Skip to main content

Time-Domain Lifetime Measurements

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

Time-resolved measurements are widely used in fluorescence spectroscopy, particularly for studies of biological macromolecules and increasingly for cellular imaging. Time-resolved measurements contain more information than is available from the steady-state data. For instance, consider a protein that contains two tryptophan residues, each with a distinct lifetime. Because of spectral overlap of the absorption and emission, it is not usually possible to resolve the emission from the two residues from the steady-state data.

However, the time-resolved data may reveal two decay times, which can be used to resolve the emission spectra and relative intensities of the two tryptophan residues. The time-resolved measurements can reveal how each of the tryptophan residues in the protein is affected by the interactions with its substrate or other macromolecules. Is one of the tryptophan residues close to the binding site? Is a tryp-tophan residue in a distal domain affected by substrate binding to another domain? Such questions can be answered if one measures the decay times associated with each of the tryptophan residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevington PR, Robinson DK. 1992. Data reduction and error analysis for the physical sciences, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  2. Taylor JR. 1982. An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, Sausalito, CA.

    Google Scholar 

  3. Grinvald A, Steinberg IZ. 1974. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem 59:583–593.

    CAS  Google Scholar 

  4. Demas JN. 1983. Excited state lifetime measurements. Academic Press, New York.

    Google Scholar 

  5. Johnson ML. 1985. The analysis of ligand binding data with experimental uncertainties in the independent variables. Anal Biochem 148:471–478.

    CAS  Google Scholar 

  6. Bard J. 1974. Nonlinear parameter estimation. Academic Press, New York.

    Google Scholar 

  7. Johnson ML. 1983. Evaluation and propagation of confidence intervals in nonlinear, asymmetrical variance spaces: analysis of ligand binding data. Biophys J 44:101–106.

    CAS  Google Scholar 

  8. O’Connor DV, Phillips D. 1984. Time-correlated single-photon counting. Academic Press, New York.

    Google Scholar 

  9. Birch DJS, Imhof RE. 1991. Time-domain fluorescence spec-troscopy using time-correlated single-photon counting. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 1–95. Ed JR Lakowicz, Plenum Press, New York.

    Google Scholar 

  10. Ware WR. 1971. Transient luminescence measurements. In Creation and detection of the excited state, Vol. 1A, pp. 213–302. Ed AA Lamola. Marcel Dekker, New York.

    Google Scholar 

  11. Becker W, Bergmann A. 2005. Multidimensional time-correlated single-photon counting. In Reviews in fluorescence, Vol. 2, pp. 77–108. Ed CD Geddes, JR Lakowicz. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  12. Bassi A, Swartling J, D’Andrea C, Pifferi A, Torricelli A, Cubeddu R. 2004. Time-resolved spectrophotometer for a turbid media based on supercontinuum generation in a photonic crystal fiber. Opt Lett 29(20):2405–2407.

    Google Scholar 

  13. Karolczak J, Komar D, Kubicki J, Wrozowa T, Dobek K, Ciesielska B, Maciejewski A. 2001. The measurements of picosecond fluorescence lifetimes with high accuracy and subpicosecond precision. Chem Phys Lett 344:154–164.

    CAS  Google Scholar 

  14. Becker W, Hickl H, Zander C, Drexhage KH, Sauer M, Siebert S, Wolfrum J. 1999. Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated singlephoton counting (TCSPC). Rev Sci Instrum 70(3):1835–1841.

    CAS  Google Scholar 

  15. Malak H. Unpublished observations.

    Google Scholar 

  16. Badea MG, Brand L. 1971. Time-resolved fluorescence measurements. Methods Enzymol 61:378–425.

    Google Scholar 

  17. McGuinness CD, Sagoo K, McLoskey D, Birch DJS. 2004. A new sub-nanosecond LED at 280 nm: application to protein fluorescence. Meas Sci Technol 15:L1–L4.

    Google Scholar 

  18. Pico Quant GmbH, Berlin, Germany http://www.picoquant.com/products_products.htm.

  19. IBH Jobin Yvon, Glasgow, United Kingdom http://www.isainc.com/usadivisions/Fluorescence/IBH/nanoled.htm.

  20. Becker and Hickl GmbH, Berlin, Germany, http://www.becker-heckl.de.

  21. Hamamatsu Photonics, KK, Hamamatsu City, Japan, http://usa.hamamatsu.com.

  22. http://www.picoquant.com/products/ledhead.htm.

  23. O’Hagan WJ, McKenna M, Sherrington DC, Rolinski OJ, Birch DJS. 2002. MHz LED source for nanosecond fluorescence sensing. Meas Sci Technol 13:84–91.

    Google Scholar 

  24. Svelto O. 1998. Principles of lasers, 4th ed. Transl DC Hanna. Plenum Press, New York.

    Google Scholar 

  25. Yariv A. 1989. Quantum electronics, 3rd ed. John Wiley & Sons, New York.

    Google Scholar 

  26. Iga, K. 1994. Fundamentals of laser optics. Plenum Press, New York.

    Google Scholar 

  27. Small EW. 1991. Laser sources and microchannel plate detectors for pulse fluorometry. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 97–182. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  28. Wilson J, Hawkes JFB. 1983. Optoelectronics: an introduction. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  29. Berg NJ, Lee JN, eds. 1983. Acoustooptic signal processing. Marcel Dekker, Inc., New York.

    Google Scholar 

  30. Visser AJWG, Van Hoek A. 1979. The measurement of subnanosec-ond fluorescence decay of flavins using time-correlated photon counting and a mode-locked Ar ion laser. J Biochem Biophys Methods 1:195–208.

