Skip to main content
Top
Published in:

Open Access 18-12-2024 | Type 2 Diabetes | Review

The double life of glucose metabolism: brain health, glycemic homeostasis, and your patients with type 2 diabetes

Authors: Stanley S. Schwartz, Mary E. Herman, May Thet Hmu Tun, Eugenio Barone, D. Allan Butterfield

Published in: BMC Medicine | Issue 1/2024

Login to get access

Abstract

The maintenance of cognitive function is essential for quality of life and health outcomes in later years. Cognitive impairment, however, remains an undervalued long-term complication of type 2 diabetes by patients and providers alike. The burden of sustained hyperglycemia includes not only cognitive deficits but also the onset and progression of dementia-related conditions, including Alzheimer’s disease (AD). Recent research has shown that the brain maintains an independent glucose “microsystem”—evolved to ensure the availability of fuel for brain neurons without interruption by transient hypoglycemia. When this milieu is perturbed, brain hyperglycemia, brain glucotoxicity, and brain insulin resistance can ensue and interfere with insulin signaling, a key pathway to cognitive function and neuronal integrity. This newly understood brain homeostatic system operates semi-autonomously from the systemic glucoregulatory apparatus. Large-scale clinical studies have shown that systemic dysglycemia is also strongly associated with poorer cognitive outcomes, which can be mitigated through appropriate clinical management of plasma glucose levels. Moreover, these studies demonstrated that glucose-lowering agents are not equally effective at preventing cognitive dysfunction. Glucagon-like peptide-1 (GLP-1) receptor analogs and sodium glucose cotransporter 2 inhibitors (SGLT2is) appear to afford the greatest protection; metformin and dipeptidyl peptidase 4 inhibitors (DPP-4is) also significantly improved cognitive outcomes. Sulfonylureas (SUs) and exogenous insulin, on the other hand, do not provide the same protection and may actually worsen cognitive outcomes. In the creation of a treatment plan, comorbid cognitive conditions should be considered. These efficacious treatments create a new gold standard of managing hyperglycemia—one which is consistent with the “complication-centric prescribing” mandates issued in type 2 diabetes treatment guidelines. The increasing longevity enjoyed by our populace places the onus on clinical care to play the “long game” in using targeted treatments for glucose control in patients with, or at risk for, cognitive decline to maintain cognitive wellness later in life. This article reviews critical emerging data for scientists and trialists and translates new enhancements in patient care for practitioners.
Literature
1.
go back to reference ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Older adults: standards of care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S216–29.PubMedCrossRef ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Older adults: standards of care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S216–29.PubMedCrossRef
2.
go back to reference Alagiakrishnan K, Zhao N, Mereu L, Senior P, Senthilselvan A. Montreal cognitive assessment is superior to standardized mini-mental status exam in detecting mild cognitive impairment in the middle-aged and elderly patients with type 2 diabetes mellitus. Biomed Res Int. 2013;2013:1–5.CrossRef Alagiakrishnan K, Zhao N, Mereu L, Senior P, Senthilselvan A. Montreal cognitive assessment is superior to standardized mini-mental status exam in detecting mild cognitive impairment in the middle-aged and elderly patients with type 2 diabetes mellitus. Biomed Res Int. 2013;2013:1–5.CrossRef
3.
go back to reference Yuan X-Y, Wang X-G. Mild cognitive impairment in type 2 diabetes mellitus and related risk factors: a review. Rev Neurosci. 2017;28(7):715–23.PubMedCrossRef Yuan X-Y, Wang X-G. Mild cognitive impairment in type 2 diabetes mellitus and related risk factors: a review. Rev Neurosci. 2017;28(7):715–23.PubMedCrossRef
5.
go back to reference U.S. Centers for Disease Control and Prevention. No Title. National Diabetes Statistics Report. 2024 [Accessed 2024 Jun 25]. U.S. Centers for Disease Control and Prevention. No Title. National Diabetes Statistics Report. 2024 [Accessed 2024 Jun 25].
6.
go back to reference Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimer’s Dement. 2018;14(2):121–9.CrossRef Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimer’s Dement. 2018;14(2):121–9.CrossRef
7.
go back to reference Zhao H, Wu C, Zhang X, Wang L, Sun J, Zhuge F. Insulin resistance is a risk factor for mild cognitive impairment in elderly adults with T2DM. Open Life Sci. 2019;14(1):255–61.PubMedPubMedCentralCrossRef Zhao H, Wu C, Zhang X, Wang L, Sun J, Zhuge F. Insulin resistance is a risk factor for mild cognitive impairment in elderly adults with T2DM. Open Life Sci. 2019;14(1):255–61.PubMedPubMedCentralCrossRef
8.
go back to reference Isaacson RS, Ganzer CA, Hristov H, Hackett K, Caesar E, Cohen R, et al. The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimer’s Dement. 2018;14(12):1663–73.CrossRef Isaacson RS, Ganzer CA, Hristov H, Hackett K, Caesar E, Cohen R, et al. The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimer’s Dement. 2018;14(12):1663–73.CrossRef
9.
go back to reference Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. Circulation. 2005;112(17):2735–52.PubMedCrossRef Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. Circulation. 2005;112(17):2735–52.PubMedCrossRef
10.
