Skip to main content
  • 197k Accesses

Abstract

The previous chapter described the general features of intrinsic protein fluorescence. We described the spectral properties of the aromatic amino acids and how these properties are influenced by the surrounding protein structure. We now describe time-resolved measurements of protein fluorescence. Such measurements have become increasingly common because of the increased availability of timedomain (TD) and frequency-domain (FD) instrumenta-tion.1,2 However, time-resolved studies of intrinsic protein fluorescence are made challenging by the lack of simple pulsed light sources. Pulsed laser diodes are not yet available for excitation of protein fluorescence. Pulsed LEDs for excitation of protein fluorescence have just been announced, but the pulse widths are over one nanosecond. Single-photon excitation of protein fluorescence requires wavelengths in the range from 280 to 305 nm. Prior to about 2000, the dominant pulsed light source for this range of wavelengths was a synchronously pumped cavity-dumped dye laser, typically rhodamine 6G, which was doubled to obtain the UV wavelengths. The synchronously pumped dye lasers require an actively mode-locked pump laser, typically an argon ion or Nd:YAG laser. At present the actively mode-locked lasers are becoming less available because of the widespread use of Ti:sapphire lasers. These lasers spontaneously mode lock and may not use an active mode locker. Wavelengths suitable for excitation of protein fluorescence can be obtained by frequency tripling the long-wavelength output of a Ti:sapphire laser. Tripling the output at 840 nm yields 280 nm. The femtosecond pulse widths from Ti:sapphire lasers make it practical to generate such harmonics. Excitation of intrinsic protein fluorescence can also be accomplished with synchrotron radiation. Many of the recent studies of time-resolved intrinsic protein fluorescence used the frequency-tripled output of a pulsed Ti:sap-phire laser or synchrotron radiation.

Even with the best available instrumentation it is challenging to interpret the time-dependent data from proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birch DJS, Imhof RE. 1991. Time-domain fluorescence spec-troscopy using time-correlated single-photon counting. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 1–95. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  2. Lakowicz JR, Gryczynski I. 1991. Frequency-domain fluorescence spectroscopy. In Topics in fluorescence spectroscopy, Vol 1: Techniques, pp. 293–355. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  3. Grinvald A, Steinberg IZ. 1976. The fluorescence decay of trypto-phan residues in native and denatured proteins. Biochim Biophys Acta 427:663–678.

    CAS  Google Scholar 

  4. Beechem JM, Brand L. 1985. Time-resolved fluorescence of proteins. Annu Rev Biochem 54:43–71.

    Article  CAS  Google Scholar 

  5. Rayner DM, Szabo AG. 1978. Time-resolved fluorescence of aqueous tryptophan. Can J Chem 56:743–745.

    Article  CAS  Google Scholar 

  6. Szabo AG, Rayner DM. 1980. Fluorescence decay of tryptophan conformers in aqueous solution. J Am Chem Soc 102:554–563.

    Article  CAS  Google Scholar 

  7. Gudgin E, Lopez-Delgado R, Ware WR. 1981. The tryptophan fluorescence lifetime puzzle: a study of decay times in aqueous solution as a function of pH and buffer composition. Can J Chem 59:1037–1044.

    Article  CAS  Google Scholar 

  8. McLaughlin ML, Barkley MD. 1997. Time-resolved fluorescence of constrained tryptophan derivatives: implications for protein fluorescence. Methods Enzymol 278:190–202.

    Article  CAS  Google Scholar 

  9. Schiller PW. 1985. Application of fluorescence techniques in studies of peptide conformations and interactions. Peptides 7:115–164.

    CAS  Google Scholar 

  10. Robbins RJ, Fleming GR, Beddard GS, Robinson GW, Thistlethwaite PJ, Woolfe GJ. 1980. Photophysics of aqueous trypto-phan: pH and temperature effects. J Am Chem Soc 102:6271–6280.

    Article  CAS  Google Scholar 

  11. Eftink MR, Jia Y, Hu D, Ghiron CA. 1995. Fluorescence studies with tryptophan analogues: excited state interactions involving the side chain amino group. J Phys Chem 99:5713–5723.

    Article  CAS  Google Scholar 

  12. Petrich JW, Chang MC, McDonald DB, Fleming GR. 1983. On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J Am Chem Soc 105:3824–3832.

    Article  CAS  Google Scholar 

  13. Chen Y, Liu B, Yu H-T, Barkley MD. 1996. The peptide bond quenches indole fluorescence. J Am Chem Soc 118(39):9271–9278.