    CAS  Google Scholar 

  31. Spears KG, Cramer LE, Hoffland LD. 1978. Subnanosecond time-correlated photon counting with tunable lasers. Rev Sci Instrum 49:255–262.

    CAS  Google Scholar 

  32. Lytle E, Kelsey MS. 1974. Cavity-dumped argon-ion laser as an excitable source on time-resolved fluorimetry. Anal Chem 46:855–860.

    CAS  Google Scholar 

  33. Wild UP, Holzwarth AR, Good HP. 1977. Measurement and analysis of fluorescence decay curves. Rev Sci Instrum 48(12):1621–1627.

    CAS  Google Scholar 

  34. Turko BT, Nairn JA, Sauer K. 1983. Single photon timing system for picosecond fluorescence lifetime measurements. Rev Sci Instrum 54(1):118–120.

    CAS  Google Scholar 

  35. Alfano AJ, Fong FK, Lytle FE. 1983. High repetition rate sub-nanosecond gated photon counting. Rev Sci Instrum 54(8):967–972.

    CAS  Google Scholar 

  36. Kinoshita S, Ohta H, Kushida T. 1981. Subnanosecond fluorescence lifetime measuring system using single photon counting method with mode-locked laser excitation. Rev Sci Instrum 52(4):572–575.

    CAS  Google Scholar 

  37. Koester VJ, Dowben RM. 1978. Subnanosecond single photon counting fluorescence spectroscopy using synchronously pumped tunable dye laser excitation. Rev Sci Instrum 49(8):1186–1191.

    CAS  Google Scholar 

  38. Zimmerman HE, Penn JH, Carpenter CW. 1982. Evaluation of single-photon counting measurements of excited-state lifetimes. Proc Natl Acad Sci USA 79:2128–2132.

    CAS  Google Scholar 

  39. van Hoek A, Vervoort J, Visser AJWG. 1983. A subnanosecond resolving spectrofluorimeter for the analysis of protein fluorescence kinetics. J Biochem Biophys Methods 7:243–254.

    Google Scholar 

  40. Small EW, Libertini LJ, Isenberg I. 1984. Construction and tuning of a monophoton decay fluorometer with high-resolution capabilities. Rev Sci Instrum 55(6):879–885.

    CAS  Google Scholar 

  41. Visser AJWG, van Hoek A. 1981. The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with a UV-mode locked Ar Ion laser. Photochem Photobiol 33:35–40.

    CAS  Google Scholar 

  42. Libertini LJ, Small EW. 1987. On the choice of laser dyes for use in exciting tyrosine fluorescence decays. Anal Biochem 163:500–505.

    CAS  Google Scholar 

  43. Malmberg JH. 1957. Millimicrosecond duration of light source. Rev Sci Instrum 28(12):1027–1029.

    Google Scholar 

  44. Bennett RG. 1960. Instrument to measure fluorescence lifetimes in the millimicrosecond region. Rev Sci Instrum 31(12):1275–1279.

    CAS  Google Scholar 

  45. Yguerabide J. 1965. Generation and detection of subnanosecond light pulses: application to luminescence studies. Rev Sci Instrum 36(12):1734–1742.

    Google Scholar 

  46. Birch DJS, Imhof RE. 1977. A single photon counting fluorescence decay-time spectrometer. J Phys E: Sci Instrum 10:1044–1049.

    CAS  Google Scholar 

  47. Lewis C, Ware WR, Doemeny LJ, Nemzek TL. 1973. The measurement of short lived fluorescence decay using the single photon counting method. Rev Sci Instrum 44:107–114.

    CAS  Google Scholar 

  48. Leskovar B, Lo CC, Hartig PR, Sauer K. 1976. Photon counting system for subnanosecond fluorescence lifetime measurements. Rev Sci Instrum 47(9):1113–1121.

    Google Scholar 

  49. Bollinger LM, Thomas GE. 1961. Measurement of the time dependence of scintillation intensity by a delayed-coincidence method. Rev Sci Instrum 32(9):1044–1050.

    CAS  Google Scholar 

  50. Hazan G, Grinvald A, Maytal M, Steinberg IZ. 1974. An improvement of nanosecond fluorimeters to overcome drift problems. Rev Sci Instrum 45(12):1602–1604.

    CAS  Google Scholar 

  51. Dreeskamp H, Salthammer T, Laufer AGE. 1989. Time-correlated single-photon counting with alternate recording of excitation and emission. J Lumin 44:161–165.

    CAS  Google Scholar 

  52. Birch DJS, Imhof RE. 1981. Coaxial nanosecond flashlamp. Rev Sci Instrum 52:1206–1212.

    CAS  Google Scholar 

  53. Birch DJS, Hungerford G, Imhof RE. 1991. Near-infrared spark source excitation for fluorescence lifetime measurements. Rev Sci Instrum 62(10):2405–2408.

    CAS  Google Scholar 

  54. Birch DJS, Hungerford G, Nadolski B, Imhof RE, Dutch A. 1988. Time-correlated single-photon counting fluorescence decay studies at 930 nm using spark source excitation. J Phys E: Sci Instrum 21:857–862.

    CAS  Google Scholar 

  55. http://www.ibh.co.uk/products/lightsources/5000f.htm.

  56. Laws WR, Sutherland JC. 1986. The time-resolved photon-counting fluorometer at the national synchrotron light source. Photochem Photobiol 44(3):343–348.

