Skip to main content

Detection, Quantification and Immunolocalisation of Botrytis species

  • Chapter
Botrytis: Biology, Pathology and Control

Classical methods of detection of Botrytis species include plating-out of surface sterilized infected plant tissues, soils and airborne conidia on selective media and the identification, by microscopy, of the sclerotia, conidia and conidiophores, based on their characteristic shape, size and colour. Other methods are now available such as nucleic acid-based methods that can be used to track individual isolates or specific species. The determination of biomass levels in samples using these methods, however, is problematic because of the multinucleate nature of Botrytis conidia and thallus. Immunological methods employing genus-specific monoclonal antibodies, particularly quantitative laboratory-based plate-trapped antigen ELISAs, allow large numbers of samples to be processed easily within a few hours. These methods, combined with the modified plate spore trap, the Micro-Titre Immuno Spore Trap (MTIST), enable the quantification of conidia in microtitre wells. A rapid semiquantitative immuno-chromatographic lateral flow device designed for use in the field or office promises to be a useful screening device for Botrytis. Development of species-specific monoclonal antibodies remains a challenge. The usefulness of Fourier transform infrared spectroscopy, nuclear magnetic resonance, liquid chromatography-mass spectroscopy and enzymic methods to detect and quantify specific secondary metabolites produced by Botrytis remains to be fully demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Adaskaveg JJE, Förster H and Thompson DF (2000) Identification and etiology of visible quiescent infections of Monilinia fructicola and Botrytis cinerea in sweet cherry fruit. Plant Disease 84: 328-333

    Article  Google Scholar 

  • Baraldi E, Bertolini P, Chierici E, Trufelli B and Lusielli D (2002) Genetic diversity between Botrytis cinerea isolates from unstored and cold stored kiwi fruit. Journal of Phytopathology 150: 629-635

    Article  CAS  Google Scholar 

  • Baroffio CA, Siegfried W and Hilber UW (2003) Long-term monitoring for resistance of Botryotinia fuckeliana to anilinopyrimidine, phenylpyrrole, and hydroxyanilide fungicides in Switzerland. Plant Disease 87: 662-666

    Article  CAS  Google Scholar 

  • Barnes SE and Shaw MW (2003) Factors affecting symptom production by latent Botrytis cinerea in Primula × polyantha. Plant Pathology 51: 746-754

    Article  Google Scholar 

  • Benito EP, Ten Have A, Van’t Klooster, JW and Van Kan JAL (1998) Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology 104: 207-220

    Article  CAS  Google Scholar 

  • Bossi R and Dewey FM (1992) Development of a monoclonal antibody-immunodetection assay for Botrytis cinerea (Pers.). Plant Pathology 41: 472-482

    Article  CAS  Google Scholar 

  • Choquer M, Boccara M and Vidal-Cros A (2003) A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Current Genetics 43: 303-309

    Article  CAS  PubMed  Google Scholar 

  • Coertze S and Holz G (2001) Germination and establishment of infection on grape berries by single airborne conidia of Botrytis cinerea. Plant Disease 85: 668-677

    Article  Google Scholar 

  • Cole L, Dewey FM and Hawes CR (1998a) Immunocytochemical studies of the infection mechanisms of Botrytis fabae: penetration and post-penetration processes. New Phytologist 139: 579-609

    Google Scholar 

  • Cole L, Dewey FM and Hawes CR (1998b) Immunocytochemical studies at the ultrastructural level of leaves of Vicia faba infected with Botrytis fabae. New Phytologist 139: 611-622

    Article  CAS  Google Scholar 

  • Cook DWM, Dewey FM, Long PG and Benhamou N (2000) The influence of simple sugars, salts and Botrytis-specific monoclonal antibodies on the binding of bacteria and yeasts to germlings of Botrytis cinerea. Canadian Journal of Botany 78: 1169-1179

    Article  CAS  Google Scholar 

  • Cooper LLD, Oliver JE, De Vilbiss ED and Doss RP (2000) Lipid composition of the extracellular matrix of Botrytis cinerea germlings. Phytochemistry 53: 293-298

    Article  CAS  PubMed  Google Scholar 

  • Cousin MA, Dufrenne J, Rombouts FM and Notermans S (1990) Immunological detection of Botrytis and Monascus species in food. Food Microbiology 7: 227-235

