Skip to main content
Top

Open Access 10-03-2025 | Type 2 Diabetes

Skeletal muscle atrophy and dysfunction in obesity and type-2 diabetes mellitus: Myocellular mechanisms involved

Authors: Íñigo M. Pérez Castillo, Josep M. Argilés, Ricardo Rueda, María Ramírez, José M. López Pedrosa

Published in: Reviews in Endocrine and Metabolic Disorders

Login to get access

Abstract

Obesity and type-2 diabetes mellitus (T2DM) are interrelated metabolic disorders primarily driven by overnutrition and physical inactivity, which oftentimes entails a transition from obesity to T2DM. Compromised musculoskeletal health consistently emerges as a common hallmark in the progression of these metabolic disorders. Skeletal muscle atrophy and dysfunction can further impair whole-body metabolism and reduce physical exercise capacity, thus instigating a vicious cycle that further deteriorates the underlying conditions. However, the myocellular repercussions of these metabolic disturbances remain to be completely clarified. Insulin signaling not only facilitates skeletal muscle glucose uptake but also plays a central role in skeletal muscle anabolism mainly due to suppression of catabolic pathways and facilitating an anabolic response to nutrient feeding. Chronic overnutrition may trigger different myocellular mechanisms proposed to contribute to insulin resistance and aggravate skeletal muscle atrophy and dysfunction. These mechanisms mainly include the inactivation of insulin signaling components through sustained activation of stress-related pathways, mitochondrial dysfunction, a shift to glycolytic skeletal muscle fibers, and hyperglycemia. In the present review, we aim to delve on these mechanisms, providing an overview of the myocellular processes involved in skeletal muscle atrophy and dysfunction under chronic overnutrition, and their contribution to the progression to T2DM.
Literature
2.
go back to reference Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024;404(10467):2077–93.CrossRef Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024;404(10467):2077–93.CrossRef
3.
go back to reference Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, Bennett JE, et al. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024;403(10431):1027–50.CrossRef Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, Bennett JE, et al. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024;403(10431):1027–50.CrossRef
4.
go back to reference Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev. 2014;15(6):504–15.PubMedPubMedCentralCrossRef Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev. 2014;15(6):504–15.PubMedPubMedCentralCrossRef
6.
go back to reference Jayedi A, Soltani S, Motlagh SZ-t, Emadi A, Shahinfar H, Moosavi H, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. Bmj. 2022;376(e067516). https://doi.org/10.1136/bmj-2021-067516. Jayedi A, Soltani S, Motlagh SZ-t, Emadi A, Shahinfar H, Moosavi H, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. Bmj. 2022;376(e067516). https://​doi.​org/​10.​1136/​bmj-2021-067516.
12.
go back to reference Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.PubMedPubMedCentralCrossRef Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.PubMedPubMedCentralCrossRef
14.
go back to reference Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17(9):789–96.PubMedCrossRef Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17(9):789–96.PubMedCrossRef
17.
go back to reference Izzo A, Massimino E, Riccardi G, Della PG. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183.PubMedPubMedCentralCrossRef Izzo A, Massimino E, Riccardi G, Della PG. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183.PubMedPubMedCentralCrossRef
18.
go back to reference Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, De Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7.PubMedPubMedCentralCrossRef Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, De Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7.PubMedPubMedCentralCrossRef
19.
go back to reference Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9.PubMedPubMedCentralCrossRef Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9.PubMedPubMedCentralCrossRef
21.
go back to reference Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and meta-analysis. Calcif Tissue Int. 2020;107:453–63.PubMedCrossRef Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and meta-analysis. Calcif Tissue Int. 2020;107:453–63.PubMedCrossRef
27.
go back to reference MÅrin P, Andersson B, Krotkiewski M, Björntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.PubMedCrossRef MÅrin P, Andersson B, Krotkiewski M, Björntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.PubMedCrossRef
28.
go back to reference Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006;29(4):895–900.PubMedCrossRef Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006;29(4):895–900.PubMedCrossRef
29.
go back to reference Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50(6):1324–9.PubMedCrossRef Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50(6):1324–9.PubMedCrossRef
30.
