Skip to main content

Abstract

In the preceding two chapters we described steady-state and time-resolved anisotropy measurements, and presented a number of biochemical examples that illustrate the types of information available from these measurements. Throughout these chapters we stated that anisotropy decay depends on the size and shape of the rotating species. However, the theory that relates the form of anisotropy decay to the shape of the molecule is complex, and was not described in detail. In the present chapter we provide an overview of the rotational properties of non-spherical molecules, as well as representative examples.

For the initial topic in this chapter we describe associated anisotropy decays. Such decays occur when the solution contains more than one type of fluorophore, or the same fluorophore in different environments. Such systems can result in complex anisotropy decays, even if the individual species each display a single-exponential anisotropy decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bialik CN, Wolf B, Rachofsky EL, Ross JBA, Laws WR. 1998. Dynamics of biomolecules: assignment of local motions by fluorescence anisotropy decay. Biophys J 75:2564–2573.

    Article  CAS  Google Scholar 

  2. Vyleta NP, Coley AL, Laws WR. 2004. Resolution of molecular dynamics by time-resolved fluorescence anisotropy: verification of two kinetic models. J Phys Chem A 108:5156–5160

    Article  CAS  Google Scholar 

  3. Rachofsky EL, Laws WR. 2000. Kinetic models and data analysis methods for fluorescence anisotropy decay. Methods Enzymol 321:216–238.

    Article  CAS  Google Scholar 

  4. Brand L, Knutson JR, Davenport L, Beechem JM, Dale RE, Walbridge DG, Kowalczyk AA. 1985. Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes. In Spectroscopy and the dynamics of molecular biological systems, pp. 259–305. Ed P Bayley, RE Dale. Academic Press London.

    Google Scholar 

  5. Fisz JJ. 1996. Polarized fluorescence decay surface for a mixture of non-interacting species in solution. Chem Phys Lett 259:579–587.

    Article  CAS  Google Scholar 

  6. Fisz JJ. 1996. Polarized fluorescence spectroscopy of two-ground and two-excited state systems in solutions. Chem Phys Lett 262:495–506.

    Article  CAS  Google Scholar 

  7. Fisz JJ. 1996. Polarized fluorescence decay surface for many-ground- and many-excited-state species in solution. Chem Phys Lett 262:507–518.

    Article  CAS  Google Scholar 

  8. Bialik CN, Wolf B, Rachofsky EL, Ross JBA, Laws WR. 1998. Fluorescence anisotropy decay: finding the correct physical model. SPIE Proc 3526:60–67.

    Article  Google Scholar 

  9. Wolber PK, Hudson BS. 1981. Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers. Biochemistry 20:2800–2816.

    Article  CAS  Google Scholar 

  10. Wolber PK, Hudson BS. 1982. Bilayer acyl chain dynamics and lipid–protein interaction. Biophys J 37:253–262.

    Article  CAS  Google Scholar 

  11. Ruggiero A, Hudson B. 1989. Analysis of the anisotropy decay of trans-parinaric acid in lipid bilayers. Biophys J 55:1125–1135.

    Article  CAS  Google Scholar 

  12. van Paridon PA, Shute JK, Wirtz KWA, Visser AJWG. 1988. A fluorescence decay study of parinaroyl-phosphatidylinositol incorporated into artificial and natural membranes. Eur Biophys J 16:53–63.

    Article  Google Scholar 

  13. Visser AJWG, van Hoek A, van Paridon PA. 1987. Time-resolved fluorescence depolarization studies of parinaroyl phosphatidyl-choline in triton X-100 micelles and rat skeletal muscle membranes. In Membrane receptors, dynamics, and energetics, pp. 353–361. Ed KWA Wirtz. Plenum Publishing, New York.

    Google Scholar 

  14. Millar DP, Allen DJ, Benkovic SJ. 1990. Structure and dynamics of a DNA: polymerase complex by time-resolved fluorescence spec-troscopy. SPIE Proc 1204:392–403.

    Article  CAS  Google Scholar 

  15. Guest CR, Hochstrasser RA, Dupuy CG, Allen DJ, Benkovic SJ, Millar DM. 1991. Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spec-troscopy. Biochemistry 30:8759–8770.