    CAS  Google Scholar 

  57. Munro IH, Martin MM. 1991. Time-resolved fluorescence spec-troscopy using synchrotron radiation. In Topics in fluorescence spec-troscopy, Vol. 1: Techniques, pp. 261–291. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  58. Munro IH, Schwentner N. 1983. Time-resolved spectroscopy using synchrotron radiation. Nucl Instrum Methods 208:819–834.

    CAS  Google Scholar 

  59. Lopez-Delgado R. 1978. Comments on the application of synchrotron radiation to time-resolved spectrofluorometry. Nucl Instrum Methods 152:247–253.

    CAS  Google Scholar 

  60. Rehn V. 1980. Time-resolved spectroscopy in synchrotron radiation. Nucl Instrum Methods 177:193–205.

    CAS  Google Scholar 

  61. van Der Oord CJR, Gerritsen HC, Rommerts FFG, Shaw DA, Munro IH, Levine YK. 1995. Micro-volume time-resolved fluorescence spectroscopy using a confocal synchrotron radiation microscope. Appl Spec 49(10):1469–1473.

    Google Scholar 

  62. Gedcke DA, McDonald WJ. 1967. A constant fraction of pulse height trigger for optimum time resolution. Nucl Instrum Methods 55:377–380.

    Google Scholar 

  63. Gedcke DA, McDonald WJ. 1966. Design of the constant fraction of pulse height trigger for optimum time resolution. Nucl Instrum Methods 58:253–260.

    Google Scholar 

  64. Arbel A, Klein I, Yarom A1974. Snap-off constant fraction timing discriminators. IEEE Trans Nucl Sci NS—21:3–8.

    Google Scholar 

  65. Becker & Hickl Gmbh, Berlin, Germany. How (and why not) to amplify PMT signals. http://www.becker-hickl.de.

  66. Cova S, Ghioni M, Zappa F, Lacaita A. 1993. Constant-fraction circuits for picosecond photon timing with microchannel plate photo-multipliers. Rev Sci Instrum 64(1):118–124.

    Google Scholar 

  67. Cova S, Ripamonti G. 1990. Improving the performance of ultrafast microchannel plate photomultipliers in time-correlated photon counting by pulse pre-shaping. Rev Sci Instrum 61(3):1072–1075.

    CAS  Google Scholar 

  68. Haugen GR, Wallin BW, Lytle FE. 1979. Optimization of data-acquisition rates in time-correlated single-photon fluorimetry. Rev Sci Instrum 50(1):64–72.

    CAS  Google Scholar 

  69. Bowman LE, Berglund KA, Nocera DG. 1993. A single photon timing instrument that covers a broad temporal range in the reversed timing configuration. Rev Sci Instrum 64(2):338–341.

    CAS  Google Scholar 

  70. Baumier W, Schmalzl AX, Göâl G, Penzkofer A. 1992. Fluorescence decay studies applying a cw femtosecond dye laser pumped ungated inverse time-correlated single photon counting system. Meas Sci Technol 3:384–393.

    Google Scholar 

  71. Harris CM, Selinger BK. 1979. Single-photon decay spectroscopy, II: the pileup problem. Aust J Chem 32:2111–2129.

    CAS  Google Scholar 

  72. Williamson JA, Kendall-Tobias MW, Buhl M, Seibert M. 1988. Statistical evaluation of dead time effects and pulse pileup in fast photon counting: introduction of the sequential model. Anal Chem 60:2198–2203.

    CAS  Google Scholar 

  73. Candy BH. 1985. Photomultiplier characteristics and practice relevant to photon counting. Rev Sci Instrum 56(2):183–193.

    CAS  Google Scholar 

  74. Hungerford G, Birch DJS. 1996. Single-photon timing detectors for fluorescence lifetime spectroscopy. Meas Sci Technol 7:121–135.

    CAS  Google Scholar 

  75. Leskovar B. 1977. Microchannel plates. Phys Today 30:42–49.

    Google Scholar 

  76. Boutot JP, Delmotte JC, Miehé JA, Sipp B. 1977. Impulse response of curved microchannel plate photomultipliers. Rev Sci Instrum 48(11):1405–1407.

    Google Scholar 

  77. Timothy JG, Bybee RL. 1977. Preliminary results with microchannel array plates employing curved microchannels to inhibit ion feedback. Rev Sci Instrum 48(3):292–299.

    Google Scholar 

  78. Lo CC, Leskovar B. 1981. Performance studies of high gain photo-multiplier having z-configuration of microchannel plates. IEEE Trans Nucl Sci NS—28(1):698–704.

    Google Scholar 

  79. Ito M, Kume H, Oba K. 1984. Computer analysis of the timing properties in micro channel plate photomultiplier tubes. IEEE Trans Nucl Sci NS—31(1):408–412.

    Google Scholar 

  80. Bebelaar D. 1986. Time response of various types of photomultipli-ers and its wavelength dependence in time-correlated single photon counting with an ultimate resolution of 47 ps FWHM. Rev Sci Instrum 57(6):1116–1125.

    CAS  Google Scholar 

  81. Yamazaki I, Tamai N, Kume H, Tsuchiya H, Oba K. 1985. Microchannel plate photomultiplier applicability to the time-correlated photon-counting method. Rev Sci Instrum 56(6):1187–1194.

    CAS  Google Scholar 

  82. Uyttenhove J, Demuynck J, Deruytter A. 1978. Application of a microchannel plate photomultiplier in subnanosecond lifetime measurements. IEEE Trans Nucl Sci NS—25(1):566–567.