    Article  Google Scholar 

  • Danks C and Barker I (2000) On-site detection of plant pathogens using lateral-flow devices. OEPP/EPPO Bulletin 30: 421-426

    Google Scholar 

  • Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG and Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57: 689-692

    Article  CAS  PubMed  Google Scholar 

  • Dewey FM (1996) Development of immunoassays for the detection and quantification of fungi. In: Proceedings of the NORFA/OECD Funded Workshop, Monitoring Antagonistic Fungi Deliberately Released into the Environment. Royal Veterinary and Agricultural University, Copenhagen, Denmark. pp. 139-146) Kluwer Academic Publishers, Wageningen, The Netherlands

    Google Scholar 

  • Dewey FM (2000) SAPS-ELISA kit for Botrytis. (pp. 1-11) Homerton College, Cambridge, UK

    Google Scholar 

  • Dewey FM (2002) Botrytis antigens in wine. The Australian and New Zealand Grapegrower and Winemaker, March issue, pp. 20-21

    Google Scholar 

  • Dewey FM, Ebeler SE, Adams DO, Noble AC and Meyer UM (2000) Quantification of Botrytis in grape juice determined by a monoclonal antibody-based immunoassay. American Journal of Viticulture and Enology 51: 276-282

    CAS  Google Scholar 

  • Dewey FM, Grose MJ, Twiddy DR, Phillips SI and Wareing PW (1992) Development of a quantitative monoclonal antibody-based immunoassay for Humicola lanuginosa and comparison with conventional assays. Food and Agricultural Immunology 4: 153-168

    Article  Google Scholar 

  • Dewey FM and Meyer U (2004) Rapid, quantitative tube-immunoassay for on site detection of Botrytis, Aspergillus and Penicillium antigens in grape juice. Analytica Chimica Acta 513: 11-19

    Article  CAS  Google Scholar 

  • Dubernet AU, Dubernet M, Dubernet V, Coulomb S, Lerch M and Traineau I (2000) Objective analysis of quality of winemaking grapes by Fourier transform IR spectrometry and neural network analysis. Révue Française d’Oenologie 185: 18-21

    CAS  Google Scholar 

  • Edwards SG and Seddon B (2001) Selective media for the specific isolation and enumeration of Botrytis cinerea. Letters in Applied Microbiology 32: 63-66

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Köhl J and Fokkema NJ (1994) Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology 84: 1193-1200

    Article  Google Scholar 

  • Elad Y, Yunis H and Katan T (1992) Multiple resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology 41: 41-46

    Article  CAS  Google Scholar 

  • Fournier E, Levis C, Fortini D, Leroux P, Giraud T and Brygoo Y (2003) Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia 95: 251-261

    Article  CAS  Google Scholar 

  • Gerlagh M, Amsing JJ, Molhoek WML, Bosker-Van Zessen AI, Lombaers-Van der Plas CH, and Köhl J (2001) The effect of treatment with Ulocladium atrum on Botrytis cinerea-attack of geranium (Pelargonium zonale) stock plants and cuttings. European Journal of Plant Pathology 107: 377-386

    Article  Google Scholar 

  • Gindrat D and Pezet R (1994) Le paraquat, un outil pour la révélation rapide d’infections fongiques latentes et de champignons endophytes. Journal of Phytopathology 141: 86-98

    Article  Google Scholar 

  • Giraud T, Fortini D, Levis C, Lamarque C, Leroux P, LoBoglio K and Brygoo Y (1999) Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89: 967-973

    Article  CAS  PubMed  Google Scholar 

  • Grassin C and Dubourdie D (1989) Quantitative determination of Botrytis laccase in musts and wines by the syringaldazine test. Journal of Science Food and Agriculture 48: 369-376

    Article  CAS  Google Scholar 

  • Kennedy R, Wakeham AJ, Byrne KG and Dewey FM (2000) A new method to monitor airborne inoculum of fungal plant pathogens: Mycosphaerella brassicicola and Botrytis cinerea. Applied and Environmental Microbiology 66: 2996-3000

    Article  CAS  PubMed  Google Scholar 

  • Kessel GJT, De Haas BH, Lombaers-Van der Plas CH, Meijer EMJ, Dewey FM, Goudriaan J, Van der Werf W and Köhl J (1999) Quantification of mycelium of Botrytis spp. and the antagonist Ulocladium atrum in necrotic leaf tissue of cyclamen and lily by fluorescence microscopy and image analysis. Phytopathology 89: 868-876