    Article  CAS  Google Scholar 

  14. Chen Y, Liu B, Barkley MD. 1995. Trifluoroethanol quenches indole fluorescence by excited-state proton transfer. J Am Chem Soc 117:5608–5609.

    Article  CAS  Google Scholar 

  15. Steiner RF, Kirby E P. 1969. The interaction of the ground and excited states of indole derivatives with electron scavengers. J Phys Chem 15:4130–4135.

    Article  Google Scholar 

  16. Froehlich PM, Gantt D, Paramasigamani V. 1977. Fluorescence quenching of indoles by N,N-dimethylformamide. Photochem Photobiol 26:639–642.

    Article  CAS  Google Scholar 

  17. Ricci RW, Nesta JM. 1976. Inter- and intramolecular quenching of indole fluorescence by carbonyl compounds. J Phys Chem 80(9):974–980.

    Article  CAS  Google Scholar 

  18. Shopova M, Genov N. 1983. Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilisin novo. Int J Pept Protein Res 21:475–478.

    Article  CAS  Google Scholar 

  19. Butler J, Land EJ, Prutz WA, Swallow AJ. 1982. Charge transfer between tryptophan and tyrosine in proteins. Biochim Biophys Acta 705:150–162.

    CAS  Google Scholar 

  20. Prutz WA, Siebert F, Butler J, Land EJ, Menez A, Montenay-Garestier T. 1982. Intramolecular radical transformations involving methionine, tryptophan and tyrosine. Biochim Biophys Acta 705:139–149.

    Google Scholar 

  21. Sanyal G, Kim E, Thompson FM, Brady EK. 1989. Static quenching of tryptophan fluorescence by oxidized dithiothreitol. Biochem Biophys Res Commun 165(2):772–781.

    Article  CAS  Google Scholar 

  22. Eftink MR. 1991. Fluorescence quenching reactions. In Biophysical and biochemical aspects of fluorescence spectroscopy, pp. 1–41. Ed TG Dewey. Plenum Press, New York.

    Google Scholar 

  23. Adams P, Chen Y, Ma K, Zagorski M, Sonnichsen FD, McLaughlin ML. 2002. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278– 9286.

    Article  CAS  Google Scholar 

  24. Chen Y, Barkley MD. 1998. Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982.

    Article  CAS  Google Scholar 

  25. Jameson DM, Weber G. 1981. Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements. J Phys Chem 85:953–958.

    Article  CAS  Google Scholar 

  26. Chen RF, Knutson JR, Ziffer H, Porter D. 1991. Fluorescence of tryptophan dipeptides: correlations with the rotamer model. Biochemistry 30:5184–5195.

    Article  CAS  Google Scholar 

  27. Shizuka H, Serizawa M, Shimo T, Saito I, Matsuura T. 1988. Fluorescence-quenching mechanism of tryptophan: remarkably efficient internal proton-induced quenching and charge-transfer quenching. J Am Chem Soc 110:1930–1934.

    Article  CAS  Google Scholar 

  28. Callis PR, Liu T. 2004. Quantitative prediction of fluorescence quantum yields for tryptophan in proteins. J Phys Chem B 108:4248– 4259.

    Article  CAS  Google Scholar 

  29. Malak H, Gryczynski I, Lakowicz JR. Unpublished observations.

    Google Scholar 

  30. Lakowicz JR, Jayaweera R, Szmacinski H, Wiczk W. 1989. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra. Photochem Photobiol 50(4):541–546.

    Article  CAS  Google Scholar 

  31. Ruggiero AJ, Todd DC, Fleming GR. 1990. Subpicosecond fluorescence anisotropy studies of tryptophan in water. J Am Chem Soc 112:1003–1014.

    Article  CAS  Google Scholar 

  32. Döring K, Konermann L, Surrey T, Jähnig F. 1995. A long lifetime component in the tryptophan fluorescence of some proteins. Eur Biophys J 23:423–432.

    Article  Google Scholar 

  33. Lakowicz JR, Laczko G, Gryczynski I. 1987. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry. Biochemistry 26:82–90.

    Article  CAS  Google Scholar 

  34. Ross JBA, Laws WR, Rousslang KW, Wyssbrod HR. 1992. Tyrosine fluorescence and phosphorescence from proteins and polypeptides. In Topics in fluorescence spectroscopy, Vol. 3: Biochemical applications, pp. 1–63. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  35. Laws WR, Ross JBA, Wyssbrod HR, Beechem JM, Brand L, Sutherland JC. 1986. Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: correlation of NMR-deter-mined rotamer populations and fluorescence kinetics. Biochemistry 25:599–607.