    Google Scholar 

  83. Murao T, Yamazaki I, Shindo Y, Yoshihara K. 1982. A subnanosec-ond time-resolved spectrophotometric system by using synchronously pumped, mode-locked dye laser. J Spectrosc Soc Jpn, pp. 96–103.

    Google Scholar 

  84. Murao T, Yamazaki I, Yoshihara K. 1982. Applicability of a microchannel plate photomultiplier to the time-correlated photon counting technique. Appl Opt 21(13):2297–2298.

    CAS  Google Scholar 

  85. Hamamatsu Photonics KK. 1997. Microchannel plate-photomultipli-er tube (MCP-PMTs) R38097-50 series.

    Google Scholar 

  86. Koyama K, Fatlowitz D. 1987. Application of MCP-PMTs to time correlated single photon counting and related procedures. Hamamatsu Tech Inf ET-03:1–18.

    Google Scholar 

  87. Kume H, Taguchi T, Nakatsugawa K, Ozawa K, Suzuki S, Samuel R, Nishimura Y, Yamazaki I. 1992. Compact ultrafast microchannel plate photomultiplier tube. SPIE Proc 1640:440–447.

    Google Scholar 

  88. Boens N, Tamai N, Yamazaki I, Yamazaki T. 1990. Picosecond single photon timing measurements with a proximity type microchannel plate photomultiplier and global analysis with reference convolution. Photochem Photobiol 52(4):911–917.

    CAS  Google Scholar 

  89. Lo CC, Leskovar B. 1979. Studies of prototype high-gain microchannel plate photomultipliers. IEE Trans Nucl Sci NS—26(1):388–394.

    Google Scholar 

  90. Becker & Hickl GmbH, Berlin, Germany. AMPTM1.doc.

    Google Scholar 

  91. Becker W, Bergmann A., Becker & Hickl GmbH. Detectors for highspeed photon counting.

    Google Scholar 

  92. Beck G. 1976. Operation of a 1P28 photomultiplier with sub-nanosecond response time. Rev Sci Instrum 47:537–541.

    CAS  Google Scholar 

  93. Kinoshita S, Kushida T. 1982. High-performance, time-correlated single photon counting apparatus using a side-on type photomultipli-er. Rev Sci Instrum 53(4):469–472.

    CAS  Google Scholar 

  94. Canonica S, Forrer J, Wild UP. 1985. Improved timing resolution using small side-on photomultipliers in single photon counting. Rev Sci Instrum 56(9):1754–1758.

    CAS  Google Scholar 

  95. Ware WR, Pratinidhi M, Bauer RK. 1983. Performance characteristics of a small side-window photomultiplier in laser single-photon fluorescence decay measurements. Rev Sci Instrum 54:1148–1156.

    CAS  Google Scholar 

  96. Hamamatsu Photonics KK. 2001. Metal package photomultiplier tube R7400U series.

    Google Scholar 

  97. Hamamatsu Photonics KK. 2000. Photosensor modules H5773/H5783/H6779/H6780/H5784 series.

    Google Scholar 

  98. Cova S, Longoni A, Andreoni A, Cubeddu R. 1983. A semiconductor detector for measuring ultraweak fluorescence decays with 70ps FWHM resolution. IEEE J Quantum Electron QE—19:630–634.

    Google Scholar 

  99. Buller GS, Massa JS, Walker AC. 1992. All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors. Rev Sci Instrum 63(5):2994–2998.

    CAS  Google Scholar 

  100. Louis TA, Ripamonti G, Lacaita A. 1990. Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector. Rev Sci Instrum 61(1):11–22.

    CAS  Google Scholar 

  101. Cova S, Ripamonti G, Lacaita A. 1987. Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps. Nucl Instrum Methods Phys Res A253:482–487.

    CAS  Google Scholar 

  102. Cova S, Lacaita A, Ghioni M, Ripamonti G, Louis TA. 1989. 20-ps timing resolution with single-photon avalanche diodes. Rev Sci Instrum 60(6):1104–1110.

    CAS  Google Scholar 

  103. Cova S, Longoni A, Andreoni A. 1981. Towards picosecond resolution with single-photon avalanche diodes. Rev Sci Instrum 52(3):408–412.

    CAS  Google Scholar 

  104. Louis T, Schatz GH, Klein-Bölting P, Holzwarth AR, Ripamonti G, Cova S. 1988. Performance comparison of a single-photon avalanche diode with a microchannel plate photomultiplier in time-correlated single-photon counting. Rev Sci Instrum 59(7):1148–1152.

    CAS  Google Scholar 

  105. Lacaita A, Cova S, Ghioni M. 1988. Four-hundred picosecond single-photon timing with commerically available avalanche photodiodes. Rev Sci Instrum 59(7):1115–1121.

    CAS  Google Scholar 

  106. Wahl P, Auchet JC, Donzel B. 1974. The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method. Rev Sci Instrum 45(1):28–32.

    CAS  Google Scholar 

  107. Sipp B, Miehe JA, Lopez-Delgado R. 1976. Wavelength dependence of the time resolution of high-speed photomultipliers used in singlephoton timing experiments. Opt Commun 16(1):202–204.

    Google Scholar 

  108. Rayner DM, McKinnon AF, Szabo AG. 1978. Confidence in fluorescence lifetime determinations: a ratio correction for the photomulti-plier time response variation with wavelength. Can J Chem 54:3246–3259.

    Google Scholar 

  109. Thompson RB, Gratton E. 1988. Phase fluorometric method for determination of standard lifetimes. Anal Chem 60:670–674.

