Skip to main content

Abstract

Stereotactic radiosurgery (SRS) is a minimally invasive treatment modality that delivers a large, single dose of radiation to a specific intracranial target while sparing surrounding tissue. Unlike conventional fractionated radiotherapy, SRS does not maximally exploit the higher radiosensitivity of brain lesions relative to normal brain (therapeutic ratio). Its selective destruction is dependent mainly on sharply focused, high-dose radiation and a steep dose gradient away from the defined target. The biological effect is irreparable cellular damage (probably via DNA strand breaks) and delayed vascular occlusion within the high-dose target volume. Because a therapeutic ratio is not required, traditionally radioresistant lesions can be treated. Because destructive doses are used, however, any normal structure included in the target volume is subject to damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 1951; 102:316–319.

    CAS  PubMed  Google Scholar 

  2. Betti OO, Derechinsky VE. Hyperselective encephalic irradiation with a linear accelerator. Acta Neurochir Suppl 1984; 33:385–390.

    Google Scholar 

  3. Colombo F, Benedetti A, Pozza F, et al. External stereotactic irradiation by linear accelerator. Neurosurgery 1985; 16:154–160.

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann GH, Schlegel W, Sturm V, et al. Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 1985; 11:1185–1192.

    CAS  PubMed  Google Scholar 

  5. McGinley PH, Butker EK, Crocker IR, Landry JC. A patient rotator for stereotactic radiosurgery. Phys Med Biol 1990; 35:649–657.

    Article  CAS  PubMed  Google Scholar 

  6. Podgorsak EB, Olivier A, Pla M, et al. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1988; 14:115–126.

    CAS  PubMed  Google Scholar 

  7. Winston KR, Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 1988; 22:454–464.

    Article  CAS  PubMed  Google Scholar 

  8. Friedman WA, Bova FJ. The University of Florida radiosurgery system. Surg Neurol 1989; 32:334–342.

    Article  CAS  PubMed  Google Scholar 

  9. Friedman WA, Buatti JM, Bova FJ, Mendenhall WM. LINAC Radiosurgery: A Practical Guide. Berlin: Springer-Verlag, 1998.

    Google Scholar 

  10. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): surgical management and results with an emphasis on complications and how to avoid them. Neurosurgery 1997; 40:11–23.

    Article  CAS  PubMed  Google Scholar 

  11. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): The facial nerve-preservation and restitution of function. Neurosurgery 1997; 40:684–695.

    Article  CAS  PubMed  Google Scholar 

  12. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): Hearing function in 1000 tumor resections. Neurosurgery 1997; 40:248–262.

    Article  CAS  PubMed  Google Scholar 

  13. Leksell L. A note on the treatment of acoustic tumors. Acta Chir Scand 1971; 137:763–765.

    CAS  PubMed  Google Scholar 

  14. Foote KD, Friedman WA, Buatti JM, et al. Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 2001; 95(3):440–449.

    Article  CAS  PubMed  Google Scholar 

  15. Spiegelmann R, Gofman J, Alezra D, Pfeffer R. Radiosurgery for acoustic neurinomas (vestibular schwannomas). Isr Med Assoc J 1999; 1(1):8–13.

    CAS  PubMed  Google Scholar 

  16. Spiegelmann R, Lidar Z, Gofman J, et al. Linear accelerator radiosurgery for vestibular schwannoma. J Neurosurg 2001; 94(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  17. Martens F, Verbeke L, Piessens M, Van Vyve M. Stereotactic radiosurgery of •vestibular schwannomas with a linear accelerator. Acta Neurochir 1994; 62(Suppl):88–92.

    CAS  Google Scholar 

  18. Valentino V, Raimondi AJ. Tumour response and morphological changes of acoustic neurinomas after radiosurgery. Acta Neurochir 1995; 133:157–163.

    Article  CAS  Google Scholar 

  19. Delaney G, Matheson J, Smee R. Stereotactic radiosurgery: an alternative approach to the management of acoustic neuromas. Med J Austral 1992; 156:440.

    CAS  PubMed  Google Scholar 

  20. Barcia Salorio JL, Hernandez G, Ciudad J, et al. Stereotactic radiosurgery in acoustic neurinoma. Acta Neurochir Suppl 1984; 33:373–376.

    Google Scholar 

  21. Sekhar LN, Jannetta PJ, Burkhart LE, Janosky JE. Meningiomas involving the clivus: a six-year experience with 41 patients. Neurosurgery 1990; 27:764–781.

    Article  CAS  PubMed  Google Scholar 

  22. Sekhar LN, Altschuler EM. Meningiomas of the cavernous sinus. In: Al-Mefty O, ed. Meningiomas. New York: Raven Press, 1991:445–460.

    Google Scholar 

  23. Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 1957; 20:22–39.