    Article  CAS  Google Scholar 

  36. Ross JBA, Laws WR, Sutherland JC, Buku A, Katsoyannis PG, Schwartz IL, Wysobrod HR. 1986. Linked-function analysis of fluorescence decay functions: resolution of side-chain rotamer populations of a single aromatic amino acid in small polypeptides. Photochem Photobiol 44:365–370.

    Article  CAS  Google Scholar 

  37. Contino PB, Laws WR. 1991. Rotamer-specific fluorescence quenching in tyrosinamide: dynamic and static interactions. J Fluoresc 1(1):5–13.

    Article  CAS  Google Scholar 

  38. Noronha M, Lima JC, Lamosa P, Santos H, Maycock C, Ventura R, Maçanita AL. 2004. Intramolecular fluorescence quenching of tyro-sine by the peptide α-carbonyl group revisited. J Phys Chem A 108:2155–2166.

    Article  CAS  Google Scholar 

  39. Seidel C, Orth A, Greulich K-O. 1993. Electronic effects on the fluorescence of tyrosine in small peptides. Photochem Photobiol 58(2):178–184.

    Article  CAS  Google Scholar 

  40. Leroy E, Lami H, Laustriat G. 1971. Fluorescence lifetime and quantum yield of phenylalanine aqueous solutions: temperature and concentration effects. Photochem Photobiol 13:411–421.

    Article  CAS  Google Scholar 

  41. Sudhakar K, Wright WW, Williams SA, Phillips CM, Vanderkooi JM. 1993. Phenylalanine fluorescence and phosphorescence used as a probe of conformation for cod parvalbumin. J Fluoresc 3(2):57–64.

    Article  CAS  Google Scholar 

  42. Lankiewicz L, Stachowiak K, Rzeska A, Wiczk W. 1999. Photophysics of sterically constrained peptides. In Peptide science— present and future, pp. 168–170. Ed Y Shimonishi. Kluwer, London.

    Google Scholar 

  43. Guzow K, Ganzynkowicz R, Rzeska A, Mrozek J, Szabelski M, Karolczak J, Liwo A, Wiczk W. 2004. Photophysical properties of tyrosine and its simple derivatives studied by time-resolved fluorescence spectroscopy, global analysis, and theoretical calculations. J Phys Chem B 108:3879–3889.

    Article  CAS  Google Scholar 

  44. Tanaka F, Tamai N, Mataga N, Tonomura B, Hiromi K. 1994. Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence. Biophys J 67:874–880.

    Article  CAS  Google Scholar 

  45. Tanaka F, Mataga N. 1992. Non-exponential decay of fluorescence of tryptophan and its motion in proteins. In Dynamics and mechanisms of photoinduced electron transfer and related phenomena, pp. 501–512. Ed N Mataga, T Okada, H Masuhara. North-Holland, Amsterdam.

    Google Scholar 

  46. Eftink MR, Ghiron CA, Kautz RA, Fox RO. 1989. Fluorescence lifetime studies with staphylococcal nuclease and its site-directed mutant: test of the hypothesis that proline isomerism is the basis for nonexponential decays. Biophys J 55:575–579.

    Article  CAS  Google Scholar 

  47. Dahms TES, Willis KJ, Szabo AG. 1995. Conformational heterogeneity of tryptophan in a protein crystal. J Am Chem Soc 117:2321–2326.

    Article  CAS  Google Scholar 

  48. Tanaka F, Mataga N. 1987. Fluorescence quenching dynamics of tryptophan in proteins. Biophys J 51:487–495.

    Article  CAS  Google Scholar 

  49. Alcala JR. 1994. The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions. J Chem Phys 101(6):4578–4584.

    Article  CAS  Google Scholar 

  50. Eftink MR, Ghiron CA. 1975. Dynamics of a protein matrix as revealed by fluorescence quenching. Proc Natl Acad Sci USA 72:3290–3294.

    Article  CAS  Google Scholar 

  51. Eftink MR, Ghiron CA. 1977. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16:5546–5551.

    Article  CAS  Google Scholar 

  52. Eftink MR, Hagaman KA. 1986. The viscosity dependence of the acrylamide quenching of the buried tryptophan residue in parvalbu-min and ribonuclease T1. Biophys Chem 25:277–282.

