Skip to main content
Top
Published in:

09-07-2022 | Uveitis | Spondyloarthritis (MA Khan and N Akkoc, Section Editors)

Deep Insight into the Role of MIF in Spondyloarthritis

Authors: Brian Wu, Akihiro Nakamura

Published in: Current Rheumatology Reports | Issue 9/2022

Login to get access

Abstract

Purpose of Review

Pathological roles of macrophage migration inhibitory factor (MIF) have recently been demonstrated in spondyloarthritis (SpA) preclinical models, identifying MIF as a new treatment target for SpA. However, the specific contribution of MIF and therapeutic potential of MIF-targeted therapies to various tissue types affected by SpA are not well delineated.

Recent Findings

MIF and its cognate receptor CD74 are extensively involved in the pathogenesis of SpA including inflammation in the spine, joint, eyes, skin, and gut. The majority of the current evidence has consistently shown that MIF drives the inflammation in these distinct anatomical sites. In preclinical models, genetic deletion or blockade of MIF reduces the severity of inflammation. Although MIF is generally an upstream cytokine which regulates downstream effector cytokines, MIF also intensifies type 3 immunity by promoting helper T 17 (Th17) plasticity. MIF- or CD74-targeted therapies have also reported to be well tolerated in clinical trials for other diseases.

Summary

Recent findings suggest that MIF-CD74 axis is a new therapeutic target for SpA to improve various clinical features. Clinical trials for MIF- or CD74-targeted therapies for SpA patients are warranted.
Literature
1.
go back to reference Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol. England; 2022;32(3):484-492. Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol. England; 2022;32(3):484-492.
2.
go back to reference Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis — recent advances and future directions. Nat Rev Rheumatol United States. 2017;13:359–67.CrossRef Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis — recent advances and future directions. Nat Rev Rheumatol United States. 2017;13:359–67.CrossRef
3.
go back to reference Dougados M, Baeten D. Spondyloarthritis Lancet England. 2011;377:2127–37.CrossRef Dougados M, Baeten D. Spondyloarthritis Lancet England. 2011;377:2127–37.CrossRef
4.
go back to reference Nakamura A, Haroon N. Recent updates in the immunopathology of type 3 immunity-mediated enthesitis. CurrRheumatol Rep. United States; 2021;23:31. Nakamura A, Haroon N. Recent updates in the immunopathology of type 3 immunity-mediated enthesitis. CurrRheumatol Rep. United States; 2021;23:31.
5.
go back to reference Nakamura A, Talukdar A, Nakamura S, Pathan E, Haroon N. Bone formation in axial spondyloarthritis: is disease modification possible? Best Pract Res Clin Rheumatol. Netherlands. 2019;33: 101491. Nakamura A, Talukdar A, Nakamura S, Pathan E, Haroon N. Bone formation in axial spondyloarthritis: is disease modification possible? Best Pract Res Clin Rheumatol. Netherlands. 2019;33: 101491.
6.
go back to reference Haroon NN, Paterson JM, Li P, Inman RD, Haroon N. Patients with ankylosing spondylitis have increased cardiovascular and cerebrovascular mortality: a population-based study. Ann Intern Med United States. 2015;163:409–16.CrossRef Haroon NN, Paterson JM, Li P, Inman RD, Haroon N. Patients with ankylosing spondylitis have increased cardiovascular and cerebrovascular mortality: a population-based study. Ann Intern Med United States. 2015;163:409–16.CrossRef
7.
go back to reference Kuriya B, Tia V, Luo J, Widdifield J, Vigod S, Haroon N. Acute mental health service use is increased in rheumatoid arthritis and ankylosing spondylitis: a population-based cohort study. Therapeutic Advances in Musculoskeletal Disease [Internet]. SAGE Publications; 2020;12:1759720X20921710. Available from: https://doi.org/10.1177/1759720X20921710 Kuriya B, Tia V, Luo J, Widdifield J, Vigod S, Haroon N. Acute mental health service use is increased in rheumatoid arthritis and ankylosing spondylitis: a population-based cohort study. Therapeutic Advances in Musculoskeletal Disease [Internet]. SAGE Publications; 2020;12:1759720X20921710. Available from: https://​doi.​org/​10.​1177/​1759720X20921710​
8.
go back to reference Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Annals of the Rheumatic Diseases [Internet]. 2021;80:1004. Available from: http://ard.bmj.com/content/80/8/1004.abstract Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Annals of the Rheumatic Diseases [Internet]. 2021;80:1004. Available from: http://​ard.​bmj.​com/​content/​80/​8/​1004.​abstract
9.
go back to reference Genovese MC, Fleischmann R, Combe B, Hall S, Rubbert-Roth A, Zhang Y, et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. The Lancet [Internet]. Elsevier; 2018;391:2513–24. Available from: https://doi.org/10.1016/S0140-6736(18)31116-4 Genovese MC, Fleischmann R, Combe B, Hall S, Rubbert-Roth A, Zhang Y, et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. The Lancet [Internet]. Elsevier; 2018;391:2513–24. Available from: https://​doi.​org/​10.​1016/​S0140-6736(18)31116-4
10.
go back to reference Wei JC-C, Kim T-H, Kishimoto M, Ogusu N, Jeong H, Kobayashi S, et al. Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann Rheum Dis. 2021; Wei JC-C, Kim T-H, Kishimoto M, Ogusu N, Jeong H, Kobayashi S, et al. Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann Rheum Dis. 2021;
11.
go back to reference ClinicalTrials.gov. A study to evaluate the efficacy and safety of bimekizumab in subjects with active nonradiographic axial spondyloarthritis (BE MOBILE 1). 2021. ClinicalTrials.gov. A study to evaluate the efficacy and safety of bimekizumab in subjects with active nonradiographic axial spondyloarthritis (BE MOBILE 1). 2021.