go back to reference Mallorquí-Bagué N, Lozano-Madrid M, Toledo E, Corella D, Salas-Salvadó J, Cuenca-Royo A, et al. Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep. 2018;8(1):16128.PubMedPubMedCentralCrossRef Mallorquí-Bagué N, Lozano-Madrid M, Toledo E, Corella D, Salas-Salvadó J, Cuenca-Royo A, et al. Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep. 2018;8(1):16128.PubMedPubMedCentralCrossRef
11.
go back to reference Fortea J, Pegueroles J, Alcolea D, Belbin O, Dols-Icardo O, Vaqué-Alcázar L, et al. APOE4 homozygosity represents a distinct genetic form of Alzheimer’s disease. Nat Med. 2024;30(5):1284–91.PubMedCrossRef Fortea J, Pegueroles J, Alcolea D, Belbin O, Dols-Icardo O, Vaqué-Alcázar L, et al. APOE4 homozygosity represents a distinct genetic form of Alzheimer’s disease. Nat Med. 2024;30(5):1284–91.PubMedCrossRef
12.
go back to reference Jaarsma E, Nooyens A, Kok AAL, Köhler S, van Boxtel M, Verschuren WMM, et al. Modifiable risk factors for accelerated decline in processing speed: results from three Dutch population cohorts. J Prev Alzheimer’s Dis. 2024;11(1):108–16. Jaarsma E, Nooyens A, Kok AAL, Köhler S, van Boxtel M, Verschuren WMM, et al. Modifiable risk factors for accelerated decline in processing speed: results from three Dutch population cohorts. J Prev Alzheimer’s Dis. 2024;11(1):108–16.
13.
go back to reference Stanciu S, Rusu E, Miricescu D, Radu AC, Axinia B, Vrabie AM, et al. Links between metabolic syndrome and hypertension: the relationship with the current antidiabetic drugs. Metabolites. 2023;13(1):87.PubMedPubMedCentralCrossRef Stanciu S, Rusu E, Miricescu D, Radu AC, Axinia B, Vrabie AM, et al. Links between metabolic syndrome and hypertension: the relationship with the current antidiabetic drugs. Metabolites. 2023;13(1):87.PubMedPubMedCentralCrossRef
14.
go back to reference Gorska-Ciebiada M, Saryusz-Wolska M, Ciebiada M, Loba J. Mild cognitive impairment and depressive symptoms in elderly patients with diabetes: prevalence, risk factors, and comorbidity. J Diabetes Res. 2014;2014:1–7.CrossRef Gorska-Ciebiada M, Saryusz-Wolska M, Ciebiada M, Loba J. Mild cognitive impairment and depressive symptoms in elderly patients with diabetes: prevalence, risk factors, and comorbidity. J Diabetes Res. 2014;2014:1–7.CrossRef
15.
go back to reference Lu Y, Pike JR, Hoogeveen RC, Walker KA, Raffield LM, Selvin E, et al. Liver integrity and the risk of Alzheimer’s disease and related dementias. Alzheimers Dement. 2024;20(3):1913–22.PubMedCrossRef Lu Y, Pike JR, Hoogeveen RC, Walker KA, Raffield LM, Selvin E, et al. Liver integrity and the risk of Alzheimer’s disease and related dementias. Alzheimers Dement. 2024;20(3):1913–22.PubMedCrossRef
16.
go back to reference Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus — mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18(9):599–612.PubMedCrossRef Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus — mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18(9):599–612.PubMedCrossRef
17.
go back to reference Feinkohl I, Aung PP, Keller M, Robertson CM, Morling JR, McLachlan S, et al. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care. 2014;37(2):507–15.PubMedCrossRef Feinkohl I, Aung PP, Keller M, Robertson CM, Morling JR, McLachlan S, et al. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care. 2014;37(2):507–15.PubMedCrossRef
18.
go back to reference Yaffe K. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med. 2013;173(14):1300.PubMedPubMedCentralCrossRef Yaffe K. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med. 2013;173(14):1300.PubMedPubMedCentralCrossRef
19.
go back to reference Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2(3):246–55.PubMedCrossRef Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2(3):246–55.PubMedCrossRef
20.
go back to reference Chatterjee S, Peters SAE, Woodward M, Mejia Arango S, Batty GD, Beckett N, et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39(2):300–7.PubMedCrossRef Chatterjee S, Peters SAE, Woodward M, Mejia Arango S, Batty GD, Beckett N, et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39(2):300–7.PubMedCrossRef
21.
go back to reference Xue M, Xu W, Ou Y-N, Cao X-P, Tan M-S, Tan L, et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944.PubMedCrossRef Xue M, Xu W, Ou Y-N, Cao X-P, Tan M-S, Tan L, et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944.PubMedCrossRef
22.
go back to reference Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci. 2020;29:e118.PubMedPubMedCentralCrossRef Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci. 2020;29:e118.PubMedPubMedCentralCrossRef
23.
go back to reference Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction—towards effective management of both comorbidities. Lancet Diabetes Endocrinol. 2020;8(6):535–45.PubMedCrossRef Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction—towards effective management of both comorbidities. Lancet Diabetes Endocrinol. 2020;8(6):535–45.PubMedCrossRef
24.