    Article  CAS  Google Scholar 

  16. Peng K, Visser AJWG, van Hoek A, Wolfs CJAM, Sanders JC, Hemminga MA. 1990. Analysis of time-resolved fluorescence anisotropy in lipid–protein systems, I: application to the lipid probe octadecyl rhodamine B in interaction with bacteriophage M13 coat protein incorporated in phospholipid bilayers. Eur Biophys J 18:277–283.

    Article  CAS  Google Scholar 

  17. Peng K, Visser AJWG, van Hoek A, Wolfs CJAM, Hemminga MA. 1990. Analysis of time-resolved fluorescence anisotropy in lipid–protein systems, II: application to tryptophan fluorescence of bacteriophage M13 coat protein incorporated in phospholipid bilay-ers. Eur Biophys J 18:285–293.

    Article  CAS  Google Scholar 

  18. Smith TA, Irwanto M, Haines DJ, Ghiggino KP, Millar DP. 1998. Time-resolved fluorescence anisotropy measurements of the adsorption of Rhodamine-B and a labelled polyelectrolyte onto colloidal silica. Colloid Polym Sci 276:1032–1037.

    Article  CAS  Google Scholar 

  19. Bailey MF, Thompson EHZ, Millar DP. 2001. Probing DNA poly-merase fidelity mechanisms using time-resolved fluorescence anisotropy. Methods 25:62–77.

    Article  CAS  Google Scholar 

  20. Szmacinski H, Jayaweera R, Cherek H, Lakowicz JR. 1987. Demonstration of an associated anisotropy decay by frequency-domain fluorometry. Biophys Chem 27:233–241.

    Article  CAS  Google Scholar 

  21. Wang R, Bright FV. 1993. Rotational reorientation kinetics of dansy-lated bovine serum albumin. J Phys Chem 97:4231–4238.

    Article  CAS  Google Scholar 

  22. Perrin F. 1929. Mouvement brownien d’un ellipsoide (I): dispersion dielectrique pour ds molecules ellipsoidales. J Phys Radium 7(5): 497–511.

    Google Scholar 

  23. Perrin F. 1936. Mouvement brownien d’un ellipsoide (II): rotation libre et depolarisation des fluorescences. Translation et diffusin de molecules ellipsoidales. J Phys Radium 7(7):1–11.

    Article  CAS  Google Scholar 

  24. Perrin F. 1936. Diminution de la polarisation de (I): fluorescence des solutions resultant du mouvement brownien de rotation. Acta Phys Pol 5:335–345.

    Google Scholar 

  25. Perrin F. 1929. La fluorescence des solutions: induction moleculaire-polarisatron et duree d’emission-photochemie. Ann Phys 12:169–275.

    CAS  Google Scholar 

  26. Lombardi JR, Dafforn GA. 1966. Anisotropic rotational relaxation in rigid media by polarized photoselection. J Chem Phys 44:3882–3887.

    Article  Google Scholar 

  27. Tao T. 1969. Time-dependent fluorescence depolarization and Brownian rotational diffusion of macromolecules. Biopolymers 8:609–632.

    Article  CAS  Google Scholar 

  28. Ehrenberg M, Rigler R. 1972. Polarized fluorescence and rotational Brownian rotation. Chem Phys Lett 14:539–544.

    Article  CAS  Google Scholar 

  29. Chuang TJ, Eisenthal KB. 1972. Theory of fluorescence depolarization by anisotropic rotational diffusion. J Chem Phys 57:5094–5097.

    Article  CAS  Google Scholar 

  30. Belford GG, Belford RL, Weber G. 1972. Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci USA 69:1392–1393.

    Article  CAS  Google Scholar 

  31. Small EW, Isenberg I. 1977. Hydrodynamic properties of a rigid molecule: rotational and linear diffusion and fluorescence anisot-ropy. Biopolymers 16:1907–1928.

    Article  CAS  Google Scholar 

  32. Weber G. 1989. Perrin revisited: parametric theory of the motional depolarization of fluorescence. J Phys Chem 93:6069–6073.

    Article  CAS  Google Scholar 

  33. Piston DW, Bilash T, Gratton E. 1989. Compartmental analysis approach to fluorescence anisotropy: perylene in viscous solvents. J Phys Chem 93:3963–3967.

    Article  CAS  Google Scholar 

  34. Irving M. 1996. Steady-state polarization from cylindrically symmetric fluorophores undergoing rapid restricted motion. Biophys J 70:1830–1835.