12.
go back to reference Macfarlane GJ, Pathan E, Jones GT, Dean LE. Predicting response to anti-TNFα therapy among patients with axial spondyloarthritis (axSpA): results from BSRBR-AS. Rheumatology (Oxford). 2020;59:2481–90.CrossRef Macfarlane GJ, Pathan E, Jones GT, Dean LE. Predicting response to anti-TNFα therapy among patients with axial spondyloarthritis (axSpA): results from BSRBR-AS. Rheumatology (Oxford). 2020;59:2481–90.CrossRef
13.
go back to reference Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update. Nat Rev Rheumatol. 2022;18:205–16.PubMedCrossRef Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update. Nat Rev Rheumatol. 2022;18:205–16.PubMedCrossRef
14.
go back to reference Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol United States. 2019;15:427–37.CrossRef Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol United States. 2019;15:427–37.CrossRef
15.
go back to reference Greven D, Leng L, Bucala R. Autoimmune diseases: MIF as a therapeutic target. Expert Opin Ther Targets England. 2010;14:253–64.CrossRef Greven D, Leng L, Bucala R. Autoimmune diseases: MIF as a therapeutic target. Expert Opin Ther Targets England. 2010;14:253–64.CrossRef
16.
go back to reference Bae S-C, Lee YH. Associations between circulating macrophage migration inhibitory factor (MIF) levels and rheumatoid arthritis, and between MIF gene polymorphisms and disease susceptibility: a meta-analysis. Postgrad Med J. 2018;94:109–15.PubMedCrossRef Bae S-C, Lee YH. Associations between circulating macrophage migration inhibitory factor (MIF) levels and rheumatoid arthritis, and between MIF gene polymorphisms and disease susceptibility: a meta-analysis. Postgrad Med J. 2018;94:109–15.PubMedCrossRef
17.
go back to reference Sreih A, Ezzeddine R, Leng L, LaChance A, Yu G, Mizue Y, et al. Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis Rheum. 2011;63:3942–51.PubMedPubMedCentralCrossRef Sreih A, Ezzeddine R, Leng L, LaChance A, Yu G, Mizue Y, et al. Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis Rheum. 2011;63:3942–51.PubMedPubMedCentralCrossRef
18.
go back to reference Kim H-R, Park M-K, Cho M-L, Yoon C-H, Lee S-H, Park S-H, et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol. 2007;34:927–36.PubMed Kim H-R, Park M-K, Cho M-L, Yoon C-H, Lee S-H, Park S-H, et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol. 2007;34:927–36.PubMed
19.
go back to reference Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis & Rheumatism [Internet]. John Wiley & Sons, Ltd; 2003;48:1881–9. Available from: https://doi.org/10.1002/art.11165 Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis & Rheumatism [Internet]. John Wiley & Sons, Ltd; 2003;48:1881–9. Available from: https://​doi.​org/​10.​1002/​art.​11165
20.
go back to reference Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, et al. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem. 2002;277:7865–74. Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, et al. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem. 2002;277:7865–74.
21.
go back to reference Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol. 2006;177:5687–96.PubMedCrossRef Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol. 2006;177:5687–96.PubMedCrossRef
22.
go back to reference Gürel Ç, İnanır A, Nursal AF, Tekcan A, Rüstemoğlu A, Yigit S. Evaluation of MIF -173 G/C polymorphism in Turkish patients with ankylosing spondylitis. Balkan Med J. 2016;33:614–9.PubMedPubMedCentralCrossRef Gürel Ç, İnanır A, Nursal AF, Tekcan A, Rüstemoğlu A, Yigit S. Evaluation of MIF -173 G/C polymorphism in Turkish patients with ankylosing spondylitis. Balkan Med J. 2016;33:614–9.PubMedPubMedCentralCrossRef
23.
go back to reference Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 2010;20:34–9.PubMedCrossRef Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 2010;20:34–9.PubMedCrossRef
24.
go back to reference Ranganathan V, Ciccia F, Zeng F, Sari I, Guggino G, Muralitharan J, et al. Macrophage migration inhibitory factor induces inflammation and predicts spinal progression in ankylosing spondylitis. Arthritis and Rheumatology. 2017;69(9):1796–806.PubMedCrossRef Ranganathan V, Ciccia F, Zeng F, Sari I, Guggino G, Muralitharan J, et al. Macrophage migration inhibitory factor induces inflammation and predicts spinal progression in ankylosing spondylitis. Arthritis and Rheumatology. 2017;69(9):1796–806.PubMedCrossRef
25.
go back to reference Nakamura A, Zeng F, Nakamura S, Reid KT, Gracey E, Lim M, et al. Macrophage migration inhibitory factor drives pathology in a mouse model of spondyloarthritis and is associated with human disease. Sci Transl Med. 2021;13:eabg1210. Nakamura A, Zeng F, Nakamura S, Reid KT, Gracey E, Lim M, et al. Macrophage migration inhibitory factor drives pathology in a mouse model of spondyloarthritis and is associated with human disease. Sci Transl Med. 2021;13:eabg1210.
