Skip to main content
Top
Published in:

Open Access 01-12-2022 | Research

WBC image classification and generative models based on convolutional neural network

Authors: Changhun Jung, Mohammed Abuhamad, David Mohaisen, Kyungja Han, DaeHun Nyang

Published in: BMC Medical Imaging | Issue 1/2022

Login to get access

Abstract

Background

Computer-aided methods for analyzing white blood cells (WBC) are popular due to the complexity of the manual alternatives. Recent works have shown highly accurate segmentation and detection of white blood cells from microscopic blood images. However, the classification of the observed cells is still a challenge, in part due to the distribution of the five types that affect the condition of the immune system.

Methods

(i) This work proposes W-Net, a CNN-based method for WBC classification. We evaluate W-Net on a real-world large-scale dataset that includes 6562 real images of the five WBC types. (ii) For further benefits, we generate synthetic WBC images using Generative Adversarial Network to be used for education and research purposes through sharing.

Results

(i) W-Net achieves an average accuracy of 97%. In comparison to state-of-the-art methods in the field of WBC classification, we show that W-Net outperforms other CNN- and RNN-based model architectures. Moreover, we show the benefits of using pre-trained W-Net in a transfer learning context when fine-tuned to specific task or accommodating another dataset. (ii) The synthetic WBC images are confirmed by experiments and a domain expert to have a high degree of similarity to the original images. The pre-trained W-Net and the generated WBC dataset are available for the community to facilitate reproducibility and follow up research work.