    Article  CAS  PubMed  Google Scholar 

  • Kerssies A (1990) A selective medium for Botrytis cinerea to be used in a spore trap. Netherlands Journal of Plant Pathology 96: 247-250

    Article  Google Scholar 

  • Kerssies A, Bosker-Van Zessen AI, Wagemakers CAM and Van Kan JAL (1997) Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Disease 81: 781-786

    Article  Google Scholar 

  • Köhl J, Molhoek WML, Van der Plas CH and Fokkema NJ (1995) Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology 85: 393-401

    Article  Google Scholar 

  • Kritzman G and Netzler D (1978) A selective medium for isolation and identification of Botrytis spp. from soil and onion seed. Phytoparasitica 6: 3-7

    Article  Google Scholar 

  • Lennox CL, Spotts RA and Cervantes LA (2003) Populations of Botrytis cinerea and Penicillium spp. on pear fruit, and in orchards and packing houses, and their relationship to postharvest decay. Plant Disease 87: 639-644

    Article  Google Scholar 

  • Lévesque CA (2001) Molecular methods for detection of plant pathogens. Canadian Journal of Plant Pathology 24: 333-336

    Article  Google Scholar 

  • Linfield C, Kenny SR and Lyons NF (1995) A serological test for detecting Botrytis allii, the cause of neck rot of onion bulbs. Annals of Applied Biology 126: 259-268

    Article  Google Scholar 

  • Lorbeer JW and Tichelaar GM (1970) A selective medium for the assay of Botrytis allii in organic and mineral soils. Phytopathology 60: 1301

    Google Scholar 

  • Luck JE and Gillings MR (1995) Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycological Research 99: 1483-1488

    Article  CAS  Google Scholar 

  • Lurie S, Powell ALT, Dewey FM, Martin R, Labavitch JM and Bennett AB (2003) Endogenous expression of cell wall enzymes in tomato fruit affects decay development. Abstracts of the XI International Congress on Molecular Plant-Microbe Interactions July 18-27, 2003, St Petersburg, Russia, p. 256

    Google Scholar 

  • Marchal R, Berthier L, Legendre L, Marchal-Delahaut L, Jeandet P and Maujean A (1998) Effects of Botrytis cinerea infection on the must protein electrophoretic characteristics. Journal of Agricultural and Food Chemistry 46: 4945-4949

    Article  CAS  Google Scholar 

  • Marois JJ, Bledsoe AM, Ricker RW and Bostock RM (1993) Sampling for Botrytis cinerea in harvested grape berries. American Journal of Enology and Viticulture 44: 261-265

    Google Scholar 

  • Martinez F, Blancard D, Lecomte P, Levis C, Dubos B and Fermaud M (2003) Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. European Journal of Plant Pathology 109: 479-488

    Article  Google Scholar 

  • Mathur S and Utkhede R (2002) Development of a dot blot technique for rapid identification of Botrytis cinerea, the causal organism of grey mould in greenhouse tomatoes. Journal of Horticultural Science and Biotechnology 77: 604-608

    CAS  Google Scholar 

  • Mengiste T, Chen X, Salmeron J and Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE 1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell 15: 2551-2565

    Article  CAS  PubMed  Google Scholar 

  • Meyer U and Dewey FM (2000) Efficacy of different immunogens for raising monoclonal antibodies to Botrytis cinerea. Mycological Research 104: 979-987

    Article  CAS  Google Scholar 

  • Meyer UM, Spotts RA and FM Dewey (2000) Immunological detection and quantification of Botrytis cinerea in pear stems during cold storage. Plant Disease 84: 1099-1103

    Article  CAS  Google Scholar 

  • Morandi MAB, Sutton JC and Maffia, LA (2000) Relationships of aphid and mite infestations to control of Botrytis cinerea by Clonostachys rosea in rose (Rosa hybrida) leaves. Phytoparasitica 28: 55-64

    Article  Google Scholar 

  • Moricca S, Ragazzi A, Kasuga T and Mitchelson KR (1998) Detection of Fusarium oxysporum f. sp. vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathology 45: 872-883

    Google Scholar 

  • Moyano C, Alfonso C, Gallego J, Raposo R and Melagarejo P (2003) Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. European Journal of Plant Pathology 109: 515-522