26.
go back to reference Rahman MA, Thomas R. The SKG model of spondyloarthritis. Best Pract Res Clin Rheumatol Netherlands. 2017;31:895–909.CrossRef Rahman MA, Thomas R. The SKG model of spondyloarthritis. Best Pract Res Clin Rheumatol Netherlands. 2017;31:895–909.CrossRef
27.
go back to reference Rich AR, Lewis MR. The nature of allergy in tuberculosis at revealed by tissue culture studies. Bull Johns Hopkins Hosp. 1932;50:115–31. Rich AR, Lewis MR. The nature of allergy in tuberculosis at revealed by tissue culture studies. Bull Johns Hopkins Hosp. 1932;50:115–31.
28.
go back to reference Goldberg LS, Louie JS, Baker MH. Inhibition of macrophage migration: a test system using human monocytes. J Immunol. 1971;107:906–9.PubMed Goldberg LS, Louie JS, Baker MH. Inhibition of macrophage migration: a test system using human monocytes. J Immunol. 1971;107:906–9.PubMed
30.
go back to reference Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, et al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc Natl Acad Sci U S A. 2011;108:E577–85.PubMedPubMedCentralCrossRef Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, et al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc Natl Acad Sci U S A. 2011;108:E577–85.PubMedPubMedCentralCrossRef
32.
go back to reference Donn R, Alourfi Z, de Benedetti F, Meazza C, Zeggini E, Lunt M, et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:2402–9.PubMedCrossRef Donn R, Alourfi Z, de Benedetti F, Meazza C, Zeggini E, Lunt M, et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:2402–9.PubMedCrossRef
33.
go back to reference Wu S-P, Leng L, Feng Z, Liu N, Zhao H, McDonald C, et al. Macrophage migration inhibitory factor promoter polymorphisms and the clinical expression of scleroderma. Arthritis Rheum. 2006;54:3661–9.PubMedCrossRef Wu S-P, Leng L, Feng Z, Liu N, Zhao H, McDonald C, et al. Macrophage migration inhibitory factor promoter polymorphisms and the clinical expression of scleroderma. Arthritis Rheum. 2006;54:3661–9.PubMedCrossRef
34.
go back to reference Llamas-Covarrubias MA, Valle Y, Bucala R, Navarro-Hernández RE, Palafox-Sánchez CA, Padilla-Gutiérrez JR, et al. Macrophage migration inhibitory factor (MIF): genetic evidence for participation in early onset and early stage rheumatoid arthritis. Cytokine. 2013;61:759–65.PubMedPubMedCentralCrossRef Llamas-Covarrubias MA, Valle Y, Bucala R, Navarro-Hernández RE, Palafox-Sánchez CA, Padilla-Gutiérrez JR, et al. Macrophage migration inhibitory factor (MIF): genetic evidence for participation in early onset and early stage rheumatoid arthritis. Cytokine. 2013;61:759–65.PubMedPubMedCentralCrossRef
35.
go back to reference Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ, et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun. 2002;3:170–6.PubMedCrossRef Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ, et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun. 2002;3:170–6.PubMedCrossRef
36.
go back to reference Wang F-F, Zhu L-A, Zou Y-Q, Zheng H, Wilson A, Yang C-D, et al. New insights into the role and mechanism of macrophage migration inhibitory factor in steroid-resistant patients with systemic lupus erythematosus. Arthritis Res Ther. 2012;14:R103.PubMedPubMedCentralCrossRef Wang F-F, Zhu L-A, Zou Y-Q, Zheng H, Wilson A, Yang C-D, et al. New insights into the role and mechanism of macrophage migration inhibitory factor in steroid-resistant patients with systemic lupus erythematosus. Arthritis Res Ther. 2012;14:R103.PubMedPubMedCentralCrossRef
37.
go back to reference Eder L, Chandran V, Ueng J, Bhella S, Lee K-A, Rahman P, et al. Predictors of response to intra-articular steroid injection in psoriatic arthritis. Rheumatology (Oxford). 2010;49:1367–73.CrossRef Eder L, Chandran V, Ueng J, Bhella S, Lee K-A, Rahman P, et al. Predictors of response to intra-articular steroid injection in psoriatic arthritis. Rheumatology (Oxford). 2010;49:1367–73.CrossRef
38.
go back to reference Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal England. 2019;57:76–88.CrossRef Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal England. 2019;57:76–88.CrossRef
39.
go back to reference Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13:587–96.PubMedCrossRef Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13:587–96.PubMedCrossRef
40.
go back to reference De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui AA, Saha SJ, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740–60.PubMedPubMedCentralCrossRef De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui AA, Saha SJ, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740–60.PubMedPubMedCentralCrossRef
41.
go back to reference Onodera S, Tanji H, Suzuki K, Kaneda K, Mizue Y, Sagawa A, et al. High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine. 1999;11:163–7.PubMedCrossRef Onodera S, Tanji H, Suzuki K, Kaneda K, Mizue Y, Sagawa A, et al. High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine. 1999;11:163–7.PubMedCrossRef
42.
go back to reference Meazza C, Travaglino P, Pignatti P, Magni-Manzoni S, Ravelli A, Martini A, et al. Macrophage migration inhibitory factor in patients with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:232–7.PubMedCrossRef Meazza C, Travaglino P, Pignatti P, Magni-Manzoni S, Ravelli A, Martini A, et al. Macrophage migration inhibitory factor in patients with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:232–7.PubMedCrossRef
43.