34.
go back to reference Zierath J, He L, Guma A, Wahlström EO, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 1996;39:1180–9.PubMedCrossRef Zierath J, He L, Guma A, Wahlström EO, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 1996;39:1180–9.PubMedCrossRef
35.
go back to reference Groen BB, Hamer HM, Snijders T, Van Kranenburg J, Frijns D, Vink H, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol. 2014;116(8):998–1005.PubMedCrossRef Groen BB, Hamer HM, Snijders T, Van Kranenburg J, Frijns D, Vink H, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol. 2014;116(8):998–1005.PubMedCrossRef
36.
go back to reference Benedict KF, Coffin GS, Barrett EJ, Skalak TC. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes. Microcirculation. 2011;18(1):63–73.PubMedCrossRef Benedict KF, Coffin GS, Barrett EJ, Skalak TC. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes. Microcirculation. 2011;18(1):63–73.PubMedCrossRef
40.
go back to reference de Almeida ME, Nielsen J, Petersen MH, Wentorf EK, Pedersen NB, Jensen K, et al. Altered intramuscular network of lipid droplets and mitochondria in type 2 diabetes. Am J Physiol-Cell Physiol. 2023;324(1):C39–57.PubMedCrossRef de Almeida ME, Nielsen J, Petersen MH, Wentorf EK, Pedersen NB, Jensen K, et al. Altered intramuscular network of lipid droplets and mitochondria in type 2 diabetes. Am J Physiol-Cell Physiol. 2023;324(1):C39–57.PubMedCrossRef
41.
go back to reference Daemen S, Gemmink A, Brouwers B, Meex RC, Huntjens PR, Schaart G, et al. Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete’s paradox. Molecular metabolism. 2018;17:71–81.PubMedPubMedCentralCrossRef Daemen S, Gemmink A, Brouwers B, Meex RC, Huntjens PR, Schaart G, et al. Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete’s paradox. Molecular metabolism. 2018;17:71–81.PubMedPubMedCentralCrossRef
50.
go back to reference Schulze MB, Stefan N. Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications. Nat Rev Endocrinol. 2024;20(11):633–46.PubMedCrossRef Schulze MB, Stefan N. Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications. Nat Rev Endocrinol. 2024;20(11):633–46.PubMedCrossRef
51.
go back to reference Lopez-Pedrosa JM, Camprubi-Robles M, Guzman-Rolo G, Lopez-Gonzalez A, Garcia-Almeida JM, Sanz-Paris A, et al. The vicious cycle of type 2 diabetes mellitus and skeletal muscle atrophy: clinical, biochemical, and nutritional bases. Nutrients. 2024;16(1):172.PubMedPubMedCentralCrossRef Lopez-Pedrosa JM, Camprubi-Robles M, Guzman-Rolo G, Lopez-Gonzalez A, Garcia-Almeida JM, Sanz-Paris A, et al. The vicious cycle of type 2 diabetes mellitus and skeletal muscle atrophy: clinical, biochemical, and nutritional bases. Nutrients. 2024;16(1):172.PubMedPubMedCentralCrossRef
53.
go back to reference Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, et al. Insulin-sensitive obesity. Am J Physiol-Endocrinol Metab. 2010;299(3):E506–15.PubMedCrossRef Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, et al. Insulin-sensitive obesity. Am J Physiol-Endocrinol Metab. 2010;299(3):E506–15.PubMedCrossRef
54.
go back to reference Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U. Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab. 2015;26(4):193–200.PubMedCrossRef Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U. Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab. 2015;26(4):193–200.PubMedCrossRef
59.
go back to reference Gutierrez-Rodelo C, Arellano-Plancarte A, Hernandez-Aranda J, Landa-Galvan HV, Parra-Mercado GK, Moreno-Licona NJ, et al. Angiotensin II inhibits insulin receptor signaling in adipose cells. Int J Mol Sci. 2022;23(11):6048.PubMedPubMedCentralCrossRef Gutierrez-Rodelo C, Arellano-Plancarte A, Hernandez-Aranda J, Landa-Galvan HV, Parra-Mercado GK, Moreno-Licona NJ, et al. Angiotensin II inhibits insulin receptor signaling in adipose cells. Int J Mol Sci. 2022;23(11):6048.PubMedPubMedCentralCrossRef
60.
go back to reference Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol. 2013;4:71.CrossRef Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol. 2013;4:71.CrossRef
61.
