Skip to main content
Top

Open Access 11-04-2025 | Type 1 Diabetes | Review

Cell Therapy for T1D Beyond BLA: Gearing Up Toward Clinical Practice

Authors: Yong Wang, YingYing Chen, James McGarrigle, Jenny Cook, Peter D. Rios, Giovanna La Monica, Wei Wei, Jose Oberholzer

Published in: Diabetes Therapy

Login to get access

Abstract

Type 1 diabetes (T1D) remains a significant global health challenge and patients with T1D need lifelong insulin therapy. Islet transplantation holds transformative potential by replacing autoimmune-mediated destruction of insulin-producing beta cells. This review examines the trajectory of islet transplantation for T1D, focusing on the process and benefits of obtaining biologics license application (BLA) approval for cell-based therapies. Following US Food and Drug Administration (FDA) approval, the authors identify key steps urgently needed to foster islet transplantation as a viable treatment for a broader population of patients with T1D. Furthermore, the authors highlight recent advances in encapsulation technologies, stem cell-derived islets, xenogeneic islets, and gene editing as strategies to overcome challenges such as immune rejection and limited islet sources. These innovations are pivotal in enhancing the safety and efficacy of islet transplantation. Ultimately, this review emphasizes that while BLA approval represents a critical milestone, realizing the full potential of cell therapy for T1D requires addressing the scientific, clinical, and logistical challenges of its real-world implementation. By fostering innovation, collaboration, and strategic partnerships, the field can transform T1D care, offering patients a durable, life-changing alternative to traditional insulin therapy.
Literature
1.
go back to reference Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–9.PubMedCrossRef Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–9.PubMedCrossRef
2.
go back to reference Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery. 1972;72:175–86.PubMed Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery. 1972;72:175–86.PubMed
3.
go back to reference Lacy PE, Finke EH, Conant S, Naber S. Long-term perfusion of isolated rats islets in vitro. Diabetes. 1976;25:484–93.PubMedCrossRef Lacy PE, Finke EH, Conant S, Naber S. Long-term perfusion of isolated rats islets in vitro. Diabetes. 1976;25:484–93.PubMedCrossRef
4.
go back to reference Shibata A, Ludvigsen CW Jr, Naber SP, et al. Standardization of a digestion–filtration method for isolation of pancreatic islets. Diabetes. 1976;25:667–72.PubMedCrossRef Shibata A, Ludvigsen CW Jr, Naber SP, et al. Standardization of a digestion–filtration method for isolation of pancreatic islets. Diabetes. 1976;25:667–72.PubMedCrossRef
5.
go back to reference Najarian JS, Sutherland DE, Matas AJ, et al. Human islet transplantation: a preliminary report. Transplant Proc. 1977;9:233–6.PubMed Najarian JS, Sutherland DE, Matas AJ, et al. Human islet transplantation: a preliminary report. Transplant Proc. 1977;9:233–6.PubMed
6.
go back to reference Ricordi C, Lacy PE, Finke EH, et al. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37:413–20.PubMedCrossRef Ricordi C, Lacy PE, Finke EH, et al. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37:413–20.PubMedCrossRef
7.
go back to reference Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.PubMedCrossRef Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.PubMedCrossRef
8.
go back to reference Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50:710–9.PubMedCrossRef Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50:710–9.PubMedCrossRef
9.
go back to reference Markmann JF, Rickels MR, Eggerman TL, et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. Am J Transplant. 2021;21:1477–92.PubMedCrossRef Markmann JF, Rickels MR, Eggerman TL, et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. Am J Transplant. 2021;21:1477–92.PubMedCrossRef
10.