    CAS  Google Scholar 

  110. Meister EC, Wild UP, Klein-Bölting P, Holzwarth AR. 1988. Time response of small side-on photomultiplier tubes in time-correlated single-photon counting measurements. Rev Sci Instrum 59(3): 499–501.

    CAS  Google Scholar 

  111. Bauer RK, Balter A. 1979. A method of avoiding wavelength-dependent errors in decay-time measurements. Opt Commun 28(1):91–96.

    CAS  Google Scholar 

  112. Kolber ZS, Barkley MD. 1986. Comparison of approaches to the instrumental response function in fluorescence decay measurements. Anal Biochem 152:6–21.

    CAS  Google Scholar 

  113. Vecer J, Kowalczyk AA, Davenport L, Dale RE. 1993. Reconvolution analysis in time-resolved fluorescence experiments, an alternative approach: reference-to-excitation-to-fluorescence reconvolution. Rev Sci Instrum 64(12):3413–3424.

    CAS  Google Scholar 

  114. Van Den Zegel M, Boens N, Daems D, De Schryver FC. 1986. Possibilities and limitations of the time-correlated single photon counting technique: a comparative study of correction methods for the wavelength dependence of the instrument response function. Chem Phys 101:311–335.

    Google Scholar 

  115. James DR, Demmer DRM, Verrall RE, Steer RP. 1983. Excitation pulse-shape mimic technique for improving picosecond-laser excited time-correlated single-photon counting deconvolutions. Rev Sci Instrum 54(9):1121–1130.

    CAS  Google Scholar 

  116. Zuker M, Szabo AG, Bramall L, Krajcarski DT, Selinger B. 1985. Delta function convolution method (DFCM) for fluorescence decay experiments. Rev Sci Instrum 56(1):14–22.

    CAS  Google Scholar 

  117. Castelli F. 1985. Determination of correct reference fluorescence lifetimes by self-consitent internal calibration. Rev Sci Instrum 56(4):538–542.

    CAS  Google Scholar 

  118. Vos K, van Hoek A, Visser AJWG. 1987. Application of a reference convolution method to tryptophan fluorescence in proteins. Eur J Biochem 165:55–63.

    CAS  Google Scholar 

  119. Martinho JMG, Egan LS, Winnik MA. 1987. Analysis of the scattered light component in distorted fluorescence decay profiles using a modified delta function convolution method. Anal Chem 59:861–864.

    CAS  Google Scholar 

  120. Ricka J. 1981. Evaluation of nanosecond pulse-fluorometry measurements: no need for the excitation function. Rev Sci Instrum 52(2):195–199.

    Google Scholar 

  121. Visser AJWG, Kulinski T, van Hoek A. 1988. Fluorescence lifetime measurements of pseudoazulenes using picosecond-resolved single photon counting. J Mol Struct 175:111–116.

    CAS  Google Scholar 

  122. Holtom GR. 1990. Artifacts and diagnostics in fast fluorescence measurements. SPIE Proc 1204:2–12.

    Google Scholar 

  123. Grinvald A. 1976. The use of standards in the analysis of fluorescence decay data. Anal Biochem 75:260–280.

    CAS  Google Scholar 

  124. Lampert RA, Chewter LA, Phillips D, O’Connor DV, Roberts AJ, Meech SR. 1983. Standards for nanosecond fluorescence decay time measurements. Anal Chem 55:68–73.

    CAS  Google Scholar 

  125. Schiller NH, Alfano RR. 1980. Picosecond characteristics of a spec-trograph measured by a streak camera/video readout system. Opt Commun 35(3):451–454.

    Google Scholar 

  126. Rubin B, Herman RM. 1981. Monochromators as light stretchers. Am J Phys 49(9):868–871.

    Google Scholar 

  127. Imhof RE, Birch DJS. 1982. Distortion of gaussian pulses by a diffraction grating. Opt Commun 42(2):83–86.

    Google Scholar 

  128. Saari P, Aaviksoo J, Freiberg A, Timpmann K. 1981. Elimination of excess pulse broadening at high spectral resolution of picosecond duration light emission. Opt Commun 39(1,2):94–98.

    Google Scholar 

  129. Bebelaar D. 1986. Compensator for the time dispersion in a mono-chromator. Rev Sci Instrum 57:1686–1687.

    CAS  Google Scholar 

  130. Beechem JM. 1992. Multi-emission wavelength picosecond time-resolved fluorescence decay data obtained on the millisecond time scale: application to protein: DNA interactions and protein folding reactions. SPIE Proc 1640:676–680.

    CAS  Google Scholar 

  131. Birch DJS, McLoskey D, Sanderson A, Suhling K, Holmes AS. 1994. Multiplexed time-correlated single-photon counting. J Fluoresc 4(1):91–102.

    CAS  Google Scholar 

  132. McLoskey D, Birch DJS, Sanderson A, Suhling K, Welch E, Hicks PJ. 1996. Multiplexed single-photon counting, I: a time-correlated fluorescence lifetime camera. Rev Sci Instrum 67(6):2228–2237.

    CAS  Google Scholar 

  133. Suhling K, McLoskey D, Birch DJS. 1996. Multiplexed single-photon counting, II: the statistical theory of time-correlated measurements. Rev Sci Instrum 67(6):2238–2246.

    CAS  Google Scholar 

  134. Becker W, Bergmann A, Giscotti G, Rück A. 2004. Advanced time-correlated photon counting technique for spectroscopy and imaging in biomedical systems. Proc SPIE 5340:104–112.