74.
go back to reference Politis-Barber V, Brunetta HS, Paglialunga S, Petrick HL, Holloway GP. Long-term, high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species, without impairing mitochondrial respiration. Am J Physiol-Endocrinol Metab. 2020;319(2):E376–87.PubMedPubMedCentralCrossRef Politis-Barber V, Brunetta HS, Paglialunga S, Petrick HL, Holloway GP. Long-term, high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species, without impairing mitochondrial respiration. Am J Physiol-Endocrinol Metab. 2020;319(2):E376–87.PubMedPubMedCentralCrossRef
75.
go back to reference Lee YS, Kim J-w, Osborne O, Sasik R, Schenk S, Chen A, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–52.PubMedPubMedCentralCrossRef Lee YS, Kim J-w, Osborne O, Sasik R, Schenk S, Chen A, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–52.PubMedPubMedCentralCrossRef
78.
go back to reference Mosser RE, Maulis MF, Moullé VS, Dunn JC, Carboneau BA, Arasi K, et al. High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. Am J Physiol-Endocrinol Metab. 2015;308(7):E573–82.PubMedPubMedCentralCrossRef Mosser RE, Maulis MF, Moullé VS, Dunn JC, Carboneau BA, Arasi K, et al. High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. Am J Physiol-Endocrinol Metab. 2015;308(7):E573–82.PubMedPubMedCentralCrossRef
79.
go back to reference van Vliet S, Koh H-CE, Patterson BW, Yoshino M, LaForest R, Gropler RJ, et al. Obesity is associated with increased basal and postprandial β-cell insulin secretion even in the absence of insulin resistance. Diabetes. 2020;69(10):2112–9.PubMedPubMedCentralCrossRef van Vliet S, Koh H-CE, Patterson BW, Yoshino M, LaForest R, Gropler RJ, et al. Obesity is associated with increased basal and postprandial β-cell insulin secretion even in the absence of insulin resistance. Diabetes. 2020;69(10):2112–9.PubMedPubMedCentralCrossRef
80.
go back to reference Mir SU, George NM, Zahoor L, Harms R, Guinn Z, Sarvetnick NE. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290(10):6071–85.PubMedCrossRef Mir SU, George NM, Zahoor L, Harms R, Guinn Z, Sarvetnick NE. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290(10):6071–85.PubMedCrossRef
81.
go back to reference Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.CrossRef Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.CrossRef
83.
go back to reference Fu Z, R Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.PubMedPubMedCentralCrossRef Fu Z, R Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.PubMedPubMedCentralCrossRef
85.
go back to reference Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017;26(10):501–18.PubMedPubMedCentralCrossRef Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017;26(10):501–18.PubMedPubMedCentralCrossRef
89.
go back to reference Jenkins HN, Rivera-Gonzalez O, Gibert Y, Speed JS. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev. 2020;21(12):e13086.PubMedPubMedCentralCrossRef Jenkins HN, Rivera-Gonzalez O, Gibert Y, Speed JS. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev. 2020;21(12):e13086.PubMedPubMedCentralCrossRef
92.
go back to reference Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2015;31(6):545–61. https://doi.org/10.1002/dmrr.2617.CrossRefPubMed Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2015;31(6):545–61. https://​doi.​org/​10.​1002/​dmrr.​2617.CrossRefPubMed
97.
go back to reference Scheithauer TP, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, Van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731.PubMedPubMedCentralCrossRef Scheithauer TP, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, Van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731.PubMedPubMedCentralCrossRef
98.
go back to reference Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37–49.PubMedCrossRef Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37–49.PubMedCrossRef
99.
go back to reference Fragala MS, Kenny AM, Kuchel GA. Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. Sports Med. 2015;45:641–58.PubMedCrossRef Fragala MS, Kenny AM, Kuchel GA. Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. Sports Med. 2015;45:641–58.PubMedCrossRef
106.