    Article  CAS  Google Scholar 

  35. Feinstein E, Deikus G, Rusinova E, Rachofsky EL, Ross JBA, Laws WR. 2003. Constrained analysis of fluorescence anisotropy decay: application to experimental protein dynamics. Biophys J 84:599–611.

    Article  CAS  Google Scholar 

  36. Steiner RF. 1991. Fluorescence anisotropy: theory and applications. In Topics in fluorescence spectroscopy, Vol. 2: Principles, pp. 1–52. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  37. Barkley MD, Kowalczyk AA, Brand L. 1981. Fluorescence decay studies of anisotropic rotations: Internal motions in DNA. In Biomolecular stereodynamics, Vol. 1, pp. 391–403. Ed RH Sarma. Adenine Press, New York.

    Google Scholar 

  38. Beechem JM, Knutson JR, Brand L. 1986. Global analysis of multiple dye fluorescence anisotropy experiments on proteins. Biochem Soc Trans 14:832–835.

    CAS  Google Scholar 

  39. Kawski A. 1993. Fluorescence anisotropy: theory and applications of rotational depolarization. Crit Rev Anal Chem 23(6):459–529.

    Article  CAS  Google Scholar 

  40. Tan X, Gustafson TL. 2000. Solvent–solute interactions probed by picosecond time-resolved fluorescence spectroscopy: lifetime and anisotropy study of S1 trans-4,4′-diphenylstilbene. J Phys Chem A 104:4469–4474.

    Article  CAS  Google Scholar 

  41. Dutt GB, Ghanty TK. 2003. Rotational dynamics of nondipolar probes in ethanols: how does the strength of the solute–solvent hydrogen bond impede molecular rotation? J Chem Phys 119(9):4768–4774

    Article  CAS  Google Scholar 

  42. Ito N, Kajimoto O, Hara K. 2002. High-pressure studies of rotational dynamics for coumarin 153 in alcohols and alkanes. J Phys Chem A 106:6024–6029.

    Article  CAS  Google Scholar 

  43. Singh MK. 2000. Rotational relaxation of neutral red in alkanes: effect of solvent size on probe rotation. Photochem Photobiol 72(4):438–443.

    Article  CAS  Google Scholar 

  44. Jas GS, Larson EJ, Johnson CK, Kuczera K. 2000. Microscopic details of rotational diffusion of perylene in organic solvents: molecular dynamics simulation and experiment vs Debye-Stokes-Einstein theory. J Phys Chem A 104:9841–9852.

    Article  CAS  Google Scholar 

  45. Brocklehurst B, Young RN. 1999. Rotation of aromatic hydrocarbons in viscous alkanes, 1: methylcyclohexane. J Phys Chem A 103:3809–3817.

    Article  CAS  Google Scholar 

  46. Dutt GB. 2000. Rotational dynamics of nondipolar probes in alka-ne–alkanol mixtures: microscopic friction on hydrogen bonding and nonhydrogen bonding solute molecules. J Chem Phys 113(24): 11154–11158.

    Article  CAS  Google Scholar 

  47. Hu C-M, Zwanzig R. 1974. Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60(11): 4354–4357.

    Article  CAS  Google Scholar 

  48. Youngren GK, Acrivos A. 1975. Rotational friction coefficients for ellipsoids and chemical molecules with the slip boundary condition. J Chem Phys 63:3846–3848.

    Article  CAS  Google Scholar 

  49. Barkley MD, Kowalczyk AA, Brand L. 1981. Fluorescence decay studies of anisotropic rotations of small molecules. J Chem Phys 75(7):3581–3593.

    Article  CAS  Google Scholar 

  50. Brocklehurst B, Young RN. 1994. Fluorescence anisotropy decays and viscous behaviour of 2-methyltetrahydrofuran. J Chem Soc Faraday Trans 90(2):271–278.

    Article  CAS  Google Scholar 

  51. Brocklehurst B, Young RN. 1995. Rotation of perylene in alkanes: nonhydrodynamic behavior. J Phys Chem 99:40–53.

    Article  CAS  Google Scholar 

  52. Sasaki T, Hirota K, Yamamoto M, Nishijima K. 1987. Anisotropic rotation of perylene studied by fluorescence depolarization method. Bull Chem Soc Jpn 60:1165–1167.

