Skip to main content
Top

Open Access 04-10-2024 | Vagus Nerve Stimulation | Review Article

Vagus nerve stimulation (VNS): recent advances and future directions

Authors: Christopher W. Austelle, Stewart S. Cox, Kristin E. Wills, Bashar W. Badran

Published in: Clinical Autonomic Research

Login to get access

Abstract

Purpose

Vagus nerve stimulation (VNS) is emerging as a unique and potent intervention, particularly within neurology and psychiatry. The clinical value of VNS continues to grow, while the development of noninvasive options promises to change a landscape that is already quickly evolving. In this review, we highlight recent progress in the field and offer readers a glimpse of the future for this bright and promising modality.

Methods

We compiled a narrative review of VNS literature using PubMed and organized the discussion by disease states with approved indications (epilepsy, depression, obesity, post-stroke motor rehabilitation, headache), followed by a section highlighting novel, exploratory areas of VNS research. In each section, we summarized the current role, recent advancements, and future directions of VNS in the treatment of each disease.

Results

The field continues to gain appreciation for the clinical potential of this modality. VNS was initially developed for treatment-resistant epilepsy, with the first depression studies following shortly thereafter. Overall, VNS has gained approval or clearance in the treatment of medication-refractory epilepsy, treatment-resistant depression, obesity, migraine/cluster headache, and post-stroke motor rehabilitation.