114.
go back to reference Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Dérijard B. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol. 2010;30(2):470–80.PubMedCrossRef Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Dérijard B. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol. 2010;30(2):470–80.PubMedCrossRef
116.
117.
go back to reference Sun J, Su Y, Chen J, Qin D, Xu Y, Chu H, et al. Differential roles of CD36 in regulating muscle insulin response depend on palmitic acid load. Biomedicines. 2023;11(3):729.PubMedPubMedCentralCrossRef Sun J, Su Y, Chen J, Qin D, Xu Y, Chu H, et al. Differential roles of CD36 in regulating muscle insulin response depend on palmitic acid load. Biomedicines. 2023;11(3):729.PubMedPubMedCentralCrossRef
118.
go back to reference Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JFC, et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 2004;18(10):1144–6. https://doi.org/10.1096/fj.03-1065fje.CrossRefPubMed Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JFC, et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 2004;18(10):1144–6. https://​doi.​org/​10.​1096/​fj.​03-1065fje.CrossRefPubMed
123.
go back to reference Lundsgaard A-M, Fritzen AM, Kiens B. Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol Metab. 2018;29(1):18–30.PubMedCrossRef Lundsgaard A-M, Fritzen AM, Kiens B. Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol Metab. 2018;29(1):18–30.PubMedCrossRef
125.
go back to reference Pileggi CA, Parmar G, Harper ME. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev. 2021;22(5):e13164.PubMedCrossRef Pileggi CA, Parmar G, Harper ME. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev. 2021;22(5):e13164.PubMedCrossRef
126.
go back to reference Timmers S, Schrauwen P, de Vogel J. Muscular diacylglycerol metabolism and insulin resistance. Physiol Behav. 2008;94(2):242–51.PubMedCrossRef Timmers S, Schrauwen P, de Vogel J. Muscular diacylglycerol metabolism and insulin resistance. Physiol Behav. 2008;94(2):242–51.PubMedCrossRef
130.
go back to reference Li Y, Soos TJ, Li X, Wu J, DeGennaro M, Sun X, et al. Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser1101. J Biol Chem. 2004;279(44):45304–7.PubMedCrossRef Li Y, Soos TJ, Li X, Wu J, DeGennaro M, Sun X, et al. Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser1101. J Biol Chem. 2004;279(44):45304–7.PubMedCrossRef
132.
go back to reference Wada Y, Sakiyama S, Sakai H, Sakane F. Myristic acid enhances diacylglycerol kinase δ-dependent glucose uptake in myotubes. Lipids. 2016;51:897–903.PubMedCrossRef Wada Y, Sakiyama S, Sakai H, Sakane F. Myristic acid enhances diacylglycerol kinase δ-dependent glucose uptake in myotubes. Lipids. 2016;51:897–903.PubMedCrossRef
133.
go back to reference Turpin-Nolan SM, Hammerschmidt P, Chen W, Jais A, Timper K, Awazawa M, et al. CerS1-derived C18: 0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep. 2019;26(1):1-10. e7.PubMedCrossRef Turpin-Nolan SM, Hammerschmidt P, Chen W, Jais A, Timper K, Awazawa M, et al. CerS1-derived C18: 0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep. 2019;26(1):1-10. e7.PubMedCrossRef
138.