    Article  CAS  Google Scholar 

  53. Viovy JL. 1985. Anisotropic rotation of 1,9-dimethylanthracene: a fluorescence anisotropy decay study. J Phys Chem 89:5465–5472.

    Article  CAS  Google Scholar 

  54. Weber G. 1977. Theory of differential phase fluorometry: detection of anisotropic molecular rotations. J Chem Phys 66(9):4081–4091.

    Article  CAS  Google Scholar 

  55. Mantulin WW, Weber G. 1977. Rotational anisotropy and solvent-fluorophore bond: an investigation by differential polarized phase fluorometry. J Chem Phys 66(9):4092–4099.

    Article  CAS  Google Scholar 

  56. Weber G, Mitchell GW. 1976. Demonstration of anisotropic molecular rotations by differential polarized phase fluorometry. In Excited states of biological molecules, pp. 72–76. Ed JB Birks. John Wiley & Sons, New York.

    Google Scholar 

  57. Lakowicz JR, Prendergast FG, Hogen D. 1979. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: quantitation of hindered depolarizaing rotations. Biochemistry 18:508–519.

    Article  CAS  Google Scholar 

  58. Klein UKA, Haas HP. 1979. Picosecond rotational diffusion of pery-lene. Chem Phys Lett 63(1):40–42.

    Article  CAS  Google Scholar 

  59. Lakowicz JR, Gryczynski I. 1991. Frequency-domain fluorescence spectroscopy. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 293–355. Plenum Press, New York.

    Chapter  Google Scholar 

  60. Lakowicz JR, Cherek H, Maliwal BP. 1985. Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry. Biochemistry 24:376–383.

    Article  CAS  Google Scholar 

  61. Lakowicz JR, Maliwal BP. 1985. Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys Chem 21:61–78.

    Article  CAS  Google Scholar 

  62. Lakowicz JR, Gryczynski I, Cherek H, Laczko G. 1991. Anisotropy decays of indole, melittin monomer and melittin tetramer by frequency-domain fluorometry and multi-wavelength global analysis. Biophys Chem 39:241–251.

    Article  CAS  Google Scholar 

  63. Gryczynski I, Cherek H, Laczko G, Lakowicz JR. 1987. Enhanced resolution of anisotropic rotational diffusion by multi-wavelength frequency-domain fluorometry and global analysis. Chem Phys Lett 135(3):193–199.

    Article  CAS  Google Scholar 

  64. Gryczynski I, Cherek H, Lakowicz JR. 1988. Detection of three rotational correlation times for a rigid asymmetric molecule using frequency-domain fluorometry. SPIE Proc 909:285–292.

    CAS  Google Scholar 

  65. Gryczynski I, Danielson E, Lakowicz JR. Unpublished observations.

    Google Scholar 

  66. Lakowicz JR, Gryczynski I, Wiczk WM. 1988. Anisotropic rotational diffusion of indole in cyclohexane studied by 2 GHz frequency-domain fluorometry. Chem Phys Lett 149(2):134–139.

    Article  CAS  Google Scholar 

  67. Gryczynski I, Cherek H, Lakowicz JR. 1988. Detection of three rotational correlation times for a rigid asymmetric molecule using frequency-domain fluorometry. Biophys Chem 30:271–277.

    Article  CAS  Google Scholar 

  68. Gryczynski I, Wiczk W, Johnson ML, Lakowicz JR. 1988. Lifetime distributions and anisotropy decays of indole fluorescence in cyclo-hexane/ethanol mixtures by frequency-domain fluorometry. Biophys Chem 32:173–185.

    Article  CAS  Google Scholar 

  69. Lakowicz JR, Cherek H, Gryczynski I, Joshi N, Johnson ML. 1987. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Biophys J 51:755–768.

    Article  CAS  Google Scholar 

  70. Lakowicz JR, Gryczynski I, Szmacinski H, Cherek H, Joshi N. 1991. Anisotropy decays of single-tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching. Eur Biophys J 19:125–140.

    Article  CAS  Google Scholar 

  71. Barkley MD, Zimm BH. 1979. Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA. J Chem Phys 70(6):2991–3007.

    Article  CAS  Google Scholar 

  72. Thomas JC, Allison SA, Appellof CJ, Schurr JM. 1980. Torsion dynamics and depolarization of fluorescence of linear macromole-cules, II: fluorescence polarization anisotropy measurements on a clean viral 29 DNA. Biophys Chem 12:177–188.