Conclusion

Noninvasive VNS represents an opportunity to bridge the translational gap between preclinical and clinical paradigms and may offer the same therapeutic potential as invasive VNS. Further investigation into how VNS parameters modulate behavior and biology, as well as how to translate noninvasive options into the clinical arena, are crucial next steps for researchers and clinicians studying VNS.
Literature
1.
go back to reference Austelle CW et al (2022) A comprehensive review of vagus nerve stimulation for depression. Neuromodulation Technol Neural Interface 25:309–315CrossRef Austelle CW et al (2022) A comprehensive review of vagus nerve stimulation for depression. Neuromodulation Technol Neural Interface 25:309–315CrossRef
2.
go back to reference Ben-Menachem E (2001) Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 18(5):415–418PubMedCrossRef Ben-Menachem E (2001) Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 18(5):415–418PubMedCrossRef
3.
go back to reference Dawson J et al (2016) Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47(1):143–150PubMedCrossRef Dawson J et al (2016) Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47(1):143–150PubMedCrossRef
4.
go back to reference George MS et al (2005) A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 58(5):364–373PubMedCrossRef George MS et al (2005) A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 58(5):364–373PubMedCrossRef
5.
go back to reference Koopman FA et al (2016) Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A 113(29):8284–8289PubMedPubMedCentralCrossRef Koopman FA et al (2016) Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A 113(29):8284–8289PubMedPubMedCentralCrossRef
6.
7.
go back to reference Shao P et al (2023) Role of vagus nerve stimulation in the treatment of chronic pain. NeuroImmunoModulation 30(1):167–183PubMedCrossRef Shao P et al (2023) Role of vagus nerve stimulation in the treatment of chronic pain. NeuroImmunoModulation 30(1):167–183PubMedCrossRef
8.
9.
go back to reference Zhang Y et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699PubMedCrossRef Zhang Y et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699PubMedCrossRef
10.
go back to reference Badran BW et al (2018) Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul 11(3):492–500PubMedCrossRef Badran BW et al (2018) Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul 11(3):492–500PubMedCrossRef
11.
go back to reference Badran BW et al (2018) Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul 11(4):699–708PubMedPubMedCentralCrossRef Badran BW et al (2018) Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul 11(4):699–708PubMedPubMedCentralCrossRef
12.
go back to reference Datta P et al (2020) Vagus nerve stimulation with tachycardia detection provides additional seizure reduction compared to traditional vagus nerve stimulation. Epilepsy Behav 111:107280PubMedCrossRef Datta P et al (2020) Vagus nerve stimulation with tachycardia detection provides additional seizure reduction compared to traditional vagus nerve stimulation. Epilepsy Behav 111:107280PubMedCrossRef
13.
go back to reference Badran BW et al (2023) Motor activated auricular vagus nerve stimulation as a potential neuromodulation approach for post-stroke motor rehabilitation: a pilot study. Neurorehabil Neural Repair 37(6):374–383PubMedPubMedCentralCrossRef Badran BW et al (2023) Motor activated auricular vagus nerve stimulation as a potential neuromodulation approach for post-stroke motor rehabilitation: a pilot study. Neurorehabil Neural Repair 37(6):374–383PubMedPubMedCentralCrossRef
14.
go back to reference Lanska DJ (2002) J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 58(3):452–459PubMedCrossRef Lanska DJ (2002) J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 58(3):452–459PubMedCrossRef
15.
go back to reference Bailey P, Bremer F (1938) A sensory cortical representation of the vagus nerve (with a note on the effects of low blood pressure on the cortical electrograms). J Neurophysiol 1:405–412CrossRef Bailey P, Bremer F (1938) A sensory cortical representation of the vagus nerve (with a note on the effects of low blood pressure on the cortical electrograms). J Neurophysiol 1:405–412CrossRef
16.
go back to reference Dell P, Olson R (1951) Thalamic, cortical and cerebellar projections of vagal visceral afferences. C R Seances Soc Biol Fil 145(13–14):1084–1088PubMed Dell P, Olson R (1951) Thalamic, cortical and cerebellar projections of vagal visceral afferences. C R Seances Soc Biol Fil 145(13–14):1084–1088PubMed
17.