go back to reference Willmann C, Brockmann K, Wagner R, Kullmann S, Preissl H, Schnauder G, et al. Insulin sensitivity predicts cognitive decline in individuals with prediabetes. BMJ Open Diabetes Res Care. 2020;8(2):e001741.PubMedPubMedCentralCrossRef Willmann C, Brockmann K, Wagner R, Kullmann S, Preissl H, Schnauder G, et al. Insulin sensitivity predicts cognitive decline in individuals with prediabetes. BMJ Open Diabetes Res Care. 2020;8(2):e001741.PubMedPubMedCentralCrossRef
25.
go back to reference Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta - Mol Basis Dis. 2014;1842(9):1693–706.CrossRef Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta - Mol Basis Dis. 2014;1842(9):1693–706.CrossRef
26.
go back to reference Barone E, Tramutola A, Triani F, Calcagnini S, Di Domenico F, Ripoli C, et al. Biliverdin reductase-a mediates the beneficial effects of intranasal insulin in alzheimer disease. Mol Neurobiol. 2019;56(4):2922–43.PubMedCrossRef Barone E, Tramutola A, Triani F, Calcagnini S, Di Domenico F, Ripoli C, et al. Biliverdin reductase-a mediates the beneficial effects of intranasal insulin in alzheimer disease. Mol Neurobiol. 2019;56(4):2922–43.PubMedCrossRef
27.
go back to reference Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, et al. Mitochondrial amyloid-β levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. Zhu X, Beal MF, Wang X, Perry G, Smith MA, editors. J Alzheimer’s Dis. 2010;20(s2):S535–50.CrossRef Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, et al. Mitochondrial amyloid-β levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. Zhu X, Beal MF, Wang X, Perry G, Smith MA, editors. J Alzheimer’s Dis. 2010;20(s2):S535–50.CrossRef
28.
29.
go back to reference Abbatecola AM, Lattanzio F, Molinari AM, Cioffi M, Mansi L, Rambaldi P, et al. Rosiglitazone and cognitive stability in older individuals with type 2 diabetes and mild cognitive impairment. Diabetes Care. 2010;33(8):1706–11.PubMedPubMedCentralCrossRef Abbatecola AM, Lattanzio F, Molinari AM, Cioffi M, Mansi L, Rambaldi P, et al. Rosiglitazone and cognitive stability in older individuals with type 2 diabetes and mild cognitive impairment. Diabetes Care. 2010;33(8):1706–11.PubMedPubMedCentralCrossRef
31.
go back to reference Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med. 2021;176(859):16–33.PubMedPubMedCentralCrossRef Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med. 2021;176(859):16–33.PubMedPubMedCentralCrossRef
32.
go back to reference Barone E, Di Domenico F, Cenini G, Sultana R, Cini C, Preziosi P, et al. Biliverdin reductase-A protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochim Biophys Acta - Mol Basis Dis. 2011;1812(4):480–7.CrossRef Barone E, Di Domenico F, Cenini G, Sultana R, Cini C, Preziosi P, et al. Biliverdin reductase-A protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochim Biophys Acta - Mol Basis Dis. 2011;1812(4):480–7.CrossRef
33.
go back to reference de la Monte SM, Tong M, Wands JR. The 20-year voyage aboard the journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Perry G, Avila J, Tabaton M, Zhu X, editors. J Alzheimer’s Dis. 2018;62(3):1381–90.CrossRef de la Monte SM, Tong M, Wands JR. The 20-year voyage aboard the journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Perry G, Avila J, Tabaton M, Zhu X, editors. J Alzheimer’s Dis. 2018;62(3):1381–90.CrossRef
34.
go back to reference Alkasabera A, Onyali CB, Anim-Koranteng C, Shah HE, Ethirajulu A, Bhawnani N, et al. The effect of type-2 diabetes on cognitive status and the role of anti-diabetes medications. Cureus. 2021;13(11):e19176.PubMedPubMedCentral Alkasabera A, Onyali CB, Anim-Koranteng C, Shah HE, Ethirajulu A, Bhawnani N, et al. The effect of type-2 diabetes on cognitive status and the role of anti-diabetes medications. Cureus. 2021;13(11):e19176.PubMedPubMedCentral
35.
go back to reference Yoon JH, Hwang JH, Son SU, Choi J, You SW, Park H, et al. How can insulin resistance cause Alzheimer’s disease? Int J Mol Sci MDPI. 2023;24:3506.CrossRef Yoon JH, Hwang JH, Son SU, Choi J, You SW, Park H, et al. How can insulin resistance cause Alzheimer’s disease? Int J Mol Sci MDPI. 2023;24:3506.CrossRef
36.
go back to reference Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222–32.PubMedPubMedCentralCrossRef Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222–32.PubMedPubMedCentralCrossRef
38.
go back to reference Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev. 2024;104(1):103–97.PubMedCrossRef Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev. 2024;104(1):103–97.PubMedCrossRef
39.
go back to reference Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol. 2020;235(11):7653–62.PubMedCrossRef Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol. 2020;235(11):7653–62.PubMedCrossRef
40.