    Article  CAS  Google Scholar 

  73. Schurr JM, Fujimoto BS, Wu P, Song L. 1992. Fluorescence studies of nucleic acids: dynamics, rigidities, and structures. In Topics in fluorescence spectroscopy, Vol. 3: Biochemical applications, pp. 137–229. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  74. Millar DP, Robbins RJ, Zewail AH. 1981. Time-resolved spec-troscopy of macromolecules: effect of helical structure on the tor-sional dynamics of DNA and RNA. J Chem Phys 74(7):4200–4201.

    Article  CAS  Google Scholar 

  75. Ashikawa I, Furuno T, Kinosita K, Ikegami A, Takahashi H, Akutsu H. 1983. Internal motion of DNA in bacteriophages. J Biol Chem 259(13):8338–8344.

    Google Scholar 

  76. Ashikawa I, Kinosita K, Ikegami A. 1984. Dynamics of z-form DNA. Biochim Biophys Acta 782:87–93.

    CAS  Google Scholar 

  77. Genest D, Wahl Ph, Erard M, Champagne M, Daune M. 1982. Fluorescence anisotropy decay of ethidium bromide bound to nucle-osomal core particles. Biochim. 64:419–427.

    Article  CAS  Google Scholar 

  78. Ashikawa, I., Kinosita, K., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., and Nakano, T., 1983. Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium. Biochemistry 22:6018–6026.

    Article  CAS  Google Scholar 

  79. Thulstrup EW, Michl J. 1988. Polarized absorption spectroscopy of molecules aligned in stretched polymers. Spectrochim Acta A44:767–782.

    Google Scholar 

  80. Michl J, Thulstrup EW. 1987. Ultraviolet and infrared linear dichro-ism: polarized light as a probe of molecular and electronic structure. Acc Chem Res 20:192–199.

    Article  CAS  Google Scholar 

  81. Van Gurp M, Levine YK. 1989. Determination of transition moment directions in molecules of low symmetry using polarized fluorescence, I: theory. J Chem Phys 90(8):4095–4100.

    Article  Google Scholar 

  82. Matsuoka Y, Yamaoka K. 1980. Film dichrosim, V: linear dichroism study of acridine dyes in films with emphasis on the electronic transitions involved in the long-wavelength band of the absorption spectrum. Bull Chem Soc Jpn 53:2146–2151.

    Article  CAS  Google Scholar 

  83. Michl J, Thulstrup EW. 1986. Spectroscopy with polarized light. VCH Publishers, New York.

    Google Scholar 

  84. Kawski A, Gryczynski Z. 1986. On the determination of transitionmoment directions from emission anisotropy measurements. Z Naturforsch A 41:1195–1199.

    Google Scholar 

  85. Kawski A, Gryczynski Z, Gryczynski I, Lakowicz JR, Piszczek G. 1996. Photoselection of luminescent molecules in anisotropic media in the case of two-photon excitation, II: experimental studies of Hoechst 33342 in stretched poly(vinyl alcohol) films. Z Naturforsch A 51:1037–1041.

    CAS  Google Scholar 

  86. Matsuoka Y, Norden B. 1982. Linear dichroism study of 9-substitut-ed acridines in stretched poly(vinyl alcohol) film. Chem Phys Lett 85(3):302–306.

    Article  CAS  Google Scholar 

  87. Holmén A, Broo A, Albinsson B, Nordén B. 1997. Assignment of electronic transition moment directions of adenine from linear dichroism measurements. J Am Chem Soc 119(50):12240–12250.

    Article  Google Scholar 

  88. Holmén A, Nordén B, Albinsson B. 1997. Electronic transition moments of 2-aminopurine. J Am Chem Soc 119(13):3114–3121.

    Article  Google Scholar 

  89. Albinsson B, Kubista M, Sandros K, Nordén B. 1990. Electronic linear dichroism spectrum and transition moment directions of the hypermodified nucleic acid–base wye. J Phys Chem 94:4006–4011.

    Article  CAS  Google Scholar 

  90. Kubista M, Åkerman B, and Albinsson B. 1989. Characterization of the electronic structure of 4′,6-diamidino-2-phenylindole. J Am Chem Soc 111:7031–7035.