go back to reference Reiner A (1990) The triune brain in evolution. Role in paleocerebral functions. Paul D. MacLean. Plenum, New York, 1990. xxiv, 672 pp., illus. Science 250(4978):303–305PubMedCrossRef Reiner A (1990) The triune brain in evolution. Role in paleocerebral functions. Paul D. MacLean. Plenum, New York, 1990. xxiv, 672 pp., illus. Science 250(4978):303–305PubMedCrossRef
18.
go back to reference Zabara J (1992) Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33(6):1005–1012PubMedCrossRef Zabara J (1992) Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33(6):1005–1012PubMedCrossRef
19.
go back to reference Penry JK, Dean JC (1990) Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 31(Suppl 2):S40–S43PubMed Penry JK, Dean JC (1990) Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 31(Suppl 2):S40–S43PubMed
20.
go back to reference George MS et al (2000) Vagus nerve stimulation: a new form of therapeutic brain stimulation. CNS Spectr 5(11):43–52PubMedCrossRef George MS et al (2000) Vagus nerve stimulation: a new form of therapeutic brain stimulation. CNS Spectr 5(11):43–52PubMedCrossRef
22.
go back to reference Krahl SE et al (1998) Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39(7):709–714PubMedCrossRef Krahl SE et al (1998) Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39(7):709–714PubMedCrossRef
23.
go back to reference Ben-Menachem E et al (1995) Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res 20(3):221–227PubMedCrossRef Ben-Menachem E et al (1995) Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res 20(3):221–227PubMedCrossRef
24.
go back to reference Follesa P et al (2007) Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 1179:28–34PubMedCrossRef Follesa P et al (2007) Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 1179:28–34PubMedCrossRef
25.
go back to reference Furmaga H, Carreno FR, Frazer A (2012) Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS ONE 7(5):e34844PubMedPubMedCentralCrossRef Furmaga H, Carreno FR, Frazer A (2012) Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS ONE 7(5):e34844PubMedPubMedCentralCrossRef
26.
go back to reference Khodaparast N et al (2013) Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol Dis 60:80–88PubMedCrossRef Khodaparast N et al (2013) Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol Dis 60:80–88PubMedCrossRef
27.
go back to reference Porter BA et al (2012) Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 22(10):2365–2374PubMedCrossRef Porter BA et al (2012) Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 22(10):2365–2374PubMedCrossRef
28.
29.
go back to reference Jelinek M, Lipkova J, Duris K (2024) Vagus nerve stimulation as immunomodulatory therapy for stroke: a comprehensive review. Exp Neurol 372:114628PubMedCrossRef Jelinek M, Lipkova J, Duris K (2024) Vagus nerve stimulation as immunomodulatory therapy for stroke: a comprehensive review. Exp Neurol 372:114628PubMedCrossRef
32.
go back to reference Clancy JA et al (2014) Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul 7(6):871–877PubMedCrossRef Clancy JA et al (2014) Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul 7(6):871–877PubMedCrossRef
33.
go back to reference Antonino D et al (2017) Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul 10(5):875–881PubMedCrossRef Antonino D et al (2017) Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul 10(5):875–881PubMedCrossRef
35.
go back to reference Ben-Menachem E et al (1994) Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First international vagus nerve stimulation study group. Epilepsia 35(3):616–626PubMedCrossRef Ben-Menachem E et al (1994) Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First international vagus nerve stimulation study group. Epilepsia 35(3):616–626PubMedCrossRef
36.
go back to reference Handforth A et al (1998) Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 51(1):48–55PubMedCrossRef Handforth A et al (1998) Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 51(1):48–55PubMedCrossRef
37.
go back to reference Amar AP et al (1998) An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery 43(6):1265–1276PubMed Amar AP et al (1998) An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery 43(6):1265–1276PubMed
38.
go back to reference Scherrmann J et al (2001) Vagus nerve stimulation: clinical experience in a large patient series. J Clin Neurophysiol 18(5):408–414PubMedCrossRef Scherrmann J et al (2001) Vagus nerve stimulation: clinical experience in a large patient series. J Clin Neurophysiol 18(5):408–414PubMedCrossRef
39.
go back to reference DeGiorgio C et al (2005) Vagus nerve stimulation for epilepsy: randomized comparison of three stimulation paradigms. Neurology 65(2):317–319PubMedCrossRef DeGiorgio C et al (2005) Vagus nerve stimulation for epilepsy: randomized comparison of three stimulation paradigms. Neurology 65(2):317–319PubMedCrossRef