    Google Scholar 

  135. Becker W, Bergmann A, Wabnitz H, Grosenick D, Liebert A. 2001. High count rate multichannel TCSPC for optical tomography. Eur Conf Biomed Opt: Proc SPIE 4431:249–254.

    Google Scholar 

  136. Hamamatsu Photonics KK. Phototube Manual

    Google Scholar 

  137. Zhu L, Stryjewski WJ, Soper SA. 2004. Multiplexed fluorescence detection in microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence. Anal Biochem 330:206–218.

    CAS  Google Scholar 

  138. Lassiter SJ, Stryjewski W, Legendre BL, Erdmann R, Wahl M, Wurm J, Peterson R, Middendorf L, Soper SA. 2000. Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications. Anal Chem 72:5373–5382.

    CAS  Google Scholar 

  139. He H, McGown LB. 2000. DNA sequencing by capillary elec-trophoresis with four-decay fluorescence detection. Anal Chem 72:5865–5873.

    CAS  Google Scholar 

  140. Sauer M, Arden-Jacob J, Drexhage KH, Gobel F, Lieberwirth U, Muhlegger K, Muller R, Wolfrum J, Zander C 1998. Time-resolved identification of individual mononucleotide molecules in aqueous solution with pulsed semiconductor lasers. Bioimaging 6:14–24.

    CAS  Google Scholar 

  141. Waddell E, Wang Y, Stryjewski W, McWhorter S, Henry AC, Evans D, McCarley RL, Soper SA. 2000. High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes. Anal Chem 72:5907–5917.

    CAS  Google Scholar 

  142. Zhu L, Stryjewski W, Lassiter S, Soper SA. 2003. Fluorescence multiplexing with time-resolved and spectral discrimination using a near-IR detector. Anal Chem 75:2280–2291.

    CAS  Google Scholar 

  143. Hall P, Sellinger B. 1981. Better estimates of exponential decay parameters. J Phys Chem 85:2941–2946.

    CAS  Google Scholar 

  144. Tellinghuisen J, Wilkerson CW. 1993. Bias and precision in the estimation of exponential decay parameters from sparse data. Anal Chem 65:1240–1246.

    CAS  Google Scholar 

  145. Bhaumik ML, Clark GL, Snell J, Ferder L. 1965. Stroboscopic time-resolved spectroscopy. Rev Sci Instrum 36(1):37–40.

    CAS  Google Scholar 

  146. Barisas BG, Leuther MD. 1980. Grid-gated photomultiplier photometer with subnanosecond time response. Rev Sci Instrum 51(1):74–78.

    CAS  Google Scholar 

  147. Steingraber OJ, Berlman IB. 1963. Versatile technique for measuring fluorescence decay times in the nanosecond region. Rev Sci Instrum 34(5):524–529.

    CAS  Google Scholar 

  148. Hundley L, Coburn T, Garwin E, Stryer L. 1967. Nanosecond fluo-rimeter. Rev Sci Instrum 38(4):488–492.

    CAS  Google Scholar 

  149. James DR, Siemiarczuk A, Ware WR. 1992. Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes. Rev Sci Instrum 63(2):1710–1716.

    CAS  Google Scholar 

  150. Pitts JD, Mycek M-A. 2001. Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution. Rev Sci Instrum 72(7):3061–3072.

    CAS  Google Scholar 

  151. Nordlund TM. 1991. Streak camera for time-domain fluorescence. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 183–260. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  152. Schiller NH. 1984. Picosecond streak camera photonics. In Semiconductors probed by ultrafast laser spectroscopy, Vol. 2, pp. 441–458. Academic Press, New York.

    Google Scholar 

  153. Campillo AJ, Shapiro SL. 1983. Picosecond streak camera fluorom-etry: a review. IEEE J Quantum Electron QE-19:585–603.

    CAS  Google Scholar 

  154. Knox W, Mourou G. 1981. A simple jitter-free picosecond streak camera. Opt Commun 37(3):203–206.

    CAS  Google Scholar 

  155. Ho PP, Katz A, Alfano RR, Schiller NH. 1985. Time response of ultrafast streak camera system using femtosecond laser pulses. Opt Commun 54(1):57–62.

    CAS  Google Scholar 

  156. Tsuchiya Y, Shinoda Y. 1985. Recent developments of streak cameras. Proc SPIE 533:110–116.

    Google Scholar 

  157. Kinoshita K, Ito M, Suzuki Y. 1987. Femtosecond streak tube. Rev Sci Instrum 58(6):932–938.

    CAS  Google Scholar 

  158. Watanabe M, Koishi M, Roehrenbeck PW. 1993. Development and characteristics of a new picosecond fluorescence lifetime system. SPIE Proc 1885:155–164.

    CAS  Google Scholar 

  159. Wiessner A, Staerk H. 1993. Optical design considerations and performance of a spectro-streak apparatus for time-resolved fluorescence spectroscopy. Rev Sci Instrum 64(12):3430–3439.

    CAS  Google Scholar 

  160. Graf U, Bühler C, Betz M, Zuber H, Anliker M. 1994. Optimized streak-camera system: Wide excitation range and extended time scale for fluorescence lifetime measurement. SPIE Proc 2137:204–210.

    Google Scholar 

  161. Techert S, Wiessner A, Schmatz S, Staerk H. 2001. Time-resolved fluorescence and solvatochromy of directly linked pyrene-DMA derivatives in alcoholic solution. J Phys Chem B 105:7579–7587.