go back to reference de Jong YP, Abadia-Molina AC, Satoskar AR, Clarke K, Rietdijk ST, Faubion WA, et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001;2:1061–6.PubMedCrossRef de Jong YP, Abadia-Molina AC, Satoskar AR, Clarke K, Rietdijk ST, Faubion WA, et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001;2:1061–6.PubMedCrossRef
44.
go back to reference Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 2010;20:34–9.PubMedCrossRef Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 2010;20:34–9.PubMedCrossRef
45.
go back to reference Park M-C, Kwon OC, Lee S-W, Song JJ, Park Y-B. MiR-451 suppresses inflammatory responses in ankylosing spondylitis by targeting macrophage migration inhibitory factor. Clin Exp Rheumatol. 2020;38(2):275–81.PubMedCrossRef Park M-C, Kwon OC, Lee S-W, Song JJ, Park Y-B. MiR-451 suppresses inflammatory responses in ankylosing spondylitis by targeting macrophage migration inhibitory factor. Clin Exp Rheumatol. 2020;38(2):275–81.PubMedCrossRef
46.
go back to reference Baerlecken NT, Nothdorft S, Stummvoll GH, Sieper J, Rudwaleit M, Reuter S, et al. Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis England. 2014;73:1211–4.CrossRef Baerlecken NT, Nothdorft S, Stummvoll GH, Sieper J, Rudwaleit M, Reuter S, et al. Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis England. 2014;73:1211–4.CrossRef
47.
go back to reference Baraliakos X, Baerlecken N, Witte T, Heldmann F, Braun J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis England. 2014;73:1079–82.CrossRef Baraliakos X, Baerlecken N, Witte T, Heldmann F, Braun J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis England. 2014;73:1079–82.CrossRef
48.
go back to reference Riechers E, Baerlecken N, Baraliakos X, Achilles-Mehr Bakhsh K, Aries P, Bannert B, et al. Sensitivity and specificity of autoantibodies against CD74 in nonradiographic axial spondyloarthritis. Arthritis Rheumatol United States. 2019;71:729–35.CrossRef Riechers E, Baerlecken N, Baraliakos X, Achilles-Mehr Bakhsh K, Aries P, Bannert B, et al. Sensitivity and specificity of autoantibodies against CD74 in nonradiographic axial spondyloarthritis. Arthritis Rheumatol United States. 2019;71:729–35.CrossRef
49.
go back to reference Hu C-J, Li M-T, Li X, Peng L-Y, Zhang S-Z, Leng X-M, et al. CD74 auto-antibodies display little clinical value in Chinese Han population with axial spondyloarthritis. Medicine. 2020;99: e23433.PubMedPubMedCentralCrossRef Hu C-J, Li M-T, Li X, Peng L-Y, Zhang S-Z, Leng X-M, et al. CD74 auto-antibodies display little clinical value in Chinese Han population with axial spondyloarthritis. Medicine. 2020;99: e23433.PubMedPubMedCentralCrossRef
50.
go back to reference Liu M, Xie Z, Sun G, Chen L, Qi D, Zhang H, et al. Macrophage migration inhibitory factor may play a protective role in osteoarthritis. Arthritis Res Ther. 2021;23:59.PubMedPubMedCentralCrossRef Liu M, Xie Z, Sun G, Chen L, Qi D, Zhang H, et al. Macrophage migration inhibitory factor may play a protective role in osteoarthritis. Arthritis Res Ther. 2021;23:59.PubMedPubMedCentralCrossRef
51.
go back to reference Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, et al. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med. 2018; 10.aan4886. Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, et al. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med. 2018; 10.aan4886.
52.
go back to reference Kitayama S, Onodera S, Kondo E, Kobayashi T, Miyatake S, Kitamura N, et al. Deficiency of macrophage migration inhibitory factor gene delays healing of the medial collateral ligament: a biomechanical and biological study. J Biomech. 2011;44:494–500.PubMedCrossRef Kitayama S, Onodera S, Kondo E, Kobayashi T, Miyatake S, Kitamura N, et al. Deficiency of macrophage migration inhibitory factor gene delays healing of the medial collateral ligament: a biomechanical and biological study. J Biomech. 2011;44:494–500.PubMedCrossRef
53.
go back to reference Schett G, Lories RJ, D’Agostino M-A, Elewaut D, Kirkham B, Soriano ER, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol United States. 2017;13:731–41.CrossRef Schett G, Lories RJ, D’Agostino M-A, Elewaut D, Kirkham B, Soriano ER, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol United States. 2017;13:731–41.CrossRef
54.
go back to reference Sherlock JP, Joyce-Shaikh B, Turner SP, Chao C-C, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med United States. 2012;18:1069–76. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao C-C, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med United States. 2012;18:1069–76.