    Article  CAS  Google Scholar 

  53. Longworth JW. 1968. Excited state interactions in macromolecules. Photochem Photobiol 7:587–594.

    Article  CAS  Google Scholar 

  54. James DR, Demmer DR, Steer RP, Verrall RE. 1985. Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. Biochemistry 24:5517–5526.

    Article  CAS  Google Scholar 

  55. Gryczynski I, Eftink M, Lakowicz JR. 1988. Conformation heterogeneity in proteins as an origin of heterogeneous fluorescence decays, illustrated by native and denatured ribonuclease T1. Biochim Biophys Acta 954:244–252.

    CAS  Google Scholar 

  56. Eftink MR, Ghiron CA. 1987. Frequency domain measurements of the fluorescence lifetime of ribonuclease T1. Biophys J 52:467–473.

    Article  CAS  Google Scholar 

  57. Chen LX-Q, Longworth JW, Fleming GR. 1987. Picosecond time-resolved fluorescence of ribonuclease T1. Biophys J 51:865–873.

    Article  CAS  Google Scholar 

  58. Concha NO, Head JF, Kaetzel MA, Dedman JR, Seaton BA. 1993. Rat annexin V crystal structure: Ca2+—induced conformational changes. Science 261:1321–1324..

    Article  CAS  Google Scholar 

  59. Sopkova J, Gallay J, Vincent M, Pancoska P, Lewit-Bentley A. 1994. The dynamic behavior of Annexin V as a function of calcium ion binding: a circular dichroism, UV absorption, and steady state and time-resolved fluorescence study. Biochemistry 33(15):4490–4499.

    Article  CAS  Google Scholar 

  60. Sopkova J, Vincent M, Takahashi M, Lewit-Bentley A, Gallay J. 1998. Conformational flexibility of domain III of annexin V studied by fluorescence of tryptophan 187 and circular dichroism: the effect of pH. Biochemistry 37:11962–11970.

    Article  CAS  Google Scholar 

  61. Toptygin D, Savtchenko RS, Meadow ND, Brand L. 2001. Homogeneous spectrally- and time-resolved fluorescence emission from single-tryptophan mutants of IIAGlc protein. J Phys Chem B 105:2043–2055.

    Article  CAS  Google Scholar 

  62. Gryczynski I, Lakowicz JR. Unpublished observations.

    Google Scholar 

  63. Nishimoto E, Yamashita S, Szabo AG, Imoto T. 1998. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry 37:5599–5607.

    Article  CAS  Google Scholar 

  64. Poveda JA, Prieto M, Encinar JA, Gonzalez-Ros JM, Mateo CR. 2003. Intrinsic tyrosine fluorescence as a tool to study the interaction of the shaker B “ball” peptide with anionic membranes. Biochemistry 42:7124–7132.

    Article  CAS  Google Scholar 

  65. Damberg P, Jarvet J, Allard P, Mets U, Rigler R, Gräslund A. 2002. 13C−1H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin. Biophys J 83:2812–2825.

    Article  CAS  Google Scholar 

  66. Kroes SJ, Canters GW, Gilardi G, van Hoek A, Visser AJWG. 1998. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility. Biophys J 75:2441–2450.

    Article  CAS  Google Scholar 

  67. Tcherkasskaya O, Ptitsyn OB, Knutson JR. 2000. Nanosecond dynamics of tryptophans in different conformational states of apomyoglobin proteins. Biochemistry 39:1879–1889.

    Article  CAS  Google Scholar 

  68. Lakshmikanth GS, Krishnamoorthy G. 1999. Solvent-exposed tryp-tophans probe the dynamics at protein surfaces. Biophys J 77:1100–1106.

    Article  CAS  Google Scholar 

  69. Kouyama I, Kinosita K, Ikegami A. 1989. Correlation between internal motion and emission kinetics of tryptophan residues in proteins. Eur J Biochem 182:517–521.

    Article  CAS  Google Scholar 

  70. Hansen JE, Rosenthal SJ, Fleming GR. 1992. Subpicosecond fluorescence depolarization studies of tryptophan and tryptophanyl residues of proteins. J Phys Chem 96:3034–3040.

    Article  CAS  Google Scholar 

  71. Ross JBA, Rousslang KW, Brand L. 1981. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24). Biochemistry 20:4361–4369.

    Article  CAS  Google Scholar 

  72. Nordlund TM, Podolski DA. 1983. Streak camera measurement of tryptophan and rhodamine motions with picosecond time resolution. Photochem Photobiol 38(6):665–669.