40.
go back to reference Klinkenberg S et al (2012) Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. Dev Med Child Neurol 54(9):855–861PubMedCrossRef Klinkenberg S et al (2012) Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. Dev Med Child Neurol 54(9):855–861PubMedCrossRef
41.
42.
go back to reference Dibué M et al (2021) Vagus nerve stimulation in patients with Lennox-Gastaut syndrome: a meta-analysis. Acta Neurol Scand 143(5):497–508PubMedCrossRef Dibué M et al (2021) Vagus nerve stimulation in patients with Lennox-Gastaut syndrome: a meta-analysis. Acta Neurol Scand 143(5):497–508PubMedCrossRef
43.
go back to reference Eggleston KS, Olin BD, Fisher RS (2014) Ictal tachycardia: the head-heart connection. Seizure 23(7):496–505PubMedCrossRef Eggleston KS, Olin BD, Fisher RS (2014) Ictal tachycardia: the head-heart connection. Seizure 23(7):496–505PubMedCrossRef
44.
go back to reference Tzadok M et al (2019) Clinical outcomes of closed-loop vagal nerve stimulation in patients with refractory epilepsy. Seizure 71:140–144PubMedCrossRef Tzadok M et al (2019) Clinical outcomes of closed-loop vagal nerve stimulation in patients with refractory epilepsy. Seizure 71:140–144PubMedCrossRef
45.
go back to reference Stefan H et al (2012) Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53(7):e115–e118PubMedCrossRef Stefan H et al (2012) Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53(7):e115–e118PubMedCrossRef
46.
go back to reference He W et al (2013) Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav 28(3):343–346PubMedCrossRef He W et al (2013) Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav 28(3):343–346PubMedCrossRef
47.
go back to reference Aihua L et al (2014) A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav 39:105–110PubMedCrossRef Aihua L et al (2014) A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav 39:105–110PubMedCrossRef
48.
go back to reference Rong P et al (2014) An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin Med J 127(2):300–304PubMedCrossRef Rong P et al (2014) An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin Med J 127(2):300–304PubMedCrossRef
50.
go back to reference Bauer S et al (2016) Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul 9(3):356–363PubMedCrossRef Bauer S et al (2016) Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul 9(3):356–363PubMedCrossRef
51.
go back to reference Liu A et al (2018) Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med Sci Monit 24:8439–8448PubMedPubMedCentralCrossRef Liu A et al (2018) Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med Sci Monit 24:8439–8448PubMedPubMedCentralCrossRef
52.
go back to reference Barbella G et al (2018) Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60:115–119PubMedCrossRef Barbella G et al (2018) Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60:115–119PubMedCrossRef
53.
go back to reference Voineskos D, Daskalakis ZJ, Blumberger DM (2020) Management of treatment-resistant depression: challenges and strategies. Neuropsychiatr Dis Treat 16:221–234PubMedPubMedCentralCrossRef Voineskos D, Daskalakis ZJ, Blumberger DM (2020) Management of treatment-resistant depression: challenges and strategies. Neuropsychiatr Dis Treat 16:221–234PubMedPubMedCentralCrossRef
54.
go back to reference Sackeim HA et al (2001) Vagus nerve stimulation (VNS™) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25(5):713–728PubMedCrossRef Sackeim HA et al (2001) Vagus nerve stimulation (VNS™) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25(5):713–728PubMedCrossRef
55.
go back to reference Elger G et al (2000) Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 42(2–3):203–210PubMedCrossRef Elger G et al (2000) Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 42(2–3):203–210PubMedCrossRef
56.
go back to reference Harden CL et al (2000) A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav 1(2):93–99PubMedCrossRef Harden CL et al (2000) A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav 1(2):93–99PubMedCrossRef
57.
go back to reference Rush AJ et al (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47(4):276–286PubMedCrossRef Rush AJ et al (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47(4):276–286PubMedCrossRef
58.
go back to reference Nahas Z et al (2005) Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 66(9):1097–1104PubMedCrossRef Nahas Z et al (2005) Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 66(9):1097–1104PubMedCrossRef
59.