go back to reference Seaquist RE, Tkac I, Damberg G, Thomas W, Gruetter R. Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism. 2005;54(8):1008–13.PubMedCrossRef Seaquist RE, Tkac I, Damberg G, Thomas W, Gruetter R. Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism. 2005;54(8):1008–13.PubMedCrossRef
41.
go back to reference Jacob RJ, Fan X, Evans ML, Dziura J, Sherwin RS. Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: No evidence for protective adaptation by the blood brain barrier. Metabolism. 2002;51(12):1522–4.PubMedCrossRef Jacob RJ, Fan X, Evans ML, Dziura J, Sherwin RS. Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: No evidence for protective adaptation by the blood brain barrier. Metabolism. 2002;51(12):1522–4.PubMedCrossRef
42.
go back to reference Holloway GP, Han XX, Jain SS, Bonen A, Chabowski A. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats. Diabetologia. 2014;57(4):832–40.PubMedCrossRef Holloway GP, Han XX, Jain SS, Bonen A, Chabowski A. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats. Diabetologia. 2014;57(4):832–40.PubMedCrossRef
43.
go back to reference Maciejczyk M, Matczuk J, Żendzian-Piotrowska M, Niklińska W, Fejfer K, Szarmach I, et al. Eight-week consumption of high-sucrose diet has a pro-oxidant effect and alters the function of the salivary glands of rats. Nutrients. 2018;10(10):1530.PubMedPubMedCentralCrossRef Maciejczyk M, Matczuk J, Żendzian-Piotrowska M, Niklińska W, Fejfer K, Szarmach I, et al. Eight-week consumption of high-sucrose diet has a pro-oxidant effect and alters the function of the salivary glands of rats. Nutrients. 2018;10(10):1530.PubMedPubMedCentralCrossRef
44.
go back to reference Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14:168–81.PubMedPubMedCentralCrossRef Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14:168–81.PubMedPubMedCentralCrossRef
45.
go back to reference Talbot K, Wang H-Y, Kazi H, Han L-Y, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):1316–38.PubMedPubMedCentralCrossRef Talbot K, Wang H-Y, Kazi H, Han L-Y, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):1316–38.PubMedPubMedCentralCrossRef
46.
go back to reference Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, et al. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction. Int J Mol Sci. 2021;22(22):12366.PubMedPubMedCentralCrossRef Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, et al. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction. Int J Mol Sci. 2021;22(22):12366.PubMedPubMedCentralCrossRef
47.
go back to reference Prentki M, Peyot M-L, Masiello P, Madiraju SRM. Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes. 2020;69(3):279–90.PubMedCrossRef Prentki M, Peyot M-L, Masiello P, Madiraju SRM. Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes. 2020;69(3):279–90.PubMedCrossRef
48.
go back to reference Rachfal AW, Grant SF, Schwartz SS. The diabetes syndrome – a collection of conditions with common, interrelated pathophysiologic mechanisms. Int J Gen Med. 2021;14:923–36.PubMedPubMedCentralCrossRef Rachfal AW, Grant SF, Schwartz SS. The diabetes syndrome – a collection of conditions with common, interrelated pathophysiologic mechanisms. Int J Gen Med. 2021;14:923–36.PubMedPubMedCentralCrossRef
49.
go back to reference Banks WA. The blood-brain barrier interface in diabetes mellitus: dysfunctions, mechanisms and approaches to treatment. Curr Pharm Des. 2020;26(13):1438–47.PubMedCrossRef Banks WA. The blood-brain barrier interface in diabetes mellitus: dysfunctions, mechanisms and approaches to treatment. Curr Pharm Des. 2020;26(13):1438–47.PubMedCrossRef
50.
go back to reference Yan L-J. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:1–11. Yan L-J. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:1–11.
51.
go back to reference Ruegsegger GN, Vanderboom PM, Dasari S, Klaus KA, Kabiraj P, McCarthy CB, et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 2019;4(18):e130681. Ruegsegger GN, Vanderboom PM, Dasari S, Klaus KA, Kabiraj P, McCarthy CB, et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 2019;4(18):e130681.
52.
go back to reference De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s Dement. 2014;10(1 Suppl):S26–32. De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s Dement. 2014;10(1 Suppl):S26–32.
53.
go back to reference Perluigi M, Barone E, Di Domenico F, Butterfield DA. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(10):1871–82.CrossRef Perluigi M, Barone E, Di Domenico F, Butterfield DA. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(10):1871–82.CrossRef
54.
go back to reference Singh DD, Shati AA, Alfaifi MY, Elbehairi SEI, Han I, Choi E-H, et al. Development of dementia in type 2 diabetes patients: mechanisms of insulin resistance and antidiabetic drug development. Cells. 2022;11(23):3767.PubMedPubMedCentralCrossRef Singh DD, Shati AA, Alfaifi MY, Elbehairi SEI, Han I, Choi E-H, et al. Development of dementia in type 2 diabetes patients: mechanisms of insulin resistance and antidiabetic drug development. Cells. 2022;11(23):3767.PubMedPubMedCentralCrossRef
55.
go back to reference Arvanitakis Z, Capuano AW, Wang H-Y, Schneider JA, Kapasi A, Bennett DA, et al. Brain insulin signaling and cerebrovascular disease in human postmortem brain. Acta Neuropathol Commun. 2021;9(1):71.PubMedPubMedCentralCrossRef Arvanitakis Z, Capuano AW, Wang H-Y, Schneider JA, Kapasi A, Bennett DA, et al. Brain insulin signaling and cerebrovascular disease in human postmortem brain. Acta Neuropathol Commun. 2021;9(1):71.PubMedPubMedCentralCrossRef
56.
