC, Li C, Han DG, Ho ML, Sierra RI (1998) Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. J Paed 132:285–288.

    Article  Google Scholar 

  26. Specker BL, Namgung R, Tsang RC (2001) Bone mineral acquisition in utero, during infancy, and throughout childhood. In: Osteoporosis, 2 nd edition. (R Marcus, D Feldman, J Kelsey, eds) New York: Academic Press 1:599–620.

    Google Scholar 

  27. Koo WWK, Bush AJ, Walters J, Carlson SE (1998) Postnatal development of bone mineral status during infancy. J Am Coll Nutr 17:65–70.

    PubMed  CAS  Google Scholar 

  28. Li JY, Specker BL, Ho ML, Tsang RC (1989) Bone mineral content in black and white children 1–6 years of age. Am J Dis Child 143:1346–1349.

    PubMed  CAS  Google Scholar 

  29. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG (1991) Changes in vertebral bone density in black girls and white girls during childhood and puberty. New Engl J Med 325:1597–1600.

    Article  PubMed  CAS  Google Scholar 

  30. Ellis KJ, Shypailo RJ, Hergenroeder A, Perez M, Abrams S (1996) Total body calcium and bone mineral content: comparison of dual energy X-ray absorptiometry with neutron activation analysis. J Bone Min Res 11:843–848.

    CAS  Google Scholar 

  31. Moro M, Vandermeulen MCH, Kiratli BJ, Marcus R, Bachrach LK, Carter DR (1996) Body mass is the primary determinant of mid-femoral bone acquisition during adolescent growth. Bone 19:519–526.

    Article  PubMed  CAS  Google Scholar 

  32. Molgaard C, Thomsen BL, Michaelsen KF (1999) Whole body bone mineral accretion in healthy children and adolescents. Arch Dis Child 81:10–15.

    PubMed  CAS  Google Scholar 

  33. Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M (1997) The accumulation of whole body skeletal mass in third and fourth grade children: effects of age, gender, ethnicity and body composition. Bone 20:73–78.

    Article  PubMed  CAS  Google Scholar 

  34. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass and density in girls is region-specific. J Clin Invest 104:795–804.

    Article  PubMed  CAS  Google Scholar 

  35. Gilsanz V, Gibbens D, Roe T et al (1988) Vertebral bone density in children: effect of puberty. Radiology 166:847–850.

    PubMed  CAS  Google Scholar 

  36. Bailey DA, McKay HA, Mirwald RL, Crocker PRE, Faulkner RA (1999) A six year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children. The University of Saskatchewan bone mineral accrual study. J Bone Min Res 14:1672–1679.

    Article  CAS  Google Scholar 

  37. Seeman E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Min Res 12:509–521.

    Article  CAS  Google Scholar 

  38. Theintz G, Buchs B, Rizzoli R et al (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 18 years of age at the levels of the lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065.

    Article  PubMed  CAS  Google Scholar 

  39. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563.

    PubMed  CAS  Google Scholar 

  40. Barker DJP (1995) Fetal origins of coronary heart disease. BMJ 311:171–174.

    PubMed  CAS  Google Scholar 

  41. Barker DJP (1995) The fetal origins of adult disease. Proc Royal Soc London (B) 262:37–43.

    Article  CAS  Google Scholar 

  42. Lucas A (1991) Programming by early nutrition in man. In: The childhood environment and adult disease (GR Bock and J Whelan, eds) New York: John Wiley, 38–55.

    Chapter  Google Scholar 

  43. Widdowson EM, McCance RA (1974) The determinants of growth and form. Proc Royal Soc London 185:1–17.

    Google Scholar 

  44. Cooper C, Cawley MID, Bhalla A et al (1995) Childhood growth, physical activity and peak bone mass in women. J Bone Min Res 10:940–947.

    Article  CAS  Google Scholar 

  45. Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56:17–21.

    PubMed  CAS  Google Scholar 

  46. Keen R, Egger P, Fall C et al (1997) Polymorphisms of the vitamin D receptor, infant growth and adult bone mass. Calcif Tiss Int 60:233–235.

    Article  CAS  Google Scholar 

  47. Dennison EM, Arden NK, Keen RW et al (2001) Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paed Peri Epidemiol 15:211–219.

    Article  CAS  Google Scholar 

  48. Fall C, Hindmarsh P, Dennison E, Kellingray S, Barker D, Cooper, C (1998) Programming of growth hormone secretion and bone mineral density in elderly men; an hypothesis. J Clin Endocrinol Metab 83:135–139.