go back to reference Rush AJ et al (2005) Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry 58(5):347–354PubMedCrossRef Rush AJ et al (2005) Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry 58(5):347–354PubMedCrossRef
60.
go back to reference Rush AJ et al (2005) Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 58(5):355–363PubMedCrossRef Rush AJ et al (2005) Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 58(5):355–363PubMedCrossRef
61.
go back to reference Englot DJ et al (2017) Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy Behav 66:4–9PubMedCrossRef Englot DJ et al (2017) Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy Behav 66:4–9PubMedCrossRef
63.
go back to reference Hein E et al (2013) Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm 120(5):821–827PubMedCrossRef Hein E et al (2013) Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm 120(5):821–827PubMedCrossRef
64.
go back to reference Rong P et al (2016) Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord 195:172–179PubMedPubMedCentralCrossRef Rong P et al (2016) Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord 195:172–179PubMedPubMedCentralCrossRef
65.
go back to reference Trevizol AP et al (2016) Transcutaneous vagus nerve stimulation (taVNS) for major depressive disorder: an open label proof-of-concept trial. Brain Stimul 9(3):453–454PubMedCrossRef Trevizol AP et al (2016) Transcutaneous vagus nerve stimulation (taVNS) for major depressive disorder: an open label proof-of-concept trial. Brain Stimul 9(3):453–454PubMedCrossRef
66.
go back to reference Li S et al (2022) Comparative effectiveness of transcutaneous auricular vagus nerve stimulation vs citalopram for major depressive disorder: a randomized trial. Neuromodulation 25(3):450–460PubMedCrossRef Li S et al (2022) Comparative effectiveness of transcutaneous auricular vagus nerve stimulation vs citalopram for major depressive disorder: a randomized trial. Neuromodulation 25(3):450–460PubMedCrossRef
67.
go back to reference Xiao X et al (2020) Efficacy and brain mechanism of transcutaneous auricular vagus nerve stimulation for adolescents with mild to moderate depression: Study protocol for a randomized controlled trial. Pediatr Investig 4(2):109–117PubMedPubMedCentralCrossRef Xiao X et al (2020) Efficacy and brain mechanism of transcutaneous auricular vagus nerve stimulation for adolescents with mild to moderate depression: Study protocol for a randomized controlled trial. Pediatr Investig 4(2):109–117PubMedPubMedCentralCrossRef
68.
go back to reference Liu C et al (2024) Transcutaneous auricular vagus nerve stimulation for post-stroke depression: a double-blind, randomized, placebo-controlled trial. J Affect Disord 354:82–88PubMedCrossRef Liu C et al (2024) Transcutaneous auricular vagus nerve stimulation for post-stroke depression: a double-blind, randomized, placebo-controlled trial. J Affect Disord 354:82–88PubMedCrossRef
69.
go back to reference Sørensen TIA, Martinez AR, Jørgensen TSH (2022) Epidemiology of obesity. Handb Exp Pharmacol 274:3–27PubMedCrossRef Sørensen TIA, Martinez AR, Jørgensen TSH (2022) Epidemiology of obesity. Handb Exp Pharmacol 274:3–27PubMedCrossRef
70.
go back to reference Ikramuddin S et al (2014) Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 312(9):915–922PubMedCrossRef Ikramuddin S et al (2014) Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 312(9):915–922PubMedCrossRef
71.
go back to reference Pardo JV et al (2007) Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes 31(11):1756–1759CrossRef Pardo JV et al (2007) Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes 31(11):1756–1759CrossRef
72.
go back to reference Apovian CM et al (2017) Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes Surg 27(1):169–176PubMedCrossRef Apovian CM et al (2017) Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes Surg 27(1):169–176PubMedCrossRef
73.
go back to reference Camilleri M et al (2008) Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143(6):723–731PubMedCrossRef Camilleri M et al (2008) Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143(6):723–731PubMedCrossRef
74.
go back to reference Shikora S et al (2013) Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes 2013:245683PubMedPubMedCentralCrossRef Shikora S et al (2013) Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes 2013:245683PubMedPubMedCentralCrossRef
75.
go back to reference Shikora SA et al (2016) Erratum to: intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg 26(5):1029PubMedCrossRef Shikora SA et al (2016) Erratum to: intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg 26(5):1029PubMedCrossRef
76.