Conclusion

This work proposed W-Net, a CNN-based architecture with a small number of layers, to accurately classify the five WBC types. We evaluated W-Net on a real-world large-scale dataset and addressed several challenges such as the transfer learning property and the class imbalance. W-Net achieved an average classification accuracy of 97%. We synthesized a dataset of new WBC image samples using DCGAN, which we released to the public for education and research purposes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Changhun J, Mohammed A, Jumabek A, Aziz M, Kyungja H, DaeHun N. W-Net: a CNN-based architecture for white blood cells image classification. In: AAAI 2019 fall symposium on AI for social good; 2019. Changhun J, Mohammed A, Jumabek A, Aziz M, Kyungja H, DaeHun N. W-Net: a CNN-based architecture for white blood cells image classification. In: AAAI 2019 fall symposium on AI for social good; 2019.
2.
go back to reference Pillay J, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–7.PubMedCrossRef Pillay J, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–7.PubMedCrossRef
4.
go back to reference Falcone FH, Haas H, Gibbs BF. The human basophil: a new appreciation of its role in immune responses. Blood. 2000;13:4028–38.CrossRef Falcone FH, Haas H, Gibbs BF. The human basophil: a new appreciation of its role in immune responses. Blood. 2000;13:4028–38.CrossRef
6.
10.
go back to reference Shin H, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285–98.PubMedCrossRef Shin H, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285–98.PubMedCrossRef
11.
go back to reference Tajbakhsh N, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.PubMedCrossRef Tajbakhsh N, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.PubMedCrossRef
12.
go back to reference Gupta H, Jin KH, Nguyen HQ, McCann MT, Unser M. CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging. 2018;37(6):1440–53.PubMedCrossRef Gupta H, Jin KH, Nguyen HQ, McCann MT, Unser M. CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging. 2018;37(6):1440–53.PubMedCrossRef
13.
go back to reference Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.PubMedCrossRef Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.PubMedCrossRef
14.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in NIPS; 2012. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in NIPS; 2012.
15.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014).
16.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE CVPR; 2016. p. 770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE CVPR; 2016. p. 770–8.
17.
go back to reference Rezatofighi SH, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph. 2011;35(4):333–43.PubMedCrossRef Rezatofighi SH, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph. 2011;35(4):333–43.PubMedCrossRef
18.
go back to reference Goodfellow I, et al. Generative adversarial nets. In: Advances in NIPS; 2014. p. 2672–80. Goodfellow I, et al. Generative adversarial nets. In: Advances in NIPS; 2014. p. 2672–80.
19.
go back to reference Wang Q, Chang L, Zhou M, Li Q, Liu H, Guo F. A spectral and morphologic method for white blood cell classification. Opt Laser Technol. 2016;84:144–8.CrossRef Wang Q, Chang L, Zhou M, Li Q, Liu H, Guo F. A spectral and morphologic method for white blood cell classification. Opt Laser Technol. 2016;84:144–8.CrossRef
20.
go back to reference Dorini LB, Minetto R, Leite NJ. Semiautomatic white blood cell segmentation based on multiscale analysis. IEEE J Biomed Health Inform. 2012;17(1):250–6.PubMedCrossRef Dorini LB, Minetto R, Leite NJ. Semiautomatic white blood cell segmentation based on multiscale analysis. IEEE J Biomed Health Inform. 2012;17(1):250–6.PubMedCrossRef
21.
go back to reference Prinyakupt J, Pluempitiwiriyawej C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve bayes classifiers. Biomed Eng Online. 2015;14(1):63.PubMedPubMedCentralCrossRef Prinyakupt J, Pluempitiwiriyawej C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve bayes classifiers. Biomed Eng Online. 2015;14(1):63.PubMedPubMedCentralCrossRef
22.
go back to reference Shitong W, Min W. A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inf Technol Biomed Publ Inf. 2006;10(1):5–10.CrossRef Shitong W, Min W. A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inf Technol Biomed Publ Inf. 2006;10(1):5–10.CrossRef
23.
go back to reference Andrade AR, Vogado LH, de Veras MS, Silva RRV, Araujo FH, Medeiros FN. Recent computational methods for white blood cell nuclei segmentation: a comparative study. Comput Methods Prog Biomed. 2019;173:1–14.CrossRef Andrade AR, Vogado LH, de Veras MS, Silva RRV, Araujo FH, Medeiros FN. Recent computational methods for white blood cell nuclei segmentation: a comparative study. Comput Methods Prog Biomed. 2019;173:1–14.CrossRef
24.
go back to reference Viswanathan P. Fuzzy c means detection of leukemia based on morphological contour segmentation. Procedia Comput Sci. 2015;58:84–90.CrossRef Viswanathan P. Fuzzy c means detection of leukemia based on morphological contour segmentation. Procedia Comput Sci. 2015;58:84–90.CrossRef
25.
go back to reference Gautam A, Bhadauria H. White blood nucleus extraction using k-mean clustering and mathematical morphing. In: 2014 5th International conference-confluence the next generation information technology summit (confluence). IEEE; 2014. p. 549–554. Gautam A, Bhadauria H. White blood nucleus extraction using k-mean clustering and mathematical morphing. In: 2014 5th International conference-confluence the next generation information technology summit (confluence). IEEE; 2014. p. 549–554.
26.
go back to reference Mohapatra S, Samanta SS, Patra D, Satpathi S. Fuzzy based blood image segmentation for automated leukemia detection. In: 2011 ICDeCom. IEEE; 2011. p. 1–5. Mohapatra S, Samanta SS, Patra D, Satpathi S. Fuzzy based blood image segmentation for automated leukemia detection. In: 2011 ICDeCom. IEEE; 2011. p. 1–5.
27.
go back to reference Nazlibilek S, Karacor D, Ercan T, Sazli MH, Kalender O, Ege Y. Automatic segmentation, counting, size determination and classification of white blood cells. Measurement. 2014;55:58–65.CrossRef Nazlibilek S, Karacor D, Ercan T, Sazli MH, Kalender O, Ege Y. Automatic segmentation, counting, size determination and classification of white blood cells. Measurement. 2014;55:58–65.CrossRef
28.
go back to reference Abdeldaim AM, Sahlol AT, Elhoseny M, Hassanien AE. Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. Berlin: Springer; 2018. p. 131–47. Abdeldaim AM, Sahlol AT, Elhoseny M, Hassanien AE. Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. Berlin: Springer; 2018. p. 131–47.
29.
go back to reference Tosta TAA, De Abreu AF, Travençolo BAN, do Nascimento MZ, Neves LA. Unsupervised segmentation of leukocytes images using thresholding neighborhood valley-emphasis. In: 2015 IEEE CBMS. IEEE; 2015. p. 93–94. Tosta TAA, De Abreu AF, Travençolo BAN, do Nascimento MZ, Neves LA. Unsupervised segmentation of leukocytes images using thresholding neighborhood valley-emphasis. In: 2015 IEEE CBMS. IEEE; 2015. p. 93–94.
30.
go back to reference Cao H, Liu H, Song E. A novel algorithm for segmentation of leukocytes in peripheral blood. Biomed Signal Process Control. 2018;45:10–21.CrossRef Cao H, Liu H, Song E. A novel algorithm for segmentation of leukocytes in peripheral blood. Biomed Signal Process Control. 2018;45:10–21.CrossRef
31.
go back to reference Mohammed EA, Mohamed MM, Naugler C, Far BH. Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In: 2013 26th IEEE CCECE. IEEE; 2013. p. 1–5. Mohammed EA, Mohamed MM, Naugler C, Far BH. Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In: 2013 26th IEEE CCECE. IEEE; 2013. p. 1–5.
32.
go back to reference Hegde RB, Prasad K, Hebbar H, Singh BMK. Development of a robust algorithm for detection of nuclei and classification of white blood cells in peripheral blood smear images. J Med Syst. 2018;42(6):110.PubMedCrossRef Hegde RB, Prasad K, Hebbar H, Singh BMK. Development of a robust algorithm for detection of nuclei and classification of white blood cells in peripheral blood smear images. J Med Syst. 2018;42(6):110.PubMedCrossRef
33.
go back to reference Chan Y-K, Tsai M-H, Huang D-C, Zheng Z-H, Hung K-D. Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinform. 2010;11(1):558.CrossRef Chan Y-K, Tsai M-H, Huang D-C, Zheng Z-H, Hung K-D. Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinform. 2010;11(1):558.CrossRef
34.
go back to reference Mathur A, Tripathi AS, Kuse M. Scalable system for classification of white blood cells from Leishman stained blood stain images. J Pathol Inform. 2013;4(Suppl):15.CrossRef Mathur A, Tripathi AS, Kuse M. Scalable system for classification of white blood cells from Leishman stained blood stain images. J Pathol Inform. 2013;4(Suppl):15.CrossRef
35.
go back to reference Su M-C, Cheng C-Y, Wang P-C. A neural-network-based approach to WBC classification. Sci World J. 2014;2014:1–9. Su M-C, Cheng C-Y, Wang P-C. A neural-network-based approach to WBC classification. Sci World J. 2014;2014:1–9.
36.
go back to reference Ramesh N, Dangott B, Salama ME, Tasdizen T. Isolation and two-step classification of normal white blood cells in peripheral blood smears. J Pathol Inform. 2012;3:179–91.CrossRef Ramesh N, Dangott B, Salama ME, Tasdizen T. Isolation and two-step classification of normal white blood cells in peripheral blood smears. J Pathol Inform. 2012;3:179–91.CrossRef
37.
go back to reference Ghosh P, Bhattacharjee D, Nasipuri M. Blood smear analyzer for white blood cell counting: a hybrid microscopic image analyzing technique. Appl Soft Comput. 2016;46:629–38.CrossRef Ghosh P, Bhattacharjee D, Nasipuri M. Blood smear analyzer for white blood cell counting: a hybrid microscopic image analyzing technique. Appl Soft Comput. 2016;46:629–38.CrossRef
38.
go back to reference Habibzadeh M, Jannesari M, Rezaei Z, Baharvand H, Totonchi M. Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. In: Tenth ICMV 2017, vol 10696. International Society for Optics and Photonics; 2018. p. 1069612. Habibzadeh M, Jannesari M, Rezaei Z, Baharvand H, Totonchi M. Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. In: Tenth ICMV 2017, vol 10696. International Society for Optics and Photonics; 2018. p. 1069612.
39.
go back to reference Rawat J, Singh A, Bhadauria H, Virmani J, Devgun JS. Application of ensemble artificial neural network for the classification of white blood cells using microscopic blood images. Int J Comput Syst Eng. 2018;4(2–3):202–16.CrossRef Rawat J, Singh A, Bhadauria H, Virmani J, Devgun JS. Application of ensemble artificial neural network for the classification of white blood cells using microscopic blood images. Int J Comput Syst Eng. 2018;4(2–3):202–16.CrossRef
40.
go back to reference Patil AM, Patil MD, Birajdar GK. White blood cells image classification using deep learning with canonical correlation analysis. IRBM. 2021;42(5):378–89.CrossRef Patil AM, Patil MD, Birajdar GK. White blood cells image classification using deep learning with canonical correlation analysis. IRBM. 2021;42(5):378–89.CrossRef
41.
go back to reference Toğaçar M, Ergen B, Cömert Z. Classification of white blood cells using deep features obtained from convolutional neural network models based on the combination of feature selection methods. Appl Soft Comput. 2020;97:106810.CrossRef Toğaçar M, Ergen B, Cömert Z. Classification of white blood cells using deep features obtained from convolutional neural network models based on the combination of feature selection methods. Appl Soft Comput. 2020;97:106810.CrossRef
42.
go back to reference Khan S, Sajjad M, Hussain T, Ullah A, Imran AS. A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access. 2020;9:10657–73.CrossRef Khan S, Sajjad M, Hussain T, Ullah A, Imran AS. A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access. 2020;9:10657–73.CrossRef
43.
go back to reference Mohamed EH, El-Behaidy WH, Khoriba G, Li J. Improved white blood cells classification based on pre-trained deep learning models. J Commun Softw Syst. 2020;16(1):37–45.CrossRef Mohamed EH, El-Behaidy WH, Khoriba G, Li J. Improved white blood cells classification based on pre-trained deep learning models. J Commun Softw Syst. 2020;16(1):37–45.CrossRef
44.
go back to reference Banik PP, Saha R, Kim KD. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst Appl. 2020;149:113211.CrossRef Banik PP, Saha R, Kim KD. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst Appl. 2020;149:113211.CrossRef
45.
go back to reference Karthikeyan MP, Venkatesan R. Interpolative Leishman-stained transformation invariant deep pattern classification for white blood cells. Soft Comput. 2020;24(16):12215–25.CrossRef Karthikeyan MP, Venkatesan R. Interpolative Leishman-stained transformation invariant deep pattern classification for white blood cells. Soft Comput. 2020;24(16):12215–25.CrossRef
46.
go back to reference Kutlu H, Avci E, Özyurt F. White blood cells detection and classification based on regional convolutional neural networks. Med Hypotheses. 2020;135:109472.PubMedCrossRef Kutlu H, Avci E, Özyurt F. White blood cells detection and classification based on regional convolutional neural networks. Med Hypotheses. 2020;135:109472.PubMedCrossRef
47.
go back to reference Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In: ICIAR. Springer; 2018. p. 737–44. Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In: ICIAR. Springer; 2018. p. 737–44.
48.
go back to reference Kermany DS, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.PubMedCrossRef Kermany DS, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.PubMedCrossRef
49.
go back to reference Acharya UR, et al. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Futur Gener Comput Syst. 2018;79:952–9.CrossRef Acharya UR, et al. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Futur Gener Comput Syst. 2018;79:952–9.CrossRef
50.
go back to reference Moran MB, et al. Identification of thyroid nodules in infrared images by convolutional neural networks. In: 2018 IJCNN. IEEE; 2018. p. 1–7. Moran MB, et al. Identification of thyroid nodules in infrared images by convolutional neural networks. In: 2018 IJCNN. IEEE; 2018. p. 1–7.
51.
go back to reference Sohail A, Khan A, Nisar H, Tabassum S, Zameer A. Mitotic nuclei analysis in breast cancer histopathology images using deep ensemble classifier. Med Image Anal. 2021;72:102121.PubMedCrossRef Sohail A, Khan A, Nisar H, Tabassum S, Zameer A. Mitotic nuclei analysis in breast cancer histopathology images using deep ensemble classifier. Med Image Anal. 2021;72:102121.PubMedCrossRef
52.
go back to reference Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage. 2018;170:434–45.PubMedCrossRef Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage. 2018;170:434–45.PubMedCrossRef
53.
go back to reference Zhang B, Zhou J. Multi-feature representation for burn depth classification via burn images. Artif Intell Med. 2021;118:102128.PubMedCrossRef Zhang B, Zhou J. Multi-feature representation for burn depth classification via burn images. Artif Intell Med. 2021;118:102128.PubMedCrossRef
54.
go back to reference Karimi D, Warfield SK, Gholipour A. Transfer learning in medical image segmentation: new insights from analysis of the dynamics of model parameters and learned representations. Artif Intell Med. 2021;116:102078.PubMedCrossRef Karimi D, Warfield SK, Gholipour A. Transfer learning in medical image segmentation: new insights from analysis of the dynamics of model parameters and learned representations. Artif Intell Med. 2021;116:102078.PubMedCrossRef
55.
go back to reference Nateghi R, Danyali H, Helfroush MS. A deep learning approach for mitosis detection: application in tumor proliferation prediction from whole slide images. Artif Intell Med. 2021;114:102048.PubMedCrossRef Nateghi R, Danyali H, Helfroush MS. A deep learning approach for mitosis detection: application in tumor proliferation prediction from whole slide images. Artif Intell Med. 2021;114:102048.PubMedCrossRef
56.
go back to reference Yoon H, Kim J, Lim HJ, Lee M-J. Image quality assessment of pediatric chest and abdomen ct by deep learning reconstruction. BMC Med Imaging. 2021;21:1–11.CrossRef Yoon H, Kim J, Lim HJ, Lee M-J. Image quality assessment of pediatric chest and abdomen ct by deep learning reconstruction. BMC Med Imaging. 2021;21:1–11.CrossRef
57.
go back to reference Wang T, Song N, Liu L, Zhu Z, Chen B, Yang W, Chen Z. Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement. BMC Med Imaging. 2021;21(1):1–9.CrossRef Wang T, Song N, Liu L, Zhu Z, Chen B, Yang W, Chen Z. Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement. BMC Med Imaging. 2021;21(1):1–9.CrossRef
58.
go back to reference Guo K, Li X, Hu X, Liu J, Fan T. Hahn-PCNN-CNN: an end-to-end multi-modal brain medical image fusion framework useful for clinical diagnosis. BMC Med Imaging. 2021;21(1):1–22.CrossRef Guo K, Li X, Hu X, Liu J, Fan T. Hahn-PCNN-CNN: an end-to-end multi-modal brain medical image fusion framework useful for clinical diagnosis. BMC Med Imaging. 2021;21(1):1–22.CrossRef
59.
go back to reference Sun J, Li H, Wang B, Li J, Li M, Zhou Z, Peng Y. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection. BMC Med Imaging. 2021;21(1):1–9.CrossRef Sun J, Li H, Wang B, Li J, Li M, Zhou Z, Peng Y. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection. BMC Med Imaging. 2021;21(1):1–9.CrossRef
62.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.
64.
go back to reference Arlot S, Celisse A, et al. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRef Arlot S, Celisse A, et al. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRef
65.
go back to reference Rosasco L, Vito ED, Caponnetto A, Piana M, Verri A. Are loss functions all the same? Neural Comput. 2004;16(5):1063–76.PubMedCrossRef Rosasco L, Vito ED, Caponnetto A, Piana M, Verri A. Are loss functions all the same? Neural Comput. 2004;16(5):1063–76.PubMedCrossRef
66.
go back to reference Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: International conference on ML; 2013. p. 1139–47. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: International conference on ML; 2013. p. 1139–47.
69.
go back to reference Gregor K, Danihelka I, Graves A, Rezende D, Wierstra D. Draw: a recurrent neural network for image generation. In: International conference on machine learning. PMLR (2015, June). p. 1462–71. Gregor K, Danihelka I, Graves A, Rezende D, Wierstra D. Draw: a recurrent neural network for image generation. In: International conference on machine learning. PMLR (2015, June). p. 1462–71.
70.
go back to reference Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015). Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:​1511.​06434 (2015).
71.
go back to reference Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol 30; 2013. p. 3. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol 30; 2013. p. 3.
72.
go back to reference Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2). Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:​1502.​03167 (2).
74.
go back to reference Ghosh A, Singh S, Sheet D. Simultaneous localization and classification of acute lymphoblastic leukemic cells in peripheral blood smears using a deep convolutional network with average pooling layer. In: 2017 IEEE ICIIS. IEEE; 2017. p. 1–6. Ghosh A, Singh S, Sheet D. Simultaneous localization and classification of acute lymphoblastic leukemic cells in peripheral blood smears using a deep convolutional network with average pooling layer. In: 2017 IEEE ICIIS. IEEE; 2017. p. 1–6.
76.
go back to reference Liang G, Hong H, Xie W, Zheng L. Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access. 2018;6:36188–97.CrossRef Liang G, Hong H, Xie W, Zheng L. Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access. 2018;6:36188–97.CrossRef
79.
go back to reference Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med. 2014;62(3):179–91.PubMedCrossRef Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med. 2014;62(3):179–91.PubMedCrossRef
Metadata
Title
WBC image classification and generative models based on convolutional neural network
Authors
Changhun Jung
Mohammed Abuhamad
David Mohaisen
Kyungja Han
DaeHun Nyang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2022
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-022-00818-1

Other articles of this Issue 1/2022

BMC Medical Imaging 1/2022 Go to the issue