    Article  CAS  Google Scholar 

  73. Nordlund TM, Liu X-Y, Sommer JH. 1986. Fluorescence polarization decay of tyrosine in lima bean trypsin inhibitor. Proc Natl Acad Sci USA 83:8977–8981.

    Article  CAS  Google Scholar 

  74. Data courtesy of Dr. John Lee, University of Georgia.

    Google Scholar 

  75. Liao R, Wang C-K, Cheung HC. 1992. Time-resolved tryptophan emission study of cardiac troponin I. Biophys J 63:986–995.

    Article  CAS  Google Scholar 

  76. Dittes K, Gakamsky DM, Haran G, Haas E, Ojcius DM, Kourilsky P, Pecht I. 1994. Picosecond fluorescence spectroscopy of a single-chain class I major histocompatibility complex encoded protein in its peptide loaded and unloaded states. Immunol Lett 40:125–132.

    Article  CAS  Google Scholar 

  77. Lakowicz JR, Gryczynski I, Szmacinski H, Cherek H, Joshi N. 1991. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching. Eur Biophys J 19:125–140.

    Article  CAS  Google Scholar 

  78. Lakowicz JR, Cherek H, Gryczynski I, Joshi N, Johnson ML. 1987. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Biophys J 51:755–768.

    Article  CAS  Google Scholar 

  79. Gryczynski I, Lakowicz JR. Unpublished observations.

    Google Scholar 

  80. John E, Jähnig F. 1988. Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay. Biophys J 54:817–827.

    Article  CAS  Google Scholar 

  81. Lakowicz JR, Gryczynski I, Cherek H, Laczko G. 1991. Anisotropy decays of indole, melittin monomer and melittin tetramer by frequency-domain fluorometry and multi-wavelength global analysis. Biophys Chem 39:241–251.

    Article  CAS  Google Scholar 

  82. Georghiou S, Thompson M, Mukhopadhyay AK. 1981. Melittin-phospholipid interaction evidence for melittin aggregation. Biochim Biophys Acta 642:429–432.

    Article  CAS  Google Scholar 

  83. Dufourcq J, Faucon J-F. 1977. Intrinsic fluorescence study of lipid—protein interactions in membrane models. Biochim Biophys Acta 467:1–11.

    Article  CAS  Google Scholar 

  84. Faucon JF, Dufourcq J, Lussan C. 1979. The self-association of melittin and its binding to lipids. FEBS Lett 102(1):187–190.

    Article  CAS  Google Scholar 

  85. Kaszycki P, Wasylewski Z. 1990. Fluorescence-quenching-resolved spectra of melittin in lipid bilayers. Biochim Biophys Acta 1040:337–345.

    CAS  Google Scholar 

  86. Papenhuijzen J, Visser AJWG. 1983. Simulation of convoluted and exact emission anisotropy decay profiles. Biophys Chem 17:57–65.

    Article  CAS  Google Scholar 

  87. De Beuckeleer K, Volckaert G, Engelborghs Y. 1999. Time resolved fluorescence and phosphorescence properties of the individual tryp-tophan residues of barnase: evidence for protein–protein interactions. Proteins: Struct Funct Genet 36:42–53.

    Article  Google Scholar 

  88. Sillen A, Hennecke J, Roethlisberger D, Glockshuber R, Engelborghs Y. 1999. Fluorescence quenching in the DsbA protein from escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Proteins: Struct Funct Genet 37:253–263.

    Article  CAS  Google Scholar 

  89. Hennecke J, Sillen A, Huber-Wunderlich M, Engelborghs Y, Glockshuber R. 1997. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from escherichia coli. Biochemistry 36:6391–6400.

    Article  CAS  Google Scholar 

  90. Rouviere N, Vincent M, Craescu CT, Gallay J. 1997. Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface β-strand: time-resolved fluorescence study. Biochemistry 36:7339–7352.

    Article  CAS  Google Scholar 

  91. Suwaliyan A, Klein UKA. 1989. Picosecond study of solute–solvent interaction of the excited state of indole. Chem Phys Lett 159(2–3):244–250.

    Google Scholar 

  92. Eftink MR, Ramsay GD, Burns L, Maki AH, Mann CJ, Matthews CR, Ghiron CA. 1993. Luminescence studies of trp repressor and its single-tryptophan mutants. Biochemistry 32:9189–9198.

    Article  CAS  Google Scholar 

  93. Royer CA. 1992. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryp-tophan mutants. Biophys J 63:741–750.

    Article  CAS  Google Scholar 

  94. Bismuto E, Irace G, D′Auria S, Rossi M, Nucci R. 1997. Multitryptophan-fluorescence emission decay of β-glycosidase from the extremely thermophilic archaeon Sulfolobus solfataricus. Eur J Biochem 244:53–58.

    Article  CAS  Google Scholar 

  95. Hirsch RE, Nagel RL. 1981. Conformational studies of hemoglobins using intrinsic fluorescence measurements. J Biol Chem 256(3):1080–1083.

    CAS  Google Scholar 

  96. Hirsch RE, Peisach J. 1986. A comparison of the intrinsic fluorescence of red kangaroo, horse and sperm whale metmyoglobins. Biochim Biophys Acta 872:147–153.

    CAS  Google Scholar 

  97. Hirsch RE, Noble RW. 1987. Intrinsic fluorescence of carp hemoglobin: a study of the R6T transition. Biochim Biophys Acta 914:213–219.

    CAS  Google Scholar 

  98. Sebban P, Coppey M, Alpert B, Lindqvist L, Jameson DM. 1980. Fluorescence properties of porphyrin-globin from human hemoglobin. Photochem Photobiol 32:727–731.

    Article  CAS  Google Scholar 

  99. Hochstrasser RM, Negus DK. 1984. Picosecond fluorescence decay of tryptophans in myoglobin. Proc Natl Acad Sci USA 81:4399–4403.

    Article  CAS  Google Scholar 

  100. Bismuto E, Irace G, Gratton E. 1989. Multiple conformational states in myoglobin revealed by frequency domain fluorometry. Biochemistry 28:1508–1512.

    Article  CAS  Google Scholar 

  101. Willis KJ, Szabo AG, Zuker M, Ridgeway JM, Alpert B. 1990. Fluorescence decay kinetics of the tryptophyl residues of myoglobin: effect of heme ligation and evidence for discrete lifetime components. Biochemistry 29:5270–5275.

    Article  CAS  Google Scholar 

  102. Gryczynski Z, Lubkowski J, Bucci E. 1995. Heme–protein interactions in horse heart myoglobin at neutral pH and exposed to acid investigated by time-resolved fluorescence in the pico- to nanosecond time range. J Biol Chem 270(33):19232–19237.

    Article  CAS  Google Scholar 

  103. Janes SM, Holtom G, Ascenzi P, Brundri M, Hochstrasser RM. 1987. Fluorescence and energy transfer of tryptophans in Aplysia myoglo-bin. Biophys J 51:653–660.

    Article  CAS  Google Scholar 

  104. Szabo AG, Krajcarski D, Zuker M, Alpert B. 1984. Conformational heterogeneity in hemoglobin as determined by picosecond fluorescence decay measurements of the tryptophan residues. Chem Phys Lett 108:145–149.

    Article  CAS  Google Scholar 

  105. Kamal JKA, Behere DV. 2001. Steady-state and picosecond time-resolved fluorescence studies on native and apo seed coat soybean peroxidase. Biochem Biophys Res Comm 289:427–433.

    Article  CAS  Google Scholar 

  106. Bucci E, Gryczynski Z, Fronticelli C, Gryczynski I, Lakowicz JR. 1992. Fluorescence intensity and anisotropy decays of the intrinsic tryptophan emission of hemoglobin measured with a 10-GHz fluo-rometer using front-face geometry on a free liquid surface. J Fluoresc 2(1):29–36.

    Article  CAS  Google Scholar 

  107. Toptygin D, Brand L. 2000. Spectrally- and time-resolved fluorescence emission of indole during solvent relaxation: a quantitative model. Chem Phys Lett 322:496–502.

    Article  CAS  Google Scholar 

  108. Lakowicz JR. 2000. On spectral relaxation in proteins. Photochem Photobiol 72(4):421–437.

    Article  CAS  Google Scholar 

  109. Vincent M, Gilles AM, Li de la Sierra IM, Briozzo P, Barzu O, Gallay J. 2000. Nanosecond fluorescence dynamic stokes shift of tryptophan in a protein matrix. J Phys Chem B 104:11286–11295.

    Article  CAS  Google Scholar 

  110. Zhong D, Pal SK, Zhang D, Chan SI, Zewail AH. 2002. Femtosecond dynamics of rubredoxin: tryptophan solvation and resonance energy transfer in the protein. Proc Natl Acad Sci USA 99(1):13–18.