    Article  CAS  Google Scholar 

  • Mundy DC and Beresford RM (2003) Epidemiology of Botrytis bunch rot in New Zealand vineyards. Abstracts of the Botrytis workshop, 8th International Congress of Plant Pathology, Christchurch, NZ, L1-1

    Google Scholar 

  • Muñoz G, Hinrichsen P, Brygoo Y and Giraud T (2002) Genetic characterisation of Botrytis cinerea populations in Chile. Mycological Research 106: 594-601

    Article  CAS  Google Scholar 

  • Nielsen K, Justesen AF and Yohalem DS (1998) PCR based detection of latent infection of Botrytis aclada Fres. in onion bulbs. COST 823, Mass scale diagnosis of plant pathogens by nucleic acid amplification methodology. Petria 9: 105-108

    Google Scholar 

  • Nielsen K, Yohalem DS and Jensen DF (2002) PCR detection and RFLP differentiation of Botrytis species associated with neck rot of onion. Plant Disease 86: 682-686

    Article  CAS  Google Scholar 

  • Pezet R, Viret O, Perret C and Tabacchi R (2003) Latency of Botrytis cinerea Pers.:Fr. and biochemical studies during growth and ripening of two grape berry cultivars, respectively susceptible and resistant to grey mould. Journal of Phytopathology 151: 208-214.

    CAS  Google Scholar 

  • Polevaya Y, Alkalai-Tuvia S, Copel A and Fallik E (2002) Early detection of grey mould in tomato after harvest. Postharvest Biology and Technology 25: 221-225

    Article  Google Scholar 

  • Renault AS, De Loie A, Lentinois I, Kraeva E, Tesiere A, Ageorges A, Redon C and Bierne J (2000) E-1,3-glucanase gene expression in grapevine leaves as a response to infection by Botrytis cinerea. American Journal of Enology and Viticulture 51: 81-87

    CAS  Google Scholar 

  • Ricker RW, Marois JJ, Dlott RM and Morrison JC (1991) Immunodetection and quantification of Botrytis cinerea on harvested wine grapes. Phytopathology 81: 404-411

    Article  Google Scholar 

  • Rigotti S, Gindro K, Richter H and Viret O (2002) Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.:Fr. in strawberry (Fragaria × ananassa Duch.) using PCR. FEMS Microbiology Letters 209: 169-174

    CAS  PubMed  Google Scholar 

  • Ruiz E and Ruffner HP (2002) Immunodetection of Botrytis-specific invertase in infected grapes. Journal of Phytopathology 150: 76-85

    Article  CAS  Google Scholar 

  • Salinas J and Schots A (1994) Monoclonal antibodies-based immunofluorescence test for detection of conidia of Botrytis cinerea on cut flowers. Phytopathology 84: 351-356

    Article  Google Scholar 

  • Sutton JC, Li D-W, Peng G, Yu H, Zhang P and Valdebenito-Sanhueza RM (1997) Gliocladium roseum: a versatile adversary of Bortytis cinerea in crops. Plant Disease 81: 316-328

    Article  Google Scholar 

  • Taylor E, Bates J, Kenyon D, Maccaferri M and Thomas J (2001) Modern molecular methods for characterization and diagnosis of seed-borne fungal pathogens. Journal of Plant Pathology 83: 75-81

    CAS  Google Scholar 

  • Walcott R (2003) Detection of seedborne pathogens. HortTechnology 13: 40-47

    Google Scholar 

  • Weeds PL, Beever RE and Long PG (1998) New genetic markers for Botrytis cinerea (Botryotinia fuckeliana). Mycological Research 102: 791-800

    Article  CAS  Google Scholar 

  • Yohalem DS, Nielsen K, Green H and Funk Jensen D (2004) Biocontrol agents efficiently inhibit sporulation of Botrytis aclada on necrotic leaf tips but spread to adjacent living tissue is not prevented. FEMS Microbiology and Ecology 47: 297-303

    Article  CAS  Google Scholar 

  • Yohalem DS, Nielsen K and Nicolaisen M (2003) Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon 85: 175-182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Dewey(Molly), F.M., Yohalem, D. (2007). Detection, Quantification and Immunolocalisation of Botrytis species. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N. (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2626-3_11

Download citation

Publish with us

Policies and ethics