    Article  CAS  Google Scholar 

  91. Andersen KB, Waluk J, Thulstrup EW. 1999. The electronic structure of carcinogenic dibenzopyrenes: linear dichroism, fluorescence polarization spectroscopy and quantum mechanical calculations. Photochem Photobiol 69(2):158–166.

    Article  CAS  Google Scholar 

  92. Hall RD, Valeur B, Weber G. 1985. Polarization of the fluorescence of triphenylene: a planar molecule with three-fold symmetry. Chem Phys Lett 116(2,3):202–205.

    Article  CAS  Google Scholar 

  93. Lakowicz JR, Weber G. 1980. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies. Biophys J 32:591–601.

    Article  CAS  Google Scholar 

  94. Lakowicz JR, Maliwal BP, Cherek H, Balter A. 1983. Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry 22:1741–1752.

    Article  CAS  Google Scholar 

  95. Lakowicz JR, Maliwal BP. 1983. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J Biol Chem 258(8):4794–4801.

    CAS  Google Scholar 

  96. Eftink M. 1983. Quenching-resolved emission anisotropy studies with single and multitryptophan-containing proteins. Biophys J 43:323–334.

    Article  CAS  Google Scholar 

  97. Lakos Z, Szarka Á, Koszorús L, Somogyi B. 1995. Quenching-resolved emission anisotropy: a steady state fluorescence method to study protein dynamics. J Photochem Photobiol B: Biol 27:55–60.

    Article  CAS  Google Scholar 

  98. Bentz JP, Beyl P, Beinert G, Weill G. 1973. Simultaneous measurements of fluorescence polarization and quenching: a specially designed instrument and an application to the micro-browian motion of polymer chains. Eur Polymer J 11:711–718.

    Article  Google Scholar 

  99. Brown K, Soutar I. 1974. Fluorescence quenching and polarization studies of segmental motion in polystyrene. Eur Polymer J 10:433–437.

    Article  CAS  Google Scholar 

  100. Chen RF. 1976. Quenching of the fluorescence of proteins by silver nitrate. Arch Biochem Biophys 168:605–622.

    Google Scholar 

  101. Sanyal G, Charlesworth MC, Ryan RJ, Prendergast FG. 1987. Tryptophan fluorescence studies of subunit interaction and rotational dynamics of human luteinizing hormone. Biochemistry 26:1860–1866.

    Article  CAS  Google Scholar 

  102. Soleillet P. 1929. Sur les paramètres charactérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann Phys Biol Med 12:23–97.

    CAS  Google Scholar 

  103. Kawski A. 1986. Fluorescence anisotropy as a source of information about different photophysical processes. In Progress and trends in applied optical spectroscopy, Vol. 13, pp. 6–34. Ed D Fassler, K-H Feller, B Wilhelmi. Teubner Verlagsgesellschaft, Leipzig.

    Google Scholar 

  104. Weber G. 1966. Polarization of the fluorescence of solutions. In Fluorescence and phosphorescenc analysis, pp. 217–240. Ed DM Hercules. John Wiley & Sons, New York.

    Google Scholar 

  105. Gurinovich GP, Sarzhevskii AM, Sevchenko AN. 1963. New data on the dependence of the degree of polarization on the wavelength of fluorescence. Opt Spectrosc 14:428–432.

    Google Scholar 

  106. Mazurenko YT, Bakhshiev NG. 1970. Effect of orientation dipole relaxation on spectral, time, and polarization characteristics of the luminescence of solutions. Opt Spectrosc 28:490–494.

    Google Scholar 

  107. Gakamskii DM, Nemkovich NA, Rubinov AN, Tomin VI. 1988. Light-induced rotation of dye molecules in solution. Opt Specrosc 64(3):406–407.

    Google Scholar 

  108. Chattopadhyay A, Mukherjee S. 1999. Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick. Langmuir 15:2142–2148.

    Article  CAS  Google Scholar 

  109. Matayoshi ED, Kleinfeld AM. 1981. Emission wavelength-dependent decay of the 9-anthroyloxy-fatty acid membrane probes. Biophys J 35:215–235.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Advanced Anisotropy Concepts. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_12

Download citation

Publish with us

Policies and ethics