    CAS  Google Scholar 

  162. Hamamatsu Photonics KK. Picosecond fluorescence lifetime measurement system C4780.

    Google Scholar 

  163. Herman P, Lakowicz JR. Unpublished observations.

    Google Scholar 

  164. Porter G, Reid ES, Tredwell CJ. 1974. Time-resolved fluorescence in the picosecond region. Chem Phys Lett 29(3):469–472.

    CAS  Google Scholar 

  165. Beddard GS, Doust T, Porter G. 1981. Picosecond fluorescence depolarisation measured by frequency conversion. Chem Phys 61:17–23.

    CAS  Google Scholar 

  166. Kahlow MA, Jarzeba W, DuBruil TP, Barbara PF. 1988. Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion. Rev Sci Instrum 59(7):1098–1109.

    CAS  Google Scholar 

  167. Morandeira A, Fürstenberg A, Gumy J-C, Vauthey E. 2003. Fluorescence quenching in electron-donating solvents, 1: influence of the solute-solvent interactions on the dynamics. J Phys Chem A 107:5375–5383.

    CAS  Google Scholar 

  168. Morandeira A, Fürstenberg A, Vauthey E. 2004. Fluorescence quenching in electron-donating solvents, 2: solvent dependence and product dynamics. J Phys Chem A 108:8190–8200.

    CAS  Google Scholar 

  169. PicoQuant GmbH, NanoHarp 250 Multiscaler Board, http://pico-quant.com/products/spec_nanoharp.html.

  170. Ware WR, Doemeny LJ, Nemzek TL. 1973. Deconvolution of fluorescence and phosphorescence decay curves: a least-squares method. J Phys Chem 77(17):2038–2048.

    CAS  Google Scholar 

  171. Isenberg I, Dyson RD, Hanson R. 1973. Studies on the analysis of fluorescence decay data by the method of moments. Biophys J 13:1090–1115.

    CAS  Google Scholar 

  172. Small EW, Isenberg I. 1977. On moment index displacement. J Chem Physiol 66:3347–3351.

    CAS  Google Scholar 

  173. Small EW. 1992. Method of moments and treatment of nonrandom error. Methods Enzymol 210:237–279.

    CAS  Google Scholar 

  174. Gafni A, Modlin RL, Brand L. 1975. Analysis of fluorescence decay curves by means of the Laplace transformation. Biophys J 15:263–280.

    CAS  Google Scholar 

  175. Almgren M. 1973. Analysis of pulse fluorometry data of complex systems. Chem Scr 3:145–148.

    CAS  Google Scholar 

  176. Ameloot M. 1992. Laplace deconvolution of fluorescence decay surfaces. Methods Enzymol 210:237–279.

    Google Scholar 

  177. Ameloot M, Hendrickx H. 1983. Extension of the performance of laplace deconvolution in the analysis of fluorescence decay curves. Biophys J 44:27–38.

    CAS  Google Scholar 

  178. Livesey AK, Brochon JC. 1987. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J 52:693–706.

    CAS  Google Scholar 

  179. Brochon J-C. 1994. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311.

    CAS  Google Scholar 

  180. Zhang Z, Grattan KTV, Hu Y, Palmer AW, Meggitt BT. 1996. Prony’s method for exponential lifetime estimations in fluorescence based thermometers. Rev Sci Instrum 67(7):2590–2594.

    CAS  Google Scholar 

  181. López RJ, González F, Moreno F. 1992. Application of a sine transform method to experiments of single-photon decay spectroscopy: single exponential decay signals. Rev Sci Instrum 63(6):3268–3273.

    Google Scholar 

  182. Carraway ER, Hauenstein BL, Demas JN, DeGraff BA. 1985. Luminescence lifetime measurements: elimination of phototube time shifts with the phase plane method. Anal Chem 57:2304–2308.

    CAS  Google Scholar 

  183. Novikov EG. 1998. Reference reconvolution analysis by phase plane method. Rev Sci Instrum 69(7):2603–2610.

    CAS  Google Scholar 

  184. O’Connor DVO, Ware WR, Andre JC. 1979. Deconvolution of fluorescence decay curves: a critical comparison of techniques. J Phys Chem 83:1333–1343.

    Google Scholar 

  185. Johnson ML. 1994. Use of least-squares techniques in biochemistry. Methods Enzymol 240:1–22.

    Google Scholar 

  186. Straume M, Frasier-Cadoret SG, Johnson ML. 1991. Least-squares analysis of fluorescence data. In Topics in fluorescence spectroscopy, Vol. 2: Principles, pp. 177–239. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  187. Gryczynski I. Unpublished observations.

    Google Scholar 

  188. Montgomery DC, Peck EA. 1982. Introduction to linear regression analysis. John Wiley & Sons, New York.

    Google Scholar 

  189. Johnson ML. Personal communication.

    Google Scholar 

  190. Johnson ML, Faunt LM. 1992. Parameter estimation by least-squares methods. Methods Enzymol 210:1–37.

    CAS  Google Scholar 

  191. Johnson ML, Frasier SG. 1985. Nonlinear least-squares analysis. Methods Enzymol 117:301–342.

    CAS  Google Scholar 

  192. Box GEP. 1960. Fitting empirical data. Ann NY Acad Sci 86:792–816.

    Google Scholar 

  193. Bates DM, Watts DG. 1988. Nonlinear regression analysis and its applications. John Wiley. New York.

    Google Scholar 

  194. Straume M, Johnson ML. 1992. Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. Methods Enzymol 210:117–129.

    CAS  Google Scholar 

  195. Alcala JR. 1994. The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions. J Chem Phys 101(6):4578–4584.

    CAS  Google Scholar 

  196. Alcala JR, Gratton E, Prendergast FG. 1987. Fluorescence lifetime distributions in proteins. Biophys J 51:597–604.

    CAS  Google Scholar 

  197. James DR, Ware WR. 1985. A fallacy in the interpretation of fluorescence decay parameters. Chem Phys Lett 120(4,5):455–459.