go back to reference Zheng M, Wang P. Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer’s disease. 3 Biotech. 2021;11(4):179.PubMedPubMedCentralCrossRef Zheng M, Wang P. Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer’s disease. 3 Biotech. 2021;11(4):179.PubMedPubMedCentralCrossRef
57.
go back to reference Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem. 2015;133(5):739–49.PubMedCrossRef Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem. 2015;133(5):739–49.PubMedCrossRef
58.
go back to reference Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem. 2019;151(4):459–87.PubMedCrossRef Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem. 2019;151(4):459–87.PubMedCrossRef
59.
go back to reference Lu Y, Jiang X, Liu S, Li M. Changes in cerebrospinal fluid tau and β-amyloid levels in diabetic and prediabetic patients: a meta-analysis. Front Aging Neurosci. 2018:10:271. Lu Y, Jiang X, Liu S, Li M. Changes in cerebrospinal fluid tau and β-amyloid levels in diabetic and prediabetic patients: a meta-analysis. Front Aging Neurosci. 2018:10:271.
60.
go back to reference Xiong H, Zheng C, Wang J, Song J, Zhao G, Shen H, et al. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice. Alonso A, Gong C, editors. J Alzheimer’s Dis. 2013;37(3):623–35.CrossRef Xiong H, Zheng C, Wang J, Song J, Zhao G, Shen H, et al. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice. Alonso A, Gong C, editors. J Alzheimer’s Dis. 2013;37(3):623–35.CrossRef
61.
go back to reference Cho SB. Comorbidity genes of Alzheimer’s disease and type 2 diabetes associated with memory and cognitive function. Int J Mol Sci. 2024;25(4):2211. Cho SB. Comorbidity genes of Alzheimer’s disease and type 2 diabetes associated with memory and cognitive function. Int J Mol Sci. 2024;25(4):2211.
62.
go back to reference Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer’s disease: a systematic review and qualitative meta-analysis. Neurobiol Dis. 2024;196:106485.PubMedCrossRef Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer’s disease: a systematic review and qualitative meta-analysis. Neurobiol Dis. 2024;196:106485.PubMedCrossRef
63.
go back to reference Sarnowski C, Huan T, Ma Y, Joehanes R, Beiser A, DeCarli CS, et al. Multi-tissue epigenetic analysis identifies distinct associations underlying insulin resistance and Alzheimer’s disease at CPT1A locus. Clin Epigenetics. 2023;15(1):173.PubMedPubMedCentralCrossRef Sarnowski C, Huan T, Ma Y, Joehanes R, Beiser A, DeCarli CS, et al. Multi-tissue epigenetic analysis identifies distinct associations underlying insulin resistance and Alzheimer’s disease at CPT1A locus. Clin Epigenetics. 2023;15(1):173.PubMedPubMedCentralCrossRef
64.
go back to reference Schwartz SS, Epstein S, Corkey BE, Grant SFA, Gavin JR III, Aguilar RB, et al. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab. 2017;28(9):645–55.PubMedCrossRef Schwartz SS, Epstein S, Corkey BE, Grant SFA, Gavin JR III, Aguilar RB, et al. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab. 2017;28(9):645–55.PubMedCrossRef
65.
go back to reference Borson S, Scanlan JM, Chen P, Ganguli M. The Mini-Cog as a Screen for dementia: validation in a population-based sample. J Am Geriatr Soc. 2003;51(10):1451–4.PubMedCrossRef Borson S, Scanlan JM, Chen P, Ganguli M. The Mini-Cog as a Screen for dementia: validation in a population-based sample. J Am Geriatr Soc. 2003;51(10):1451–4.PubMedCrossRef
66.
go back to reference Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedCrossRef Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedCrossRef
67.
go back to reference Cruz-Oliver DM, Malmstrom TK, Roegner M, Tumosa N, Grossberg GT. Cognitive deficit reversal as shown by changes in the Veterans Affairs Saint Louis University Mental Status (SLUMS) examination scores 7.5 years later. J Am Med Dir Assoc. 2014;15(9):687.e5–687.e10.PubMedCrossRef Cruz-Oliver DM, Malmstrom TK, Roegner M, Tumosa N, Grossberg GT. Cognitive deficit reversal as shown by changes in the Veterans Affairs Saint Louis University Mental Status (SLUMS) examination scores 7.5 years later. J Am Med Dir Assoc. 2014;15(9):687.e5–687.e10.PubMedCrossRef
68.
go back to reference Tsoy E, Sideman AB, Piña Escudero SD, Pintado-Caipa M, Kanjanapong S, Al-Rousan T, et al. Global perspectives on brief cognitive assessments for dementia diagnosis. J Alzheimer’s Dis. 2021;82(3):1001–13.CrossRef Tsoy E, Sideman AB, Piña Escudero SD, Pintado-Caipa M, Kanjanapong S, Al-Rousan T, et al. Global perspectives on brief cognitive assessments for dementia diagnosis. J Alzheimer’s Dis. 2021;82(3):1001–13.CrossRef
69.