    Article  CAS  PubMed  Google Scholar 

  24. Pollock BE, Stafford SL, Utter A, et al. Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small-to medium-size meningiomas. Int J Radiat Oncol Biol Phys 2003; 55(4):1000–1005.

    PubMed  Google Scholar 

  25. Valentino V, Schinaia G, Raimondi AJ. The results of radiosurgical management of 72 middle fossa meningiomas. Acta Neurochir 1993; 122:60–70.

    Article  CAS  Google Scholar 

  26. Villavicencio AT, Black PM, Shrieve DC, et al. Linac radiosurgery for skull base meningiomas. Acta Neurochir (Wien) 2001; 143(11):1141–1152.

    Article  CAS  Google Scholar 

  27. Engenhart R, Kimmig BN, Hover KH, et al. Stereotactic single high dose radiation therapy of benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 1990; 19:1021–1026.

    CAS  PubMed  Google Scholar 

  28. Spiegelmann R, Nissim O, Menhel J, et al. Linear accelerator radiosurgery for meningiomas in and around the cavernous sinus. Neurosurgery 2002; 51(6):1373–1380.

    Article  PubMed  Google Scholar 

  29. Hakim R, Alexander III E, Loeffler JS, et al. Results of linear accelerator-based radiosurgery for inracranial meningiomas. Neurosurgery 1998; 42:446–454.

    Article  CAS  PubMed  Google Scholar 

  30. Friedman WA, Murad G, Bradshaw P, et al. Linear accelerator radiosurgery for meningiomas. J Neurosurg 2005; 103:206–209.

    Article  PubMed  Google Scholar 

  31. Lohr F, Pirzkall A, Hof H, et al. Adjuvant treatment of brain metastases. Semin Surg Oncol 2001; 20:50–56.

    Article  CAS  PubMed  Google Scholar 

  32. DeAngelis LM. Brain tumors. N Engl J Med 1990 2001; 344:114–123.

    Article  CAS  Google Scholar 

  33. Patchell RA, Tibbs PA, Walsh JW, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990; 322:494–500.

    Article  CAS  PubMed  Google Scholar 

  34. Noordijk EM, Vecht CJ, Haaxma-Reiche H, et al. The choice of treatment of single brain metastasis should be made based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys 1994; 29:711–717.

    CAS  PubMed  Google Scholar 

  35. Mintz AH, Kestle J, Rathbone MP, et al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 1996; 78:1470–1476.

    Article  CAS  PubMed  Google Scholar 

  36. Haines SJ. Moving targets and ghosts of the past: outcome measurement in brain tumour therapy. J Clin Neurosci 2002; 9:109–112.

    Article  PubMed  Google Scholar 

  37. Sturm V, Kober B, Hover KH, et al. Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiat Oncol Biol Phys 1987; 13:279–282.

    CAS  PubMed  Google Scholar 

  38. Sturm V, Kimmig B, Engenhardt R, et al. Radiosurgical treatment of cerebral metastases. J Stereo Func Neurosurg 1991; 57:7–10.

    Article  CAS  Google Scholar 

  39. Voges J, Treuer H, Erdmann J, et al. LINAC radiosurgery in brain metastases. Acta Neurochir 1994; 62(Suppl):72–76.

    CAS  Google Scholar 

  40. Black PM. Solitary brain metastases. Radiation, resection, or radiosurgery? Ch 1993; 103:367S–369S.

    CAS  Google Scholar 

  41. Alexander E, Moriarty TM, Davis RB, et al. Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Nat Cancer Inst 1995; 87:34–40.

    Article  PubMed  Google Scholar 

  42. Adler JR, Cox RS, Kaplan I, Martin DP. Stereotactic radiosurgical treatment of brain metastases. J Neurosurg 1992; 76:444–449.

    Article  CAS  PubMed  Google Scholar 

  43. Fuller BG, Kaplan ID, Adler J, et al. Stereotaxic radiosurgery for brain metastases: The importance of adjuvant whole brain irradiation. Int J Radiat Oncol Biol Phys 1992; 23:413–418.

    CAS  PubMed  Google Scholar 

  44. Joseph J, Adler JR, Cox RS, Hancock SL. Linear accelerator-based stereotaxic radisourgery for brain metastases: the influence of number of lesions on survival. J Clin Oncol 1996; 14:1085–1092.

    CAS  PubMed  Google Scholar 

  45. Auchter RM, Lamond JP, Alexander E, et al. A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Radiat Oncol Biol Phys 1996; 35:27–35.

    CAS  PubMed  Google Scholar 

  46. Becker G, Jeremic B, Engel C, et al. Radiosurgery for brain metastases: the Tuebingen experience. Radiother Oncol 2002; 62:233–237.