go back to reference Rickels MR, Eggerman TL, Bayman L, et al. Long-term outcomes with islet-alone and islet-after-kidney transplantation for type 1 diabetes in the clinical islet transplantation consortium: the CIT-08 study. Diabetes Care. 2022;45:2967–75.PubMedPubMedCentralCrossRef Rickels MR, Eggerman TL, Bayman L, et al. Long-term outcomes with islet-alone and islet-after-kidney transplantation for type 1 diabetes in the clinical islet transplantation consortium: the CIT-08 study. Diabetes Care. 2022;45:2967–75.PubMedPubMedCentralCrossRef
11.
go back to reference Chetboun M, Drumez E, Ballou C, et al. Association between primary graft function and 5-year outcomes of islet allogeneic transplantation in type 1 diabetes: a retrospective, multicentre, observational cohort study in 1210 patients from the Collaborative Islet Transplant Registry. Lancet Diabetes Endocrinol. 2023;11:391–401.PubMedPubMedCentralCrossRef Chetboun M, Drumez E, Ballou C, et al. Association between primary graft function and 5-year outcomes of islet allogeneic transplantation in type 1 diabetes: a retrospective, multicentre, observational cohort study in 1210 patients from the Collaborative Islet Transplant Registry. Lancet Diabetes Endocrinol. 2023;11:391–401.PubMedPubMedCentralCrossRef
12.
go back to reference Ricordi C, Goldstein JS, Balamurugan AN, et al. National institutes of health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes. 2016;65:3418–28.PubMedPubMedCentralCrossRef Ricordi C, Goldstein JS, Balamurugan AN, et al. National institutes of health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes. 2016;65:3418–28.PubMedPubMedCentralCrossRef
13.
go back to reference Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39:1230–40.PubMedPubMedCentralCrossRef Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39:1230–40.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Qi M, Kinzer K, Danielson KK, et al. Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetol. 2014;51:833–43.PubMedPubMedCentralCrossRef Qi M, Kinzer K, Danielson KK, et al. Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetol. 2014;51:833–43.PubMedPubMedCentralCrossRef
16.
go back to reference Gangemi A, Salehi P, Hatipoglu B, et al. Islet transplantation for brittle type 1 diabetes: the UIC protocol. Am J Transplant. 2008;8:1250–61.PubMedCrossRef Gangemi A, Salehi P, Hatipoglu B, et al. Islet transplantation for brittle type 1 diabetes: the UIC protocol. Am J Transplant. 2008;8:1250–61.PubMedCrossRef
17.
go back to reference Lablanche S, Vantyghem MC, Kessler L, et al. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6:527–37.PubMedCrossRef Lablanche S, Vantyghem MC, Kessler L, et al. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6:527–37.PubMedCrossRef
18.
go back to reference Maanaoui M, Lenain R, Foucher Y, et al. Islet-after-kidney transplantation versus kidney alone in kidney transplant recipients with type 1 diabetes (KAIAK): a population-based target trial emulation in France. Lancet Diabetes Endocrinol. 2024;12:716–24.PubMedCrossRef Maanaoui M, Lenain R, Foucher Y, et al. Islet-after-kidney transplantation versus kidney alone in kidney transplant recipients with type 1 diabetes (KAIAK): a population-based target trial emulation in France. Lancet Diabetes Endocrinol. 2024;12:716–24.PubMedCrossRef
19.
go back to reference Witkowski P, Philipson LH, Kaufman DB, et al. The demise of islet allotransplantation in the United States: a call for an urgent regulatory update. Am J Transplant. 2021;21:1365–75.PubMedPubMedCentralCrossRef Witkowski P, Philipson LH, Kaufman DB, et al. The demise of islet allotransplantation in the United States: a call for an urgent regulatory update. Am J Transplant. 2021;21:1365–75.PubMedPubMedCentralCrossRef
20.
go back to reference Weber DJ. FDA regulation of allogeneic islets as a biological product. Cell Biochem Biophys. 2004;40:19–22.PubMedCrossRef Weber DJ. FDA regulation of allogeneic islets as a biological product. Cell Biochem Biophys. 2004;40:19–22.PubMedCrossRef
21.
go back to reference Wonnacott K. Update on regulatory issues in pancreatic islet transplantation. Am J Ther. 2005;12:600–4.PubMedCrossRef Wonnacott K. Update on regulatory issues in pancreatic islet transplantation. Am J Ther. 2005;12:600–4.PubMedCrossRef
22.
go back to reference Choudhary P, Rickels MR, Senior PA, et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care. 2015;38:1016–29.PubMedPubMedCentralCrossRef Choudhary P, Rickels MR, Senior PA, et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care. 2015;38:1016–29.PubMedPubMedCentralCrossRef
23.
go back to reference Bottino R, Wijkstrom M, van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014;14:2275–87.PubMedPubMedCentralCrossRef Bottino R, Wijkstrom M, van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014;14:2275–87.PubMedPubMedCentralCrossRef
24.
go back to reference Lei Y, Wolf-van Buerck L, Honarpisheh M, et al. Neonatal islets from human PD-L1 transgenic pigs reduce immune cell activation and cellular rejection in humanized nonobese diabetic-scid IL2rgamma(null) mice. Am J Transplant. 2024;24:20–9.PubMedCrossRef Lei Y, Wolf-van Buerck L, Honarpisheh M, et al. Neonatal islets from human PD-L1 transgenic pigs reduce immune cell activation and cellular rejection in humanized nonobese diabetic-scid IL2rgamma(null) mice. Am J Transplant. 2024;24:20–9.PubMedCrossRef
25.
go back to reference Mourad NI, Gianello P. Gene editing, gene therapy, and cell xenotransplantation: cell transplantation across species. Curr Transplant Rep. 2017;4:193–200.PubMedPubMedCentralCrossRef Mourad NI, Gianello P. Gene editing, gene therapy, and cell xenotransplantation: cell transplantation across species. Curr Transplant Rep. 2017;4:193–200.PubMedPubMedCentralCrossRef
27.
go back to reference Cantley J, Boslem E, Laybutt DR, et al. Deletion of protein kinase C delta in mice modulates stability of inflammatory genes and protects against cytokine-stimulated beta cell death in vitro and in vivo. Diabetologia. 2011;54:380–9.PubMedCrossRef Cantley J, Boslem E, Laybutt DR, et al. Deletion of protein kinase C delta in mice modulates stability of inflammatory genes and protects against cytokine-stimulated beta cell death in vitro and in vivo. Diabetologia. 2011;54:380–9.PubMedCrossRef
28.
go back to reference Kirchhof N, Shibata S, Wijkstrom M, et al. Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection. Xenotransplantation. 2004;11:396–407.PubMedCrossRef Kirchhof N, Shibata S, Wijkstrom M, et al. Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection. Xenotransplantation. 2004;11:396–407.PubMedCrossRef
29.
go back to reference Gangappa S, Larsen CP. Immunosuppressive protocols for pig-to-human islet transplantation: lessons from pre-clinical non-human primate models. Xenotransplantation. 2008;15:107–11.PubMedCrossRef Gangappa S, Larsen CP. Immunosuppressive protocols for pig-to-human islet transplantation: lessons from pre-clinical non-human primate models. Xenotransplantation. 2008;15:107–11.PubMedCrossRef
30.
go back to reference van der Windt DJ, Bottino R, Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant. 2009;9:2716–26.PubMedCrossRef van der Windt DJ, Bottino R, Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant. 2009;9:2716–26.PubMedCrossRef
31.
go back to reference Matsumoto S, Tan P, Baker J, et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc. 2014;46:1992–5.PubMedCrossRef Matsumoto S, Tan P, Baker J, et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc. 2014;46:1992–5.PubMedCrossRef
32.
go back to reference Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14:157–61.PubMedCrossRef Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14:157–61.PubMedCrossRef
33.
go back to reference Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes. 2001;50:1691–7.PubMedCrossRef Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes. 2001;50:1691–7.PubMedCrossRef
34.
go back to