go back to reference Hassan RH, de Sousa ACP, Mahfouz R, Hainault I, Blachnio-Zabielska A, Bourron O, et al. Sustained action of ceramide on the insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J Biol Chem. 2016;291(6):3019–29.CrossRef Hassan RH, de Sousa ACP, Mahfouz R, Hainault I, Blachnio-Zabielska A, Bourron O, et al. Sustained action of ceramide on the insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J Biol Chem. 2016;291(6):3019–29.CrossRef
139.
go back to reference Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, Albert V, Edom-Vovard F, Vidal-Puig A, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity. Diabetes. 2015;64(9):3121–34.PubMedCrossRef Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, Albert V, Edom-Vovard F, Vidal-Puig A, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity. Diabetes. 2015;64(9):3121–34.PubMedCrossRef
144.
go back to reference Solinas G, Karin M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010;24(8):2596–611.PubMedCrossRef Solinas G, Karin M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010;24(8):2596–611.PubMedCrossRef
152.
go back to reference Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1–receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–26.PubMedCrossRef Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1–receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–26.PubMedCrossRef
153.
go back to reference Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Investig. 2006;116(11):3015–25.PubMedPubMedCentralCrossRef Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Investig. 2006;116(11):3015–25.PubMedPubMedCentralCrossRef
154.
go back to reference Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003;44(3):479–86.PubMedCrossRef Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003;44(3):479–86.PubMedCrossRef
158.
go back to reference Américo-Da-Silva L, Aguilera J, Quinteros-Waltemath O, Sánchez-Aguilera P, Russell J, Cadagan C, et al. Activation of the NLRP3 inflammasome increases the IL-1β level and decreases GLUT4 translocation in skeletal muscle during insulin resistance. Int J Mol Sci. 2021;22(19):10212.PubMedPubMedCentralCrossRef Américo-Da-Silva L, Aguilera J, Quinteros-Waltemath O, Sánchez-Aguilera P, Russell J, Cadagan C, et al. Activation of the NLRP3 inflammasome increases the IL-1β level and decreases GLUT4 translocation in skeletal muscle during insulin resistance. Int J Mol Sci. 2021;22(19):10212.PubMedPubMedCentralCrossRef
161.
169.
172.
go back to reference Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52(12):2874–81. https://doi.org/10.2337/diabetes.52.12.2874.CrossRefPubMed Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52(12):2874–81. https://​doi.​org/​10.​2337/​diabetes.​52.​12.​2874.CrossRefPubMed
174.
176.
go back to reference Figueroa-Toledo AM, Gutiérrez-Pino J, Carriel-Nesvara A, Marchese-Bittencourt M, Zbinden-Foncea H, Castro-Sepúlveda M. BMAL1 and CLOCK proteins exhibit differential association with mitochondrial dynamics, protein synthesis pathways and muscle strength in human muscle. J Physiol. 2024. https://doi.org/10.1113/jp285955.CrossRefPubMed Figueroa-Toledo AM, Gutiérrez-Pino J, Carriel-Nesvara A, Marchese-Bittencourt M, Zbinden-Foncea H, Castro-Sepúlveda M. BMAL1 and CLOCK proteins exhibit differential association with mitochondrial dynamics, protein synthesis pathways and muscle strength in human muscle. J Physiol. 2024. https://​doi.​org/​10.​1113/​jp285955.CrossRefPubMed
181.
go back to reference Liu R, Jin P, Yu L, Wang Y, Han L, Shi T, et al. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PloS one. 2014;9(3):e92810.PubMedPubMedCentralCrossRef Liu R, Jin P, Yu L, Wang Y, Han L, Shi T, et al. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PloS one. 2014;9(3):e92810.PubMedPubMedCentralCrossRef
183.
go back to reference Dai W, Jiang L. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol. 2019;10:570.CrossRef Dai W, Jiang L. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol. 2019;10:570.CrossRef
185.
go back to reference Axelrod CL, Fealy CE, Erickson ML, Davuluri G, Fujioka H, Dantas WS, et al. Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans. Metabolism. 2021;121:154803.PubMedPubMedCentralCrossRef Axelrod CL, Fealy CE, Erickson ML, Davuluri G, Fujioka H, Dantas WS, et al. Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans. Metabolism. 2021;121:154803.PubMedPubMedCentralCrossRef
186.