55.
go back to reference Kim D-H, Noh S-U, Chae S-W, Kim S-J, Lee Y-T. Altered differentiation of tendon-derived stem cells in diabetic conditions mediated by macrophage migration inhibitory factor. Int J Mol Sci. 2021;22(16):8983.PubMedPubMedCentralCrossRef Kim D-H, Noh S-U, Chae S-W, Kim S-J, Lee Y-T. Altered differentiation of tendon-derived stem cells in diabetic conditions mediated by macrophage migration inhibitory factor. Int J Mol Sci. 2021;22(16):8983.PubMedPubMedCentralCrossRef
56.
go back to reference • Akbar M, MacDonald L, Crowe LAN, Carlberg K, Kurowska-Stolarska M, Ståhl PL, et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann Rheum Dis. 2021;80(11):1494–7. This study found tenocyte MIF upregulation in tendinopathy, as well as increase CD74 in macrophages within damaged tendon tissue.PubMedCrossRef • Akbar M, MacDonald L, Crowe LAN, Carlberg K, Kurowska-Stolarska M, Ståhl PL, et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann Rheum Dis. 2021;80(11):1494–7. This study found tenocyte MIF upregulation in tendinopathy, as well as increase CD74 in macrophages within damaged tendon tissue.PubMedCrossRef
57.
go back to reference Kim SJ, Song D-H, Kim SJ. Characteristics of tendon derived stem cells according to different factors to induce the tendinopathy. J Cell Physiol United States. 2018;233:6196–206.CrossRef Kim SJ, Song D-H, Kim SJ. Characteristics of tendon derived stem cells according to different factors to induce the tendinopathy. J Cell Physiol United States. 2018;233:6196–206.CrossRef
58.
go back to reference Stojanović I, Cvjetićanin T, Lazaroski S, Stosić-Grujicić S, Miljković D. Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology. 2009;126:74–83.PubMedPubMedCentralCrossRef Stojanović I, Cvjetićanin T, Lazaroski S, Stosić-Grujicić S, Miljković D. Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology. 2009;126:74–83.PubMedPubMedCentralCrossRef
60.
go back to reference Zheng Y, Cai B, Ren C, Xu H, Du W, Wu Y, et al. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ. 2021;9: e12125.PubMedPubMedCentralCrossRef Zheng Y, Cai B, Ren C, Xu H, Du W, Wu Y, et al. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ. 2021;9: e12125.PubMedPubMedCentralCrossRef
61.
go back to reference •• Yu T, Zhang J, Zhu W, Wang X, Bai Y, Feng B, et al. Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Res. 2021;9:19. This study firmly shows that endochondral ossification is one of the central process of new bone formation in axSpA.PubMedPubMedCentralCrossRef •• Yu T, Zhang J, Zhu W, Wang X, Bai Y, Feng B, et al. Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Res. 2021;9:19. This study firmly shows that endochondral ossification is one of the central process of new bone formation in axSpA.PubMedPubMedCentralCrossRef
62.
go back to reference Fujihara Y, Hikita A, Takato T, Hoshi K. Roles of macrophage migration inhibitory factor in cartilage tissue engineering. J Cell Physiol United States. 2018;233:1490–9.CrossRef Fujihara Y, Hikita A, Takato T, Hoshi K. Roles of macrophage migration inhibitory factor in cartilage tissue engineering. J Cell Physiol United States. 2018;233:1490–9.CrossRef
63.
go back to reference • Deng M, Tan J, Dai Q, Luo F, Xu J. Macrophage-mediated bone formation in scaffolds modified with MSC-derived extracellular matrix is dependent on the migration inhibitory factor signaling pathway. Front Cell Dev Biol. 2021;9: 714011. This study identified macrophage-derived MIF as a regulatory cytokine in osteogenesis using cartilage implants.PubMedPubMedCentralCrossRef • Deng M, Tan J, Dai Q, Luo F, Xu J. Macrophage-mediated bone formation in scaffolds modified with MSC-derived extracellular matrix is dependent on the migration inhibitory factor signaling pathway. Front Cell Dev Biol. 2021;9: 714011. This study identified macrophage-derived MIF as a regulatory cytokine in osteogenesis using cartilage implants.PubMedPubMedCentralCrossRef
64.
go back to reference Jacquin C, Koczon-Jaremko B, Aguila HL, Leng L, Bucala R, Kuchel GA, et al. Macrophage migration inhibitory factor inhibits osteoclastogenesis. Bone. 2009;45:640–9.PubMedCrossRef Jacquin C, Koczon-Jaremko B, Aguila HL, Leng L, Bucala R, Kuchel GA, et al. Macrophage migration inhibitory factor inhibits osteoclastogenesis. Bone. 2009;45:640–9.PubMedCrossRef
65.
go back to reference Mun SH, Won HY, Hernandez P, Aguila HL, Lee S-K. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J Bone Miner Res. 2013;28:948–59.PubMedCrossRef Mun SH, Won HY, Hernandez P, Aguila HL, Lee S-K. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J Bone Miner Res. 2013;28:948–59.PubMedCrossRef
66.
go back to reference Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, et al. Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res. 2006;21:876–85.PubMedCrossRef Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, et al. Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res. 2006;21:876–85.PubMedCrossRef
67.
go back to reference Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, et al. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J. 2019;33:7667–83.PubMedCrossRef Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, et al. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J. 2019;33:7667–83.PubMedCrossRef
68.
go back to reference Christodoulou-Vafeiadou E, Geka C, Ntari L, Kranidioti K, Argyropoulou E, Meier F, et al. Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Res Ther. 2020;22:232.PubMedPubMedCentralCrossRef Christodoulou-Vafeiadou E, Geka C, Ntari L, Kranidioti K, Argyropoulou E, Meier F, et al. Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Res Ther. 2020;22:232.PubMedPubMedCentralCrossRef
69.