go back to reference Weintraub S. Neuropsychological assessment in dementia diagnosis. Contin Lifelong Learn Neurol. 2022;28(3):781–99.CrossRef Weintraub S. Neuropsychological assessment in dementia diagnosis. Contin Lifelong Learn Neurol. 2022;28(3):781–99.CrossRef
70.
go back to reference Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.PubMedCrossRef Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.PubMedCrossRef
71.
go back to reference Bukhbinder AS, Ling Y, Hasan O, Jiang X, Kim Y, Phelps KN, et al. Risk of Alzheimer’s disease following influenza vaccination: a claims-based cohort study using propensity score matching. Kostev K, editor. J Alzheimer’s Dis. 2022;88(3):1061–74.CrossRef Bukhbinder AS, Ling Y, Hasan O, Jiang X, Kim Y, Phelps KN, et al. Risk of Alzheimer’s disease following influenza vaccination: a claims-based cohort study using propensity score matching. Kostev K, editor. J Alzheimer’s Dis. 2022;88(3):1061–74.CrossRef
72.
go back to reference Schnier C, Janbek J, Lathe R, Haas J. Reduced dementia incidence after varicella zoster vaccination in Wales 2013–2020. Alzheimer’s Dement Transl Res Clin Interv. 2022;8(1):e12293. Schnier C, Janbek J, Lathe R, Haas J. Reduced dementia incidence after varicella zoster vaccination in Wales 2013–2020. Alzheimer’s Dement Transl Res Clin Interv. 2022;8(1):e12293.
73.
go back to reference Mullard A. FDA approves third anti-amyloid antibody for Alzheimer disease. Nat Rev Drug Discov. 2024;23(8):571. Mullard A. FDA approves third anti-amyloid antibody for Alzheimer disease. Nat Rev Drug Discov. 2024;23(8):571.
74.
go back to reference Wium-Andersen IK, Osler M, Jørgensen MB, Rungby J, Wium-Andersen MK. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested case-control study. Eur J Endocrinol. 2019;181(5):499–507.PubMedCrossRef Wium-Andersen IK, Osler M, Jørgensen MB, Rungby J, Wium-Andersen MK. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested case-control study. Eur J Endocrinol. 2019;181(5):499–507.PubMedCrossRef
75.
go back to reference Tian S, Jiang J, Wang J, Zhang Z, Miao Y, Ji X, et al. Comparison on cognitive outcomes of antidiabetic agents for type 2 diabetes: a systematic review and network meta-analysis. Diabetes Metab Res Rev. 2023;39(7):e3673.PubMedCrossRef Tian S, Jiang J, Wang J, Zhang Z, Miao Y, Ji X, et al. Comparison on cognitive outcomes of antidiabetic agents for type 2 diabetes: a systematic review and network meta-analysis. Diabetes Metab Res Rev. 2023;39(7):e3673.PubMedCrossRef
77.
go back to reference Weinstein G, Davis-Plourde KL, Conner S, Himali JJ, Beiser AS, Lee A, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: pooled analysis from 5 cohorts. Bayer A, editor. PLoS One. 2019;14(2):e0212293.PubMedPubMedCentralCrossRef Weinstein G, Davis-Plourde KL, Conner S, Himali JJ, Beiser AS, Lee A, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: pooled analysis from 5 cohorts. Bayer A, editor. PLoS One. 2019;14(2):e0212293.PubMedPubMedCentralCrossRef
78.
go back to reference Biessels GJ, Verhagen C, Janssen J, van den Berg E, Wallenstein G, Zinman B, et al. Effects of linagliptin vs glimepiride on cognitive performance in type 2 diabetes: results of the randomised double-blind, active-controlled CAROLINA-COGNITION study. Diabetologia. 2021;64(6):1235–45.PubMedPubMedCentralCrossRef Biessels GJ, Verhagen C, Janssen J, van den Berg E, Wallenstein G, Zinman B, et al. Effects of linagliptin vs glimepiride on cognitive performance in type 2 diabetes: results of the randomised double-blind, active-controlled CAROLINA-COGNITION study. Diabetologia. 2021;64(6):1235–45.PubMedPubMedCentralCrossRef
79.
go back to reference Cukierman-Yaffe T, Gerstein HC, Colhoun HM, Diaz R, García-Pérez L-E, Lakshmanan M, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial. Lancet Neurol. 2020;19(7):582–90.PubMedCrossRef Cukierman-Yaffe T, Gerstein HC, Colhoun HM, Diaz R, García-Pérez L-E, Lakshmanan M, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial. Lancet Neurol. 2020;19(7):582–90.PubMedCrossRef
80.
go back to reference Shin A, Koo BK, Lee JY, Kang EH. Risk of dementia after initiation of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors in adults aged 40–69 years with type 2 diabetes: population based cohort study. BMJ. 2024;28:e079475.CrossRef Shin A, Koo BK, Lee JY, Kang EH. Risk of dementia after initiation of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors in adults aged 40–69 years with type 2 diabetes: population based cohort study. BMJ. 2024;28:e079475.CrossRef
81.
go back to reference Šimonienė D, Veličkienė D. Relation between exogenous insulin and cognitive function in type 2 diabetes mellitus. Medicina (B Aires). 2021;57(9):943.CrossRef Šimonienė D, Veličkienė D. Relation between exogenous insulin and cognitive function in type 2 diabetes mellitus. Medicina (B Aires). 2021;57(9):943.CrossRef
83.
go back to reference Lin C-H, Sheu WH-H. Hypoglycaemic episodes and risk of dementia in diabetes mellitus: 7-year follow-up study. J Intern Med. 2013;273(1):102–10.PubMedCrossRef Lin C-H, Sheu WH-H. Hypoglycaemic episodes and risk of dementia in diabetes mellitus: 7-year follow-up study. J Intern Med. 2013;273(1):102–10.PubMedCrossRef
84.
go back to reference de Galan BE, Zoungas S, Chalmers J, Anderson C, Dufouil C, Pillai A, et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia. 2009;52(11):2328–36.PubMedCrossRef de Galan BE, Zoungas S, Chalmers J, Anderson C, Dufouil C, Pillai A, et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia. 2009;52(11):2328–36.PubMedCrossRef
85.
go back to reference Fanelli CG, Porcellati F, Pampanelli S, Bolli GB. Insulin therapy and hypoglycaemia: the size of the problem. Diabetes Metab Res Rev. 2004;20(S2):S32–42.PubMedCrossRef Fanelli CG, Porcellati F, Pampanelli S, Bolli GB. Insulin therapy and hypoglycaemia: the size of the problem. Diabetes Metab Res Rev. 2004;20(S2):S32–42.PubMedCrossRef
86.
go back to reference Nilsson M, Jensen N, Gejl M, Bergmann ML, Storgaard H, Zander M, et al. Experimental non-severe hypoglycaemia substantially impairs cognitive function in type 2 diabetes: a randomised crossover trial. Diabetologia. 2019;62(10):1948–58.PubMedCrossRef Nilsson M, Jensen N, Gejl M, Bergmann ML, Storgaard H, Zander M, et al. Experimental non-severe hypoglycaemia substantially impairs cognitive function in type 2 diabetes: a randomised crossover trial. Diabetologia. 2019;62(10):1948–58.PubMedCrossRef
87.
go back to reference Dunkley AJ, Fitzpatrick C, Gray LJ, Waheed G, Heller SR, Frier BM, et al. Incidence and severity of hypoglycaemia in type 2 diabetes by treatment regimen: a UK multisite 12-month prospective observational study. Diabetes, Obes Metab. 2019;21(7):1585–95.PubMedCrossRef Dunkley AJ, Fitzpatrick C, Gray LJ, Waheed G, Heller SR, Frier BM, et al. Incidence and severity of hypoglycaemia in type 2 diabetes by treatment regimen: a UK multisite 12-month prospective observational study. Diabetes, Obes Metab. 2019;21(7):1585–95.PubMedCrossRef
88.
go back to reference Gorst C, Kwok CS, Aslam S, Buchan I, Kontopantelis E, Myint PK, et al. Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care. 2015;38(12):2354–69.PubMedCrossRef Gorst C, Kwok CS, Aslam S, Buchan I, Kontopantelis E, Myint PK, et al. Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care. 2015;38(12):2354–69.PubMedCrossRef
89.
go back to reference Song J, Bai H, Xu H, Xing Y, Chen S. HbA1c variability and the risk of dementia in patients with diabetes: a meta-analysis. Seixas A, editor. Int J Clin Pract. 2022;2022:1–10. Song J, Bai H, Xu H, Xing Y, Chen S. HbA1c variability and the risk of dementia in patients with diabetes: a meta-analysis. Seixas A, editor. Int J Clin Pract. 2022;2022:1–10.
90.
go back to reference Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13(1):148.PubMedPubMedCentralCrossRef Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13(1):148.PubMedPubMedCentralCrossRef
91.
go back to reference Sa-nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43–50.PubMedCrossRef Sa-nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43–50.PubMedCrossRef
92.
go back to reference Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–62.PubMedCrossRef Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–62.PubMedCrossRef
93.
go back to reference Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.PubMedCrossRef Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.PubMedCrossRef
94.
go back to reference Pratley RE, Cannon CP, Cherney DZI, Cosentino F, McGuire DK, Essex MN, et al. Cardiorenal outcomes, kidney function, and other safety outcomes with ertugliflozin in older adults with type 2 diabetes (VERTIS CV): secondary analyses from a randomised, double-blind trial. Lancet Heal Longev. 2023;4(4):e143–54.CrossRef Pratley RE, Cannon CP, Cherney DZI, Cosentino F, McGuire DK, Essex MN, et al. Cardiorenal outcomes, kidney function, and other safety outcomes with ertugliflozin in older adults with type 2 diabetes (VERTIS CV): secondary analyses from a randomised, double-blind trial. Lancet Heal Longev. 2023;4(4):e143–54.CrossRef
95.
go back to reference Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146:1383–405.PubMedPubMedCentralCrossRef Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146:1383–405.PubMedPubMedCentralCrossRef
96.
go back to reference Shaikh S, Rizvi SMD, Shakil S, Riyaz S, Biswas D, Jahan R. Forxiga (dapagliflozin): plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol Appl Biochem. 2016;63(1):145–50.PubMedCrossRef Shaikh S, Rizvi SMD, Shakil S, Riyaz S, Biswas D, Jahan R. Forxiga (dapagliflozin): plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol Appl Biochem. 2016;63(1):145–50.PubMedCrossRef
97.
go back to reference Kosaraju J, Gali CC, Khatwal RB, Dubala A, Chinni S, Holsinger RMD, et al. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology. 2013;72:291–300.PubMedCrossRef Kosaraju J, Gali CC, Khatwal RB, Dubala A, Chinni S, Holsinger RMD, et al. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology. 2013;72:291–300.PubMedCrossRef
98.
go back to reference McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76:57–67.PubMedCrossRef McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76:57–67.PubMedCrossRef
99.
go back to reference Chen S, Liu A, An F, Yao W, Gao X. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (Omaha). 2012;34(5):1211–24.CrossRef Chen S, Liu A, An F, Yao W, Gao X. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (Omaha). 2012;34(5):1211–24.CrossRef
100.
go back to reference Esterline R, Oscarsson J, Burns J. A role for sodium glucose cotransporter 2 inhibitors (SGLT2is) in the treatment of Alzheimer’s disease? In 2020. p. 113–40. Esterline R, Oscarsson J, Burns J. A role for sodium glucose cotransporter 2 inhibitors (SGLT2is) in the treatment of Alzheimer’s disease? In 2020. p. 113–40.
101.
go back to reference Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and The Endocrine Society. Diabetes Care. 2013;36(5):1384–95.PubMedPubMedCentralCrossRef Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and The Endocrine Society. Diabetes Care. 2013;36(5):1384–95.PubMedPubMedCentralCrossRef
102.
go back to reference Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;13:372:m4573. Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;13:372:m4573.
103.
go back to reference Blanco CA, Garcia K, Singson A, Smith WR. Use of SGLT2 inhibitors reduces heart failure and hospitalization: a multicenter, real-world evidence study. Perm J. 2023;27(1):77–87.PubMedPubMedCentralCrossRef Blanco CA, Garcia K, Singson A, Smith WR. Use of SGLT2 inhibitors reduces heart failure and hospitalization: a multicenter, real-world evidence study. Perm J. 2023;27(1):77–87.PubMedPubMedCentralCrossRef
104.
go back to reference Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimer’s Dis. 2015;45(4):1269–70.CrossRef Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimer’s Dis. 2015;45(4):1269–70.CrossRef
105.
go back to reference Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J Alzheimer’s Dis. 2008;13(3):323–31.CrossRef Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J Alzheimer’s Dis. 2008;13(3):323–31.CrossRef
106.
go back to reference Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–8.PubMedCrossRef Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–8.PubMedCrossRef
107.
go back to reference Craft S, Raman R, Chow TW, Rafii MS, Sun C-K, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol. 2020;77(9):1099.PubMedCrossRef Craft S, Raman R, Chow TW, Rafii MS, Sun C-K, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol. 2020;77(9):1099.PubMedCrossRef
108.
go back to reference Craft S. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment. Arch Neurol. 2012;69(1):29.PubMedCrossRef Craft S. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment. Arch Neurol. 2012;69(1):29.PubMedCrossRef
109.
go back to reference Koychev I, Adler AI, Edison P, Tom B, Milton JE, Butchart J, et al. Protocol for a double-blind placebo-controlled randomised controlled trial assessing the impact of oral semaglutide in amyloid positivity (ISAP) in community dwelling UK adults. BMJ Open. 2024;14(6):e081401.PubMedPubMedCentralCrossRef Koychev I, Adler AI, Edison P, Tom B, Milton JE, Butchart J, et al. Protocol for a double-blind placebo-controlled randomised controlled trial assessing the impact of oral semaglutide in amyloid positivity (ISAP) in community dwelling UK adults. BMJ Open. 2024;14(6):e081401.PubMedPubMedCentralCrossRef
110.
go back to reference Davidy T, Yore I, Cukierman-Yaffe T, Ravona-Springer R, Livny A, Lesman-Segev OH, et al. A feasibility study of the combination of intranasal insulin with oral semaglutide for cognition in older adults with metabolic syndrome at high dementia risk- Study rationale and design. Mech Ageing Dev. 2024;218:111898.PubMedCrossRef Davidy T, Yore I, Cukierman-Yaffe T, Ravona-Springer R, Livny A, Lesman-Segev OH, et al. A feasibility study of the combination of intranasal insulin with oral semaglutide for cognition in older adults with metabolic syndrome at high dementia risk- Study rationale and design. Mech Ageing Dev. 2024;218:111898.PubMedCrossRef
111.
go back to reference Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: a review. Front Ophthalmol. 2022;2:1012804. Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: a review. Front Ophthalmol. 2022;2:1012804.
112.
go back to reference Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57(5):695–703.PubMedCrossRef Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57(5):695–703.PubMedCrossRef
Metadata
Title
The double life of glucose metabolism: brain health, glycemic homeostasis, and your patients with type 2 diabetes
Authors
Stanley S. Schwartz
Mary E. Herman
May Thet Hmu Tun
Eugenio Barone
D. Allan Butterfield
Publication date
18-12-2024
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2024
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-024-03763-8

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more