go back to reference Smith ME, Tippetts TS, Brassfield ES, Tucker BJ, Ockey A, Swensen AC, et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J. 2013;456(3):427–39.PubMedCrossRef Smith ME, Tippetts TS, Brassfield ES, Tucker BJ, Ockey A, Swensen AC, et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J. 2013;456(3):427–39.PubMedCrossRef
189.
go back to reference Diaz-Vegas A, Madsen S, Cooke KC, Carroll L, Khor JX, Turner N, et al. Mitochondrial electron transport chain, ceramide, and coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle. Elife. 2023;12:RP87340.PubMedPubMedCentralCrossRef Diaz-Vegas A, Madsen S, Cooke KC, Carroll L, Khor JX, Turner N, et al. Mitochondrial electron transport chain, ceramide, and coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle. Elife. 2023;12:RP87340.PubMedPubMedCentralCrossRef
191.
go back to reference Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.PubMedCrossRef Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.PubMedCrossRef
193.
go back to reference Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J, et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes. 2005;54(9):2685–93. https://doi.org/10.2337/diabetes.54.9.2685.CrossRefPubMed Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J, et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes. 2005;54(9):2685–93. https://​doi.​org/​10.​2337/​diabetes.​54.​9.​2685.CrossRefPubMed
194.
go back to reference Fealy CE, Mulya A, Axelrod CL, Kirwan JP. Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res. 2018;202:69–82.PubMedCrossRef Fealy CE, Mulya A, Axelrod CL, Kirwan JP. Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res. 2018;202:69–82.PubMedCrossRef
197.
go back to reference Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci. 2019;76:4887–904.PubMedPubMedCentralCrossRef Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci. 2019;76:4887–904.PubMedPubMedCentralCrossRef
198.
go back to reference Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol. 2017;233(1):R15–42.PubMedCrossRef Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol. 2017;233(1):R15–42.PubMedCrossRef
206.
go back to reference Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.PubMedCrossRef Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.PubMedCrossRef
208.
go back to reference Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, et al. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem. 2001;276(23):19800–6.PubMedCrossRef Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, et al. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem. 2001;276(23):19800–6.PubMedCrossRef
210.
go back to reference Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM-E, Clark SE, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281(46):35137–46.PubMedCrossRef Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM-E, Clark SE, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281(46):35137–46.PubMedCrossRef
221.
go back to reference Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801.PubMedCrossRef Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801.PubMedCrossRef
225.
go back to reference Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010;464(7293):1313–9.PubMedCrossRef Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010;464(7293):1313–9.PubMedCrossRef
227.
go back to reference Hu M-M, Zheng W-Y, Cheng M-H, Song Z-Y, Shaukat H, Atta M, et al. Sesamol reverses myofiber-type conversion in obese states via activating the SIRT1/AMPK signal pathway. J Agric Food Chem. 2022;70(7):2253–64.PubMedCrossRef Hu M-M, Zheng W-Y, Cheng M-H, Song Z-Y, Shaukat H, Atta M, et al. Sesamol reverses myofiber-type conversion in obese states via activating the SIRT1/AMPK signal pathway. J Agric Food Chem. 2022;70(7):2253–64.PubMedCrossRef
228.
go back to reference Jiang Q, Cheng X, Cui Y, Xia Q, Yan X, Zhang M, et al. Resveratrol regulates skeletal muscle fibers switching through the AdipoR1-AMPK-PGC-1α pathway. Food Funct. 2019;10(6):3334–43.PubMedCrossRef Jiang Q, Cheng X, Cui Y, Xia Q, Yan X, Zhang M, et al. Resveratrol regulates skeletal muscle fibers switching through the AdipoR1-AMPK-PGC-1α pathway. Food Funct. 2019;10(6):3334–43.PubMedCrossRef
229.