go back to reference Sarr MG et al (2012) The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg 22(11):1771–1782PubMedCrossRef Sarr MG et al (2012) The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg 22(11):1771–1782PubMedCrossRef
77.
go back to reference Morton JM et al (2016) Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge study. Obes Surg 26(5):983–989PubMedPubMedCentralCrossRef Morton JM et al (2016) Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge study. Obes Surg 26(5):983–989PubMedPubMedCentralCrossRef
78.
go back to reference Huang F et al (2014) Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement Altern Med 14:203PubMedPubMedCentralCrossRef Huang F et al (2014) Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement Altern Med 14:203PubMedPubMedCentralCrossRef
79.
go back to reference Pu L et al (2023) Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke 54(5):1330–1339PubMedCrossRef Pu L et al (2023) Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke 54(5):1330–1339PubMedCrossRef
80.
go back to reference Dawson J et al (2021) Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 397(10284):1545–1553PubMedPubMedCentralCrossRef Dawson J et al (2021) Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 397(10284):1545–1553PubMedPubMedCentralCrossRef
81.
go back to reference Capone F et al (2017) Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast 2017:7876507PubMedPubMedCentralCrossRef Capone F et al (2017) Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast 2017:7876507PubMedPubMedCentralCrossRef
82.
go back to reference Redgrave JN et al (2018) Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J Stroke Cerebrovasc Dis 27(7):1998–2005PubMedCrossRef Redgrave JN et al (2018) Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J Stroke Cerebrovasc Dis 27(7):1998–2005PubMedCrossRef
83.
go back to reference Baig SS et al (2019) Transcutaneous auricular vagus nerve stimulation with upper limb repetitive task practice may improve sensory recovery in chronic stroke. J Stroke Cerebrovasc Dis 28(12):104348PubMedCrossRef Baig SS et al (2019) Transcutaneous auricular vagus nerve stimulation with upper limb repetitive task practice may improve sensory recovery in chronic stroke. J Stroke Cerebrovasc Dis 28(12):104348PubMedCrossRef
84.
go back to reference Wu D et al (2020) Effect and safety of transcutaneous auricular vagus nerve stimulation on recovery of upper limb motor function in subacute ischemic stroke patients: a randomized pilot study. Neural Plast 2020:8841752PubMedPubMedCentralCrossRef Wu D et al (2020) Effect and safety of transcutaneous auricular vagus nerve stimulation on recovery of upper limb motor function in subacute ischemic stroke patients: a randomized pilot study. Neural Plast 2020:8841752PubMedPubMedCentralCrossRef
85.
go back to reference Peng X et al (2023) Left or right ear? a neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul 16(4):1144–1153PubMedCrossRef Peng X et al (2023) Left or right ear? a neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul 16(4):1144–1153PubMedCrossRef
86.
go back to reference Sadler RM, Purdy RA, Rahey S (2002) Vagal nerve stimulation aborts migraine in patient with intractable epilepsy. Cephalalgia 22(6):482–484PubMedCrossRef Sadler RM, Purdy RA, Rahey S (2002) Vagal nerve stimulation aborts migraine in patient with intractable epilepsy. Cephalalgia 22(6):482–484PubMedCrossRef
87.
88.
go back to reference Goadsby PJ et al (2014) Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia 34(12):986–993PubMedCrossRef Goadsby PJ et al (2014) Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia 34(12):986–993PubMedCrossRef
89.
90.
go back to reference Silberstein SD et al (2016) Non-invasive vagus nerve stimulation for the ACute Treatment of Cluster Headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56(8):1317–1332PubMedPubMedCentralCrossRef Silberstein SD et al (2016) Non-invasive vagus nerve stimulation for the ACute Treatment of Cluster Headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56(8):1317–1332PubMedPubMedCentralCrossRef
91.
go back to reference Goadsby PJ et al (2018) Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia 38(5):959–969PubMedCrossRef Goadsby PJ et al (2018) Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia 38(5):959–969PubMedCrossRef
92.
go back to reference Diener HC et al (2019) Non-invasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: the multicentre, double-blind, randomised, sham-controlled PREMIUM trial. Cephalalgia 39(12):1475–1487PubMedPubMedCentralCrossRef Diener HC et al (2019) Non-invasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: the multicentre, double-blind, randomised, sham-controlled PREMIUM trial. Cephalalgia 39(12):1475–1487PubMedPubMedCentralCrossRef