    Article  PubMed  Google Scholar 

  47. Breneman JC, Warnick RE, Albright RE, et al. Stereotactic radiosurgery for the treatment of brain metastases. Cancer 1997; 79:551–557.

    Article  CAS  PubMed  Google Scholar 

  48. Buatti JM, Friedman WA, Bova FJ, Mendenhall WM. Treatment selection factors for stereotactic radiosurgery of intracranial metastases. Int J Radiat Oncol Biol Phys 1995; 32:1161–1166.

    CAS  PubMed  Google Scholar 

  49. Caron J-L, Souhami L, Podgordak EB. Dynamic stereotactic radiosurgery in the palliative treatment of cerebral metastatic tumors. J Neuro-Oncol 1992; 12:173–179.

    Article  CAS  Google Scholar 

  50. Gutin PH, Wilson CB. Radiosurgery for malignant brain tumors. J Clin Oncol 1990; 8:571–573.

    CAS  PubMed  Google Scholar 

  51. Mehta MP, Rozental JM, Levin AB, et al. Defining the role of radiosurgery in the management of brain metastases. Int J Radiat Oncol Biol Phys 1992; 24:619–625.

    CAS  PubMed  Google Scholar 

  52. Mehta M, Noyes W, Craig B, et al. A cost-effectiveness and costutility analysis of radiosurgery vs. resection for single-brain metastases. Int J Radiat Oncol Biol Phys 1997; 39:445–454.

    CAS  PubMed  Google Scholar 

  53. Valentino V. The results of radiosurgical management of 139 single cerebral metastases. Acta Neurochir Suppl 1995; 63:95–100.

    CAS  PubMed  Google Scholar 

  54. Cho KH, Hall WA, Gerbi BJ, et al. Patient selection criteria for the treatment of brain metastases with stereotactic radiosurgery. J Neurooncol 1998; 40:73–86.

    Article  CAS  PubMed  Google Scholar 

  55. Fernandez-Vicioso E, Suh JH, Kupelian PA, et al. Analysis of prognostic factors for patients with single brain metastasis treated with stereotactic radiosurgery. Radiat Oncol Invest 1997; 5:31–37.

    Article  CAS  Google Scholar 

  56. Maor MH, Dubey P, Tucker SL, et al. Stereotactic radiosurgery for brain metastases: results and prognostic factors. Int J Cancer 2000; 90:157–162.

    Article  CAS  PubMed  Google Scholar 

  57. Goodman KA, Sneed PK, McDermott MW, et al. Relationship between pattern of enhancement and local control of brain metastases after radiosurgery. Int J Radiat Oncol Biol Phys 2001; 50:139–146.

    CAS  PubMed  Google Scholar 

  58. Shiau C-Y, Sneed PK, Shu H-KG, et al. Radiosurgery for brain metastases: Relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 1997; 37:375–383.

    CAS  PubMed  Google Scholar 

  59. Gaspar L, Scott C, Rotman M, et al. Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 1997; 37:745–751.

    CAS  PubMed  Google Scholar 

  60. Ulm AJ, Friedman WA, Bova FJ, et al. Linear accelerator radiosurgery in the treatment of brain metastases. Neurosurgery 2004; 55:1076–1085.

    Article  PubMed  Google Scholar 

  61. DeAngelis LM. Brain tumors. N Engl J Med 2001; 344(2):114–123.

    Article  CAS  PubMed  Google Scholar 

  62. Bernstein M, Laperriere N, Glen J, Leung P, Thomason C, Landon AE. Brachytherapy for recurrent malignant astrocytoma. Int J Radiat Oncol Biol Phys 1994; 30(5):1213–1217.

    CAS  PubMed  Google Scholar 

  63. Chang CN, Chen WC, Wei KC, et al. High-dose-rate stereotactic brachytherapy for patients with newly diagnosed glioblastoma multiformes. J Neurooncol 2003; 61(1):45–55.

    Article  PubMed  Google Scholar 

  64. Prados MD, Gutin PH, Phillips TL, et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys 1992; 24(4):593–597.

    CAS  PubMed  Google Scholar 

  65. Buatti JM, Friedman WA, Bova FJ, Mendenhall WM. Linac radiosurgery for high-grade gliomas: the University of Florida experience. Int J Radiat Oncol Biol Phys 1995; 32(1):205–210.

    CAS  PubMed  Google Scholar 

  66. Friedman WA, Foote KD. Linear accelerator radiosurgery in the management of brain tumours. Ann Med 2000; 32(1):64–80.

    Article  CAS  PubMed  Google Scholar 

  67. Shrieve DC, Alexander E III, Wen PY, et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 1995; 36(2):275–282; discussion 82–84.