    Article  CAS  Google Scholar 

  111. Petushkov VN, van Stokkum IHM, Gobets B, van Mourik F, Lee J, van Grondelle R, Visser AJWG. 2003. Ultrafast fluorescence relaxation spectroscopy of 6,7-dimethyl-(8-ribityl)-lumazine and riboflavin, free and bound to antenna proteins from bioluminescent bacteria. J Phys Chem B 107:10934–10939.

    Article  CAS  Google Scholar 

  112. Kamal JKA, Zhao L, Zewail AH. 2004. Ultrafast hydration dynamics in protein unfolding: human serum albumin. Proc Natl Acad Sci USA 101(37):13411–13416.

    Article  CAS  Google Scholar 

  113. Lakowicz JR, Cherek H. 1980. Nanosecond dipolar relaxation in proteins observed by wavelength-resolved lifetimes of tryptophan fluorescence. J Biol Chem 255:831–834.

    CAS  Google Scholar 

  114. Demchenko AP, Gryczynski I, Gryczynski Z, Wiczk W, Malak H, Fishman M. 1993. Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease. Biophys Chem 48:39–48.

    Article  CAS  Google Scholar 

  115. Pierce DW, Boxer SG. 1992. Dielectric relaxation in a protein matrix. J Phys Chem 96:5560–5566.

    Article  CAS  Google Scholar 

  116. Grinvald A, Steinberg IZ. 1974. Fast relaxation process in a protein revealed by the decay kinetics of tryptophan fluorescence. Biochemistry 25(13):5170–5178.

    Article  Google Scholar 

  117. Georghiou S, Thompson M, Mukhopadhyay AK. 1982. Melittin–phospholipid interaction studied by employing the single tryptophan residue as an intrinsic fluorescent probe. Biochim Biophys Acta 688:441–452.

    Article  CAS  Google Scholar 

  118. Szmacinski H, Lakowicz JR, Johnson M. 1988. Time-resolved emission spectra of tryptophan and proteins from frequency-domain fluorescence spectroscopy. SPIE Proc 909:293–298.

    CAS  Google Scholar 

  119. Buzady A, Erostyak J, Somogyi B. 2000. Phase-fluorimetry study on dielectric relaxation of human serum albumin. Biophys Chem 88:153–163.

    Article  CAS  Google Scholar 

  120. Russo AT, Brand L. 1999. A nanosecond time-resolved fluorescence study of recombinant human myelin basic protein. J Fluoresc 9(4):333–342.

    Article  CAS  Google Scholar 

  121. Vincent M, Gallay J, Demchenko AP. 1995. Solvent relaxation around the excited state of indole: analysis of fluorescence lifetime distributions and time-dependence spectral shifts. J Phys Chem 99:14931–14941.

    Article  CAS  Google Scholar 

  122. De Foresta B, Gallay J, Sopkova J, Champeil P, Vincent M. 1999. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs. Biophys J 77:3071–3084.

    Article  Google Scholar 

  123. Steiner RF, Kolinski R. 1968. The phosphorescence of oligopeptides containing tryptophan and tyrosine. Biochemistry 7:1014–1018.

    Article  CAS  Google Scholar 

  124. Purkey RM, Galley WC. 1970. Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins. Biochemistry 9:3569–3575.

    Article  CAS  Google Scholar 

  125. Strambini GB, Gonnelli M. 1985. The indole nucleus triplet-state lifetime and its dependence on solvent microviscosity. Chem Phys Lett 115(2):196–200.

    Article  CAS  Google Scholar 

  126. Cioni P, Strambini GB. 2002. Tryptophan phosphorescence and pressure effects on protein structure. Biochim Biophys Acta 1595:116–130.

    CAS  Google Scholar 

  127. Wright WW, Guffanti GT, Vanderkooi JM. 2003. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan. Biophys J 85:1980–1995.

    Article  CAS  Google Scholar 

  128. Kai Y, Imakubo K. 1979. Temperature dependence of the phosphorescence lifetimes of heterogeneous tryptophan residues in globular proteins between 293 and 77 K. Photochem Photobiol 29:261–265.

    Article  CAS  Google Scholar 

  129. Domanus J, Strambini GB, Galley WC. 1980. Heterogeneity in the thermally-induced quenching of the phosphorescence of multi-tryp-tophan proteins. Photochem Photobiol 31:15–21.

    Article  CAS  Google Scholar 

  130. Barboy N, Feitelson J. 1985. Quenching of tryptophan phosphorescence in alcohol dehydrogenase from horse liver and its temperature dependence. Photochem Photobiol 41(1):9–13.