93.
94.
go back to reference Zhang Y et al (2019) Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin 24:101971PubMedPubMedCentralCrossRef Zhang Y et al (2019) Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin 24:101971PubMedPubMedCentralCrossRef
95.
go back to reference Zamotrinsky AV, Kondratiev B, de Jong JW (2001) Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci 88(1):109–116PubMedCrossRef Zamotrinsky AV, Kondratiev B, de Jong JW (2001) Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci 88(1):109–116PubMedCrossRef
96.
go back to reference Aranow C et al (2021) Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Ann Rheum Dis 80(2):203–208PubMedCrossRef Aranow C et al (2021) Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Ann Rheum Dis 80(2):203–208PubMedCrossRef
99.
go back to reference Kovacic K et al (2017) Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial. Lancet Gastroenterol Hepatol 2(10):727–737PubMedCrossRef Kovacic K et al (2017) Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial. Lancet Gastroenterol Hepatol 2(10):727–737PubMedCrossRef
100.
go back to reference Muthulingam JA et al (2021) Cervical transcutaneous vagal neuromodulation in chronic pancreatitis patients with chronic pain: a randomised sham controlled clinical trial. PLoS ONE 16(2):e0247653PubMedPubMedCentralCrossRef Muthulingam JA et al (2021) Cervical transcutaneous vagal neuromodulation in chronic pancreatitis patients with chronic pain: a randomised sham controlled clinical trial. PLoS ONE 16(2):e0247653PubMedPubMedCentralCrossRef
101.
go back to reference Frøkjaer JB et al (2016) Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil 28(4):592–598PubMedCrossRef Frøkjaer JB et al (2016) Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil 28(4):592–598PubMedCrossRef
102.
go back to reference Napadow V et al (2012) Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med 13(6):777–789PubMedCrossRef Napadow V et al (2012) Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med 13(6):777–789PubMedCrossRef
103.
go back to reference Busch V et al (2013) The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul 6(2):202–209PubMedCrossRef Busch V et al (2013) The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul 6(2):202–209PubMedCrossRef
104.
go back to reference Alt LK et al (2020) A randomized sham-controlled cross-over study on the short-term effect of non-invasive cervical vagus nerve stimulation on spinal and supraspinal nociception in healthy subjects. Headache 60(8):1616–1631PubMedCrossRef Alt LK et al (2020) A randomized sham-controlled cross-over study on the short-term effect of non-invasive cervical vagus nerve stimulation on spinal and supraspinal nociception in healthy subjects. Headache 60(8):1616–1631PubMedCrossRef
105.
go back to reference Farmer AD et al (2020) Transcutaneous vagus nerve stimulation prevents the development of, and reverses, established oesophageal pain hypersensitivity. Aliment Pharmacol Ther 52(6):988–996PubMedCrossRef Farmer AD et al (2020) Transcutaneous vagus nerve stimulation prevents the development of, and reverses, established oesophageal pain hypersensitivity. Aliment Pharmacol Ther 52(6):988–996PubMedCrossRef
106.
go back to reference Jin Z et al (2023) Exploring the potential of vagus nerve stimulation in treating brain diseases: a review of immunologic benefits and neuroprotective efficacy. Eur J Med Res 28(1):444PubMedPubMedCentralCrossRef Jin Z et al (2023) Exploring the potential of vagus nerve stimulation in treating brain diseases: a review of immunologic benefits and neuroprotective efficacy. Eur J Med Res 28(1):444PubMedPubMedCentralCrossRef
107.
go back to reference Sinniger V et al (2020) A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol Motil 32(10):e13911PubMedCrossRef Sinniger V et al (2020) A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol Motil 32(10):e13911PubMedCrossRef
108.
go back to reference D’Haens G et al (2019) Vagus nerve stimulation reduces disease activity and modulates serum and autonomic biomarkers in biologicrefractory crohn’s disease. Gastroenterology 156(6):S75–S75CrossRef D’Haens G et al (2019) Vagus nerve stimulation reduces disease activity and modulates serum and autonomic biomarkers in biologicrefractory crohn’s disease. Gastroenterology 156(6):S75–S75CrossRef
109.
go back to reference Wu Z et al (2023) Transcutaneous auricular vagus nerve stimulation reduces cytokine production in sepsis: an open double-blind, sham-controlled, pilot study. Brain Stimul 16(2):507–514PubMedCrossRef Wu Z et al (2023) Transcutaneous auricular vagus nerve stimulation reduces cytokine production in sepsis: an open double-blind, sham-controlled, pilot study. Brain Stimul 16(2):507–514PubMedCrossRef
110.
go back to reference Bazoukis G, Stavrakis S, Armoundas AA (2023) Vagus nerve stimulation and inflammation in cardiovascular disease: a state-of-the-art review. J Am Heart Assoc 12(19):e030539PubMedPubMedCentralCrossRef Bazoukis G, Stavrakis S, Armoundas AA (2023) Vagus nerve stimulation and inflammation in cardiovascular disease: a state-of-the-art review. J Am Heart Assoc 12(19):e030539PubMedPubMedCentralCrossRef
111.
go back to reference Badran BW et al (2022) A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Bioelectron Med 8(1):13PubMedPubMedCentralCrossRef Badran BW et al (2022) A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Bioelectron Med 8(1):13PubMedPubMedCentralCrossRef
112.
go back to reference Gold MR et al (2016) Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol 68(2):149–158PubMedCrossRef Gold MR et al (2016) Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol 68(2):149–158PubMedCrossRef
113.
go back to reference De Ferrari GM et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855PubMedCrossRef De Ferrari GM et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855PubMedCrossRef
114.
go back to reference Zannad F et al (2015) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36(7):425–433PubMedCrossRef Zannad F et al (2015) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36(7):425–433PubMedCrossRef
115.
go back to reference Premchand RK et al (2014) Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail 20(11):808–816PubMedCrossRef Premchand RK et al (2014) Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail 20(11):808–816PubMedCrossRef
116.
go back to reference Zamotrinsky AV, Kondratiev B, de Jong JW (2001) Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci 88(1–2):109–116PubMedCrossRef Zamotrinsky AV, Kondratiev B, de Jong JW (2001) Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci 88(1–2):109–116PubMedCrossRef
117.
go back to reference Yu L et al (2017) Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc Interv 10(15):1511–1520PubMedCrossRef Yu L et al (2017) Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc Interv 10(15):1511–1520PubMedCrossRef
118.
go back to reference Kaut O et al (2019) Transcutaneous vagal nerve stimulation improves gastroenteric complaints in Parkinson’s disease patients. NeuroRehabilitation 45(4):449–451PubMedCrossRef Kaut O et al (2019) Transcutaneous vagal nerve stimulation improves gastroenteric complaints in Parkinson’s disease patients. NeuroRehabilitation 45(4):449–451PubMedCrossRef
119.
go back to reference Zhang B et al (2021) Integrative effects and vagal mechanisms of transcutaneous electrical acustimulation on gastroesophageal motility in patients with gastroesophageal reflux disease. Am J Gastroenterol 116(7):1495–1505PubMedCrossRef Zhang B et al (2021) Integrative effects and vagal mechanisms of transcutaneous electrical acustimulation on gastroesophageal motility in patients with gastroesophageal reflux disease. Am J Gastroenterol 116(7):1495–1505PubMedCrossRef
120.
go back to reference Paulon E et al (2017) Proof of concept: short-term non-invasive cervical vagus nerve stimulation in patients with drug-refractory gastroparesis. Frontline Gastroenterol 8(4):325–330PubMedPubMedCentralCrossRef Paulon E et al (2017) Proof of concept: short-term non-invasive cervical vagus nerve stimulation in patients with drug-refractory gastroparesis. Frontline Gastroenterol 8(4):325–330PubMedPubMedCentralCrossRef
121.
go back to reference Gottfried-Blackmore A et al (2020) Open-label pilot study: non-invasive vagal nerve stimulation improves symptoms and gastric emptying in patients with idiopathic gastroparesis. Neurogastroenterol Motil 32(4):e13769PubMedCrossRef Gottfried-Blackmore A et al (2020) Open-label pilot study: non-invasive vagal nerve stimulation improves symptoms and gastric emptying in patients with idiopathic gastroparesis. Neurogastroenterol Motil 32(4):e13769PubMedCrossRef
122.
go back to reference Badran BW et al (2022) A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Res Sq Badran BW et al (2022) A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Res Sq
Metadata
Title
Vagus nerve stimulation (VNS): recent advances and future directions
Authors
Christopher W. Austelle
Stewart S. Cox
Kristin E. Wills
Bashar W. Badran
Publication date
04-10-2024
Publisher
Springer Berlin Heidelberg
Published in
Clinical Autonomic Research
Print ISSN: 0959-9851
Electronic ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-024-01065-w

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more