    Article  PubMed  CAS  Google Scholar 

  49. Dennison E, Hindmarsh P, Fall C et al (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84:3058–3063.

    Article  PubMed  CAS  Google Scholar 

  50. Phillips DIW, Barker DJP, Fall CHD et al (1998) Elevated plasma cortisol concentrations: a link between low birthweight and the insulin resistance syndrome? J Clin Endocrinol Metab 83:757–760.

    Article  PubMed  CAS  Google Scholar 

  51. Dennison EM, Syddall HE, Rodriguez S, Voropanov A, Day MM, Cooper C, and the Southampton Genetic Epidemiology Research Group (2004) Polymorphism in the growth hormone gene, weight in infancy, and adult bone mass. J Clin Endocrinol Metab 89:4898–4903.

    Article  PubMed  CAS  Google Scholar 

  52. Godfrey K, Walker-Bone K, Robinson S et al (2001) Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Min Res 16:1694–1703.

    Article  CAS  Google Scholar 

  53. Harvey NCW, Javaid MK, Taylor P et al (2004) Umbilical cord calcium and maternal vitamin D status predict different lumbar spine bone parameters in the offspring at 9 years. J Bone Min Res 19:1032 [abstract].

    Google Scholar 

  54. Cooper C, Eriksson JG, Forsén T, Osmond C, Tuomilehto J, Barker DJP (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporosis Int 12:623–629.

    Article  CAS  Google Scholar 

  55. Barker DJP (1998) Programming the baby. In: Mothers, babies and health in later life. (DJP Barker, ed.) London: Churchill Livingstone, 13–41.

    Google Scholar 

  56. McCance RA, Widdowson EM (1974) The determinants of growth and form. Proc Royal Soc London(B) 185:1–17.

    Article  CAS  Google Scholar 

  57. Smart JL, Massey RF, Nash SC, Tonkiss J (1987) Effects of early life undernutrition in artificially reared rats: subsequent body and organ growth. Br J Nutr 58:245–255.

    Article  PubMed  CAS  Google Scholar 

  58. Chow BF, Lee CJ (1964) Effect of dietary restriction of pregnant rats on body weight gain of the offspring. J Nutr 82:10–18.

    PubMed  CAS  Google Scholar 

  59. McCance RA, Widdowson EM (1962) Nutrition and growth. Proc Royal Soc London (B.) 156:326–337.

    CAS  Google Scholar 

  60. Brown SA, Rogers LK, Dunn JK, Gotto AM, Patsch W (1990) Development of cholesterol homeostatic memory in the rat is influenced by maternal diets. Metabolism 39:468–473.

    Article  PubMed  CAS  Google Scholar 

  61. McLeod KI, Goldrick RB, Whyte HM (1972) The effect of maternal malnutrition on the progeny in the rat: studies on growth, body composition and organ cellularity in first and second generation progeny. Australian J Exp Biol Med Sci 50:435–446.

    Article  CAS  Google Scholar 

  62. Snoeck A, Remacle C, Reusens B, Hoet JJ (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57:107–118.

    Article  PubMed  CAS  Google Scholar 

  63. Matsui R, Thurlbeck WM, Fujita Y, Yu SY, Kida K (1989) Connective tissue, mechanical, and morphometric changes in the lungs of weanling rats fed a low protein diet. Pediatr Pulmonol 7:159–166.

    Article  PubMed  CAS  Google Scholar 

  64. Godfrey KM, Barker DJP, Osmond C (1994) Disproportionate fetal growth and raised IGE concentration in adult life. Clin Exp Allergy 24:641–648.

    Article  PubMed  CAS  Google Scholar 

  65. Mehta G, Roach LU, Langley-Evans S et al (2002) Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tiss Int 71:493–498.

    Article  CAS  Google Scholar 

  66. Oreffo ROC, Lashbrooke B, Roach HI, Clarke NMP, Cooper, C (2003) Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone 33:100–107.

    Article  PubMed  CAS  Google Scholar 

  67. Fewtrell MS, Prentice A, Jones SC et al (1999) Bone mineralisation and turnover in preterm infants at 8–12 years of age: the effect of early diet. J Bone Min Res 14:810–820.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Cooper, C., Westlake, S., Harvey, N., Dennison, E. (2009). Developmental Origins of Osteoporotic Fracture. In: Goldberg, G., Prentice, A., Prentice, A., Filteau, S., Simondon, K. (eds) Breast-Feeding: Early Influences on Later Health. Advances in Experimental Medicine and Biology, vol 639. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8749-3_16

Download citation

Publish with us

Policies and ethics