    Article  CAS  Google Scholar 

  131. Saviotti ML, Galley WC. 1974. Room temperature phosphorescence and the dynamic aspects of protein structure. Proc Natl Acad Sci USA 71(10):4154–4158.

    Article  CAS  Google Scholar 

  132. Strambini GB. 1983. Singular oxygen effects on the room-temperature phosphorescence of alcohol dehydrogenase from horse liver. Biophys J 43:127–130.

    Article  CAS  Google Scholar 

  133. Papp S, Vanderkooi JM. 1989. Tryptophan phosphorescence at room temperature as a tool to study protein structure and dynamics. Photochem Photobiol 49:775–784.

    Article  CAS  Google Scholar 

  134. Vanderkooi JM, Berger JW. 1989. Excited triplet states used to study biological macromolecules at room temperature. Biochim Biophys Acta 976:1–27.

    Article  CAS  Google Scholar 

  135. Schauerte JA, Steel DG, Gafni A. 1997. Time-resolved room temperature tryptophan phosphorescence in proteins. Methods Enzymol 278:49–71.

    Article  CAS  Google Scholar 

  136. Strambini GB, Cioni P. 1999. Pressure-temperature effects on oxygen quenching of protein phosphorescence. J Am Chem Soc 121:8337–8344.

    Article  CAS  Google Scholar 

  137. Bodis E, Strambini GB, Gonnelli M, Malnasi-Csizmadia A, Somogyi B. 2004. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain. Biophys J 87:1146–1154.

    Article  CAS  Google Scholar 

  138. Mazhul VM, Zaitseva EM, Shavlovsky MM, Stepanenko OV, Kuznetsova IM, Turoverov KK. 2003. Monitoring of actin unfolding by room temperature tryptophan phosphorescence. Biochemistry 42:13551–13557.

    Article  CAS  Google Scholar 

  139. Gershenson A, Schauerte JA, Giver L, Arnold FH. 2000. Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases. Biochemistry 39:4658–4665.

    Article  CAS  Google Scholar 

  140. Cioni P. 2000. Oxygen and acrylamide quenching of protein phosphorescence: correlation and protein dynamics. Biophys Chem 87:15–24.

    Article  CAS  Google Scholar 

  141. Gonnelli M, Strambini GB. 1997. Time-resolved protein phosphorescence in the stopped-flow: denaturation of horse liver alcohol dehy-drogenase by urea and guanidine hydrochloride. Biochemistry 36:16212–16220.

    Article  CAS  Google Scholar 

  142. Vanderkooi JM, Calhoun DB, Englander SW. 1987. On the prevalence of room-temperature protein phosphorescence. Science 230:568–569

    Article  Google Scholar 

  143. Strambini GB, Gonnelli M. 1990. Tryptophan luminescence from liver alcohol dehydrogenase in its complexes with coenzyme: a comparative study of protein conformation in solution. Biochemistry 29:196–203.

    Article  CAS  Google Scholar 

  144. Strambini GB, Gabellieri E. 1989. Phosphorescence properties and protein structure surrounding tryptophan residues in yeast, pig, and rabbit glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 28:160–166.

    Article  CAS  Google Scholar 

  145. Strambini GB, Cioni P, Cook PF. 1996. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydry-lase reaction pathway. Biochemistry 35:8392–8400.

    Article  CAS  Google Scholar 

  146. Burns LE, Maki AH, Spotts R, Matthews KS. 1993. Characterization of the two tryptophan residues of the lactose repressor from Escherichia coli by phosphorescence and optical detection of magnetic resonance. Biochemistry 32:12821–12829.

    Article  CAS  Google Scholar 

  147. Strambini GB, Gabellieri E, Gonnelli M, Rahuel-Clermont S, Branlant G. 1998. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biophys J 74:3165–3172.

    Article  CAS  Google Scholar 

  148. Brochon JC, Wahl Ph, Charlier M, Maurizot JC, Helene C. 1977. Time-resolved spectroscopy of the tryptophyl fluorescence of the E. coli lac repressor. Biochem Biophys Res Commun 79:1261–1271.

    Article  CAS  Google Scholar 

  149. Eisenberg D, Crothers D. 1979. Physical chemistry with applications to the life sciences. Addison-Wesley, Reading, MA. (See page 240.)

    Google Scholar 

  150. MacKerell AD, Rigler R, Nilsson L, Hahn U, Saenger W. 1987. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1. Biophys Chem 26:247–261.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Time-Resolved Protein Fluorescence. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_17

Download citation

Publish with us

Policies and ethics