go back to reference Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998;12(16):2499–509.PubMedPubMedCentralCrossRef Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998;12(16):2499–509.PubMedPubMedCentralCrossRef
230.
go back to reference Eshima H. Influence of obesity and type 2 diabetes on calcium handling by skeletal muscle: spotlight on the sarcoplasmic reticulum and mitochondria. Front Physiol. 2021;12:758316.PubMedPubMedCentralCrossRef Eshima H. Influence of obesity and type 2 diabetes on calcium handling by skeletal muscle: spotlight on the sarcoplasmic reticulum and mitochondria. Front Physiol. 2021;12:758316.PubMedPubMedCentralCrossRef
233.
go back to reference Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312.PubMedPubMedCentralCrossRef Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312.PubMedPubMedCentralCrossRef
234.
237.
go back to reference Ahmad K, Lee EJ, Moon JS, Park S-Y, Choi I. Multifaceted interweaving between extracellular matrix, insulin resistance, and skeletal muscle. Cells. 2018;7(10):148.PubMedPubMedCentralCrossRef Ahmad K, Lee EJ, Moon JS, Park S-Y, Choi I. Multifaceted interweaving between extracellular matrix, insulin resistance, and skeletal muscle. Cells. 2018;7(10):148.PubMedPubMedCentralCrossRef
238.
go back to reference Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle. 2018;9(7):1213–34.PubMedPubMedCentralCrossRef Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle. 2018;9(7):1213–34.PubMedPubMedCentralCrossRef
240.
go back to reference Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS, et al. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol. 2016;238(3):470–82.PubMedCrossRef Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS, et al. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol. 2016;238(3):470–82.PubMedCrossRef
244.
go back to reference Du H, Ma Y, Wang X, Zhang Y, Zhu L, Shi S, et al. Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS-mediated ER stress PERK/FOXO1 signaling. Am J Physiol-Endocrinol Metab. 2023;324(3):E279–87.PubMedCrossRef Du H, Ma Y, Wang X, Zhang Y, Zhu L, Shi S, et al. Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS-mediated ER stress PERK/FOXO1 signaling. Am J Physiol-Endocrinol Metab. 2023;324(3):E279–87.PubMedCrossRef
247.
249.
go back to reference Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2019;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.CrossRef Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2019;41(2):255–323. https://​doi.​org/​10.​1093/​eurheartj/​ehz486.CrossRef
251.
go back to reference Phillips JA. Dietary guidelines for Americans, 2020–2025. Work Health Saf. 2021;69(8):395.CrossRef Phillips JA. Dietary guidelines for Americans, 2020–2025. Work Health Saf. 2021;69(8):395.CrossRef
253.
go back to reference McGee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol. 2020;16(9):495–505.PubMedCrossRef McGee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol. 2020;16(9):495–505.PubMedCrossRef
254.
go back to reference Egan B, Sharples AP. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev. 2023;103(3):2057–170.PubMedCrossRef Egan B, Sharples AP. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev. 2023;103(3):2057–170.PubMedCrossRef
256.
257.
go back to reference Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;286(12):10605–17.PubMedPubMedCentralCrossRef Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;286(12):10605–17.PubMedPubMedCentralCrossRef
260.
go back to reference Pérez-Castillo IM, Sabag-Daigle A, López-Chicharro J, Mihic N, Rueda R, Bouzamondo H. The athlete gut microbiota: state of the art and practical guidance. Benefic Microbes. 2024;1(aop):1–30. Pérez-Castillo IM, Sabag-Daigle A, López-Chicharro J, Mihic N, Rueda R, Bouzamondo H. The athlete gut microbiota: state of the art and practical guidance. Benefic Microbes. 2024;1(aop):1–30.
Metadata
Title
Skeletal muscle atrophy and dysfunction in obesity and type-2 diabetes mellitus: Myocellular mechanisms involved
Authors
Íñigo M. Pérez Castillo
Josep M. Argilés
Ricardo Rueda
María Ramírez
José M. López Pedrosa
Publication date
10-03-2025
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-025-09954-9

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video