    CAS  Google Scholar 

  198. Vix A, Lami H. 1995. Protein fluorescence decay: discrete components or distribution of lifetimes? Really no way out of the dilemma? Biophys J 68:1145–1151.

    CAS  Google Scholar 

  199. Lakowicz JR, Cherek H, Gryczynski I, Joshi N, Johnson ML. 1987. Analysis of fluorescence decay kinetics measured in the frequency-domain using distribution of decay times. Biophys Chem 28:35–50.

    CAS  Google Scholar 

  200. Beechem JM, Knutson JR, Ross JBA, Turner BW, Brand L. 1983. Global resolution of heterogeneous decay by phase/modulation fluo-rometry: mixtures and proteins. Biochemistry 22:6054–6058.

    CAS  Google Scholar 

  201. Beechem JM, Ameloot M, Brand L. 1985. Global analysis of fluorescence decay surfaces: excited-state reactions. Chem Phys Lett 120(4,5):466–472.

    CAS  Google Scholar 

  202. Knutson JR, Beechem JM, Brand L. 1983. Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem Phys Lett 102(6):501–507.

    CAS  Google Scholar 

  203. Beechem JM. 1989. A second generation global analysis program for the recovery of complex inhomogeneous fluorescence decay kinetics. Chem Phys Lipids 50:237–251.

    CAS  Google Scholar 

  204. Beechem JM, Gratton E, Ameloot M, Knutson JR, Brand L. 1991. The global analysis of fluorescence intensity and anisotropy decay data: second-generation theory and programs. In Topics in fluorescence spectroscopy, Vol. 2: Principles, pp. 241–305. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  205. Beechem JM. 1992. Global analysis of biochemical and biophysical data. Methods Enzymol 210:37–55.

    CAS  Google Scholar 

  206. Chabbert M, Hillen W, Hansen D, Takahashi M, Bousquet J-A. 1992. Structural analysis of the operator binding domain of Tn10-Encoded tet repressor: a time-resolved fluorescence and anisotropy study. Biochemistry 31:1951–1960.

    CAS  Google Scholar 

  207. Dattelbaum JD, Castellano FN. Unpublished observations.

    Google Scholar 

  208. Maus M, Rousseau E, Cotlet M, Schweitzer G, Hofkens J, Van der Auweraer M, De Schryver FC, Krueger A. 2001. New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation. Rev Sci Instrum 72(1):36–40.

    CAS  Google Scholar 

  209. Frackowiak D, Zelent B, Malak H, Planner A, Cegielski R, Munger G, Leblanc RM. 1994. Fluorescence of aggregated forms of CHl" in various media. J Photochem Photobiol A: Chem 78:49–55.

    CAS  Google Scholar 

  210. Werst M, Jia Y, Mets L, Fleming GR. 1992. Energy transfer and trapping in the photosystem I core antenna. Biophys J 61:868–878.

    CAS  Google Scholar 

  211. Gulotty RJ, Mets L, Alberte RS, Fleming GR. 1986. Picosecond fluorescence studies of excitation dynamics in photosynthetic light-harvesting arrays. In applications of fluorescence in the biomedical sciences, pp. 91–104. Ed DL Taylor, AS Waggoner, F Lanni, RF Murphy, RR Birge. Alan R. Liss, New York.

    Google Scholar 

  212. Visser AJWG. 1984. Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence. Photochem Photobiol 40(6):703–706.

    CAS  Google Scholar 

  213. Dudewicz EJ, Van Der Meulen EC. 1981. Entropy-based tests of uniformity. J Am Stat Assoc 76(376):967–974.

    Google Scholar 

  214. Livesey AK, Brochon JC. 1987. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J 52:693–706.

    CAS  Google Scholar 

  215. Vincent M, Brochon J-C, Merola F, Jordi W, Gallay J. 1988. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryp-tophan residue (Trp-59). Biochemistry 27:8752–8761.

    CAS  Google Scholar 

  216. Merola F, Rigler R, Holmgren A, Brochon J-C. 1989. Picosecond tryptophan fluorescence of thioredoxin: Evidence for discrete species in slow exchange. Biochemistry 28:3383–3398.

    CAS  Google Scholar 

  217. Sopkova J, Vincent M, Takahashi M, Lewit-Bentley A, Gallay J. 1999. Conformational flexibility of domain III of Annexin V at membrane/water interfaces. Biochemistry 38:5447–5458.

    CAS  Google Scholar 

  218. Luecke H, Chang BT, Mailliard WS, Schlaepfer DD, Harry H. 1995. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature 378(6556):512–515.

    CAS  Google Scholar 

  219. Rouvière N, Gallay J. 2000. Wavelength-resolved fluorescence emission of proteins using the synchrontron radiation as pulsed-light source: Cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin. Cell Mol Biol 46(5):1113–1131.

    Google Scholar 

  220. Becker W. 2005. Advanced time-correlated single photon counting techniques. Springer, New York.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Time-Domain Lifetime Measurements. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_4

Download citation

Publish with us

Policies and ethics