go back to reference Kopylov U, Starr M, Watts C, Dionne S, Girardin M, Seidman EG. Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study. J Rheumatol. 2018;45:498–505.PubMedCrossRef Kopylov U, Starr M, Watts C, Dionne S, Girardin M, Seidman EG. Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study. J Rheumatol. 2018;45:498–505.PubMedCrossRef
70.
go back to reference Mielants H, Veys EM, Cuvelier C, de Vos M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol. 1988;27(Suppl 2):95–105.PubMedCrossRef Mielants H, Veys EM, Cuvelier C, de Vos M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol. 1988;27(Suppl 2):95–105.PubMedCrossRef
71.
go back to reference van Praet L, van den Bosch FE, Jacques P, Carron P, Jans L, Colman R, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis. 2013;72:414–7.PubMedCrossRef van Praet L, van den Bosch FE, Jacques P, Carron P, Jans L, Colman R, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis. 2013;72:414–7.PubMedCrossRef
72.
go back to reference Oliver J, Márquez A, Gómez-Garcia M, Martinez A, Mendoza JL, Vilchez JR, et al. Association of the macrophage migration inhibitory factor gene polymorphisms with inflammatory bowel disease. Gut. 2007;56:150–1.PubMedPubMedCentralCrossRef Oliver J, Márquez A, Gómez-Garcia M, Martinez A, Mendoza JL, Vilchez JR, et al. Association of the macrophage migration inhibitory factor gene polymorphisms with inflammatory bowel disease. Gut. 2007;56:150–1.PubMedPubMedCentralCrossRef
73.
go back to reference Shen Y, Guo S, Yang T, Jia L, Chen L, An J, et al. The -173 G/C polymorphism of the MIF gene and inflammatory bowel disease risk: a meta-analysis. Int J Mol Sci. 2013;14:11392–401.PubMedPubMedCentralCrossRef Shen Y, Guo S, Yang T, Jia L, Chen L, An J, et al. The -173 G/C polymorphism of the MIF gene and inflammatory bowel disease risk: a meta-analysis. Int J Mol Sci. 2013;14:11392–401.PubMedPubMedCentralCrossRef
74.
go back to reference Yang J, Li Y, Zhang X. Meta-analysis of macrophage migration inhibitory factor (MIF) gene -173G/C polymorphism and inflammatory bowel disease (IBD) risk. Int J Clin Exp Med. 2015;8:9570–4.PubMedPubMedCentral Yang J, Li Y, Zhang X. Meta-analysis of macrophage migration inhibitory factor (MIF) gene -173G/C polymorphism and inflammatory bowel disease (IBD) risk. Int J Clin Exp Med. 2015;8:9570–4.PubMedPubMedCentral
75.
go back to reference Singh UP, Singh NP, Murphy EA, Price RL, Fayad R, Nagarkatti M, et al. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine. 2016;77:44–9.PubMedCrossRef Singh UP, Singh NP, Murphy EA, Price RL, Fayad R, Nagarkatti M, et al. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine. 2016;77:44–9.PubMedCrossRef
76.
go back to reference Ohkawara T, Miyashita K, Nishihira J, Mitsuyama K, Takeda H, Kato M, et al. Transgenic over-expression of macrophage migration inhibitory factor renders mice markedly more susceptible to experimental colitis. Clin Exp Immunol. 2005;140:241–8.PubMedPubMedCentralCrossRef Ohkawara T, Miyashita K, Nishihira J, Mitsuyama K, Takeda H, Kato M, et al. Transgenic over-expression of macrophage migration inhibitory factor renders mice markedly more susceptible to experimental colitis. Clin Exp Immunol. 2005;140:241–8.PubMedPubMedCentralCrossRef
77.
go back to reference Ohkawara T, Mitsuyama K, Takeda H, Asaka M, Fujiyama Y, Nishihira J. Lack of macrophage migration inhibitory factor suppresses innate immune response in murine dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 2008;43:1497–504.PubMedCrossRef Ohkawara T, Mitsuyama K, Takeda H, Asaka M, Fujiyama Y, Nishihira J. Lack of macrophage migration inhibitory factor suppresses innate immune response in murine dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 2008;43:1497–504.PubMedCrossRef
78.
go back to reference Ohkawara T, Nishihira J, Takeda H, Hige S, Kato M, Sugiyama T, et al. Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice. Gastroenterology. 2002;123:256–70.PubMedCrossRef Ohkawara T, Nishihira J, Takeda H, Hige S, Kato M, Sugiyama T, et al. Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice. Gastroenterology. 2002;123:256–70.PubMedCrossRef
79.
go back to reference Farr L, Ghosh S, Jiang N, Watanabe K, Parlak M, Bucala R, et al. CD74 Signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing. Cell Mol Gastroenterol Hepatol. 2020;10:101–12.PubMedPubMedCentralCrossRef Farr L, Ghosh S, Jiang N, Watanabe K, Parlak M, Bucala R, et al. CD74 Signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing. Cell Mol Gastroenterol Hepatol. 2020;10:101–12.PubMedPubMedCentralCrossRef
80.
go back to reference Vujicic M, Saksida T, Despotovic S, Bajic SS, Lalić I, Koprivica I, et al. The role of macrophage migration inhibitory factor in the function of intestinal barrier. Sci Rep. 2018;8:6337.PubMedPubMedCentralCrossRef Vujicic M, Saksida T, Despotovic S, Bajic SS, Lalić I, Koprivica I, et al. The role of macrophage migration inhibitory factor in the function of intestinal barrier. Sci Rep. 2018;8:6337.PubMedPubMedCentralCrossRef
81.
go back to reference Stolwijk C, van Tubergen A, Castillo-Ortiz JD, Boonen A. Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:65–73.PubMedCrossRef Stolwijk C, van Tubergen A, Castillo-Ortiz JD, Boonen A. Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:65–73.PubMedCrossRef
82.
go back to reference Gómez RS, Diepgen TL, Neumann C, Sorg C. Detection of migration inhibitory factor (MIF) by a monoclonal antibody in the microvasculature of inflamed skin. Arch Dermatol Res. 1990;282:374–8.PubMedCrossRef Gómez RS, Diepgen TL, Neumann C, Sorg C. Detection of migration inhibitory factor (MIF) by a monoclonal antibody in the microvasculature of inflamed skin. Arch Dermatol Res. 1990;282:374–8.PubMedCrossRef
83.
go back to reference Shimizu T, Nishihira J, Mizue Y, Nakamura H, Abe R, Watanabe H, et al. High macrophage migration inhibitory factor (MIF) serum levels associated with extended psoriasis. J Invest Dermatol. 2001;116:989–90.PubMedCrossRef Shimizu T, Nishihira J, Mizue Y, Nakamura H, Abe R, Watanabe H, et al. High macrophage migration inhibitory factor (MIF) serum levels associated with extended psoriasis. J Invest Dermatol. 2001;116:989–90.PubMedCrossRef
84.
go back to reference Steinhoff M, Meinhardt A, Steinhoff A, Gemsa D, Bucala R, Bacher M. Evidence for a role of macrophage migration inhibitory factor in psoriatic skin disease. Br J Dermatol. 1999;141:1061–6.PubMedCrossRef Steinhoff M, Meinhardt A, Steinhoff A, Gemsa D, Bucala R, Bacher M. Evidence for a role of macrophage migration inhibitory factor in psoriatic skin disease. Br J Dermatol. 1999;141:1061–6.PubMedCrossRef
85.
go back to reference Donn RP, Plant D, Jury F, Richards HL, Worthington J, Ray DW, et al. Macrophage migration inhibitory factor gene polymorphism is associated with psoriasis. J Invest Dermatol. 2004;123:484–7.PubMedCrossRef Donn RP, Plant D, Jury F, Richards HL, Worthington J, Ray DW, et al. Macrophage migration inhibitory factor gene polymorphism is associated with psoriasis. J Invest Dermatol. 2004;123:484–7.PubMedCrossRef
86.
go back to reference Bezdek S, Leng L, Busch H, Mousavi S, Rades D, Dahlke M, et al. Macrophage migration inhibitory factor (MIF) drives murine Psoriasiform dermatitis. Front Immunol. 2018;9:2262.PubMedPubMedCentralCrossRef Bezdek S, Leng L, Busch H, Mousavi S, Rades D, Dahlke M, et al. Macrophage migration inhibitory factor (MIF) drives murine Psoriasiform dermatitis. Front Immunol. 2018;9:2262.PubMedPubMedCentralCrossRef
87.
go back to reference Abe R, Shimizu T, Ohkawara A, Nishihira J. Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. Biochim Biophys Acta. 2000;1500:1–9.PubMedCrossRef Abe R, Shimizu T, Ohkawara A, Nishihira J. Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. Biochim Biophys Acta. 2000;1500:1–9.PubMedCrossRef
88.
go back to reference Hsieh C-Y, Chen C-L, Lin Y-S, Yeh T-M, Tsai T-T, Hong M-Y, et al. Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation. J Immunol. 2014;193:3693–703.PubMedCrossRef Hsieh C-Y, Chen C-L, Lin Y-S, Yeh T-M, Tsai T-T, Hong M-Y, et al. Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation. J Immunol. 2014;193:3693–703.PubMedCrossRef
89.
go back to reference Kitaichi N, Kotake S, Sasamoto Y, Namba K, Matsuda A, Ogasawara K, et al. Prominent increase of macrophage migration inhibitory factor in the sera of patients with uveitis. Invest Ophthalmol Vis Sci. 1999;40:247–50.PubMed Kitaichi N, Kotake S, Sasamoto Y, Namba K, Matsuda A, Ogasawara K, et al. Prominent increase of macrophage migration inhibitory factor in the sera of patients with uveitis. Invest Ophthalmol Vis Sci. 1999;40:247–50.PubMed
90.
go back to reference Taguchi C, Sugita S, Tagawa Y, Nishihira J, Mochizuki M. Macrophage migration inhibitory factor in ocular fluids of patients with uveitis. Br J Ophthalmol. 2001;85:1367–71.PubMedPubMedCentralCrossRef Taguchi C, Sugita S, Tagawa Y, Nishihira J, Mochizuki M. Macrophage migration inhibitory factor in ocular fluids of patients with uveitis. Br J Ophthalmol. 2001;85:1367–71.PubMedPubMedCentralCrossRef
91.
go back to reference Zhang C, Liu S, Hou S, Lei B, Zheng X, Xiao X, et al. MIF gene polymorphisms confer susceptibility to Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Invest Ophthalmol Vis Sci. 2013;54:7734–8.PubMedCrossRef Zhang C, Liu S, Hou S, Lei B, Zheng X, Xiao X, et al. MIF gene polymorphisms confer susceptibility to Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Invest Ophthalmol Vis Sci. 2013;54:7734–8.PubMedCrossRef
92.
go back to reference Nursal AF, Yigit S, Tural E, Kalkan G, Tumer MK, Tekcan A. Macrophage migration inhibitory factor −173GC variant might increase the risk of Behçet’s disease. Med Princ Pract. 2018;27:285–9.PubMedPubMedCentralCrossRef Nursal AF, Yigit S, Tural E, Kalkan G, Tumer MK, Tekcan A. Macrophage migration inhibitory factor −173GC variant might increase the risk of Behçet’s disease. Med Princ Pract. 2018;27:285–9.PubMedPubMedCentralCrossRef
93.
go back to reference Zheng X, Wang D, Hou S, Zhang C, Lei B, Xiao X, et al. Association of macrophage migration inhibitory factor gene polymorphisms with Behçet’s disease in a Han Chinese population. Ophthalmology. 2012;119:2514–8.PubMedCrossRef Zheng X, Wang D, Hou S, Zhang C, Lei B, Xiao X, et al. Association of macrophage migration inhibitory factor gene polymorphisms with Behçet’s disease in a Han Chinese population. Ophthalmology. 2012;119:2514–8.PubMedCrossRef
94.
go back to reference Yang H, Zheng S, Mao Y, Chen Z, Zheng C, Li H, et al. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clin Exp Immunol. 2016;183:280–93.PubMedCrossRef Yang H, Zheng S, Mao Y, Chen Z, Zheng C, Li H, et al. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clin Exp Immunol. 2016;183:280–93.PubMedCrossRef
95.
go back to reference Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, et al. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell England. 2021;20(5):e13328. Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, et al. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell England. 2021;20(5):e13328.
96.
go back to reference •• Mahalingam D, Patel MR, Sachdev JC, Hart LL, Halama N, Ramanathan RK, et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br J Clin Pharmacol. 2020;86:1836–48. This trial shows that MIF antagonism yields a desirable safety profile in humans.PubMedPubMedCentralCrossRef •• Mahalingam D, Patel MR, Sachdev JC, Hart LL, Halama N, Ramanathan RK, et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br J Clin Pharmacol. 2020;86:1836–48. This trial shows that MIF antagonism yields a desirable safety profile in humans.PubMedPubMedCentralCrossRef
97.
go back to reference •• Wallace DJ, Figueras F, Wegener WA, Goldenberg DM. Experience with milatuzumab, an anti-CD74 antibody against immunomodulatory macrophage migration inhibitory factor (MIF) receptor, for systemic lupus erythematosus (SLE). Ann Rheum Dis. 2021;80:954–5. This trial shows that monoclonal antibody against CD74 is effective for a sizable proportion of SLE patients and well-tolerable.PubMedCrossRef •• Wallace DJ, Figueras F, Wegener WA, Goldenberg DM. Experience with milatuzumab, an anti-CD74 antibody against immunomodulatory macrophage migration inhibitory factor (MIF) receptor, for systemic lupus erythematosus (SLE). Ann Rheum Dis. 2021;80:954–5. This trial shows that monoclonal antibody against CD74 is effective for a sizable proportion of SLE patients and well-tolerable.PubMedCrossRef
98.
go back to reference Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol United States. 2014;15:602–11.CrossRef Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol United States. 2014;15:602–11.CrossRef
99.
go back to reference Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil Immunity United States. 2021;54:1377–91. Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil Immunity United States. 2021;54:1377–91.
100.
go back to reference Tabrizi ZA, Khosrojerdi A, Aslani S, Hemmatzadeh M, Babaie F, Bairami A, et al. Multi-facets of neutrophil extracellular trap in infectious diseases: moving beyond immunity. Microb Pathog, England. 2021;158:105066.CrossRef Tabrizi ZA, Khosrojerdi A, Aslani S, Hemmatzadeh M, Babaie F, Bairami A, et al. Multi-facets of neutrophil extracellular trap in infectious diseases: moving beyond immunity. Microb Pathog, England. 2021;158:105066.CrossRef
101.
go back to reference Freemont AJ, Denton J. Disease distribution of synovial fluid mast cells and cytophagocytic mononuclear cells in inflammatory arthritis. Ann Rheum Dis. 1985;44:312–5.PubMedPubMedCentralCrossRef Freemont AJ, Denton J. Disease distribution of synovial fluid mast cells and cytophagocytic mononuclear cells in inflammatory arthritis. Ann Rheum Dis. 1985;44:312–5.PubMedPubMedCentralCrossRef
102.
go back to reference Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, et al. Proteolysis targeting chimera (PROTAC) for macrophage migration inhibitory factor (MIF) has anti-proliferative activity in lung cancer cells. Angew Chem Int Ed Engl. 2021;60:17514–21.PubMedPubMedCentralCrossRef Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, et al. Proteolysis targeting chimera (PROTAC) for macrophage migration inhibitory factor (MIF) has anti-proliferative activity in lung cancer cells. Angew Chem Int Ed Engl. 2021;60:17514–21.PubMedPubMedCentralCrossRef
Metadata
Title
Deep Insight into the Role of MIF in Spondyloarthritis
Authors
Brian Wu
Akihiro Nakamura
Publication date
09-07-2022
Publisher
Springer US
Published in
Current Rheumatology Reports / Issue 9/2022
Print ISSN: 1523-3774
Electronic ISSN: 1534-6307
DOI
https://doi.org/10.1007/s11926-022-01081-7

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more