    Article  CAS  PubMed  Google Scholar 

  68. Hall WA, Djalilian HR, Sperduto PW, et al. Stereotactic radiosurgery for recurrent malignant gliomas. J Clin Oncol 1995; 13(7):1642–1648.

    CAS  PubMed  Google Scholar 

  69. Masciopinto JE, Levin AB, Mehta MP, Rhode BS. Stereotactic radiosurgery for glioblastoma: a final report of 31 patients. J Neurosurg 1995; 82(4):530–535.

    CAS  PubMed  Google Scholar 

  70. Regine WF, Patchell RA, Strottmann JM, et al. Preliminary report of a phase I study of combined fractionated stereotactic radiosurgery and conventional external beam radiation therapy for unfavorable gliomas. Int J Radiat Oncol Biol Phys 2000; 48(2):421–426.

    CAS  PubMed  Google Scholar 

  71. Prisco FE, Weltman E, de Hanriot RM, Brandt RA. Radiosurgical boost for primary high-grade gliomas. J Neurooncol 2002; 57(2):151–160.

    Article  PubMed  Google Scholar 

  72. Gannett D, Stea B, Lulu B, et al. Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Radiat Oncol Biol Phys 1995; 33(2):461–468.

    CAS  PubMed  Google Scholar 

  73. Roberge D, Souhami L. Stereotactic radiosurgery in the management of intracranial gliomas. Technol Cancer Res Treat 2003; 2(2):117–125.

    PubMed  Google Scholar 

  74. Curran WJ Jr, Scott CB, Horton J, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 1993; 85(9):704–710.

    Article  PubMed  Google Scholar 

  75. Sarkaria JN, Mehta MP, Loeffler JS, et al. Radiosurgery in the initial management of malignant gliomas: survival comparison with the RTOG recursive partitioning analysis. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 1995; 32(4):931–941.

    CAS  PubMed  Google Scholar 

  76. Kondziolka D, Flickinger JC, Bissonette DJ, et al. Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 1997; 41(4):776–783; discussion 83–85.

    Article  CAS  PubMed  Google Scholar 

  77. Ulm AJ, Friedman WA, Bova FJ, et al. Radiosurgery for malignant gliomas: the University of Florida experience. Neurosurgery 2005; 57:512–517.

    Article  PubMed  Google Scholar 

  78. Irish WD, Macdonald DR, Cairncross JG. Measuring bias in uncontrolled brain tumor trials-to randomize or not to randomize? Can J Neurol Sci 1997; 24(4):307–312.

    CAS  PubMed  Google Scholar 

  79. Curran WJ Jr, Scott CB, Weinstein AS, et al. Survival comparison of radiosurgery-eligible and-ineligible malignant glioma patients treated with hyperfractionated radiation therapy and carmustine: a report of Radiation Therapy Oncology Group 83-02. J Clin Oncol 1993; 11(5):857–862.

    PubMed  Google Scholar 

  80. Souhami L, Seiferheld W, Brachman D, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: Report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 2004; 60(3):853–860.

    PubMed  Google Scholar 

  81. Ellis TL, Friedman WA, Bova FJ, et al. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg 1998; 89(1):104–110.

    Article  CAS  PubMed  Google Scholar 

  82. Pollock BE, Flickinger JC, Lunsford LD, et al. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 1998; 42(6):1239–1244; discussion 44–47.

    Article  CAS  PubMed  Google Scholar 

  83. Bova FJ, Friedman WA. Stereotactic angiography: an inadequate database for radiosurgery? Int J Radiat Oncol Biol Phys 1991; 20:891–895.

    CAS  PubMed  Google Scholar 

  84. Blatt DL, Friedman WA, Bova FJ. Modifications in radiosurgical treatment planning of arteriovenous malformations based on CT imaging. Neurosurgery 1993; 33:588–596.

    Article  CAS  PubMed  Google Scholar 

  85. Spiegelmann R, Friedman WA, Bova FJ. Limitations of angiographic target localization in planning radiosurgical treatment. Neurosurgery 1992; 30:619–624.

    Article  CAS  PubMed  Google Scholar 

  86. Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 1996; 36:873–879.

    CAS  PubMed  Google Scholar 

  87. Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery 1997; 40(3):425–430; discussion 30–31.

    Article  CAS  PubMed  Google Scholar 

  88. Pollock BE, Kondziolka D, Lunsford LD, et al. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery 1996; 38(2):318–324.

    Article  CAS  PubMed  Google Scholar 

  89. Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 2003; 52:296–308.

    Article  PubMed  Google Scholar 

  90. Foote KD, Friedman WA, Ellis TL, et al. Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. J Neurosurg 2003; 98:337–341.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friedman, W.A. (2008). Linear Accelerator Radiosurgery. In: Chin, L.S., Regine, W.F. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71070-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71070-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-71069-3

  • Online ISBN: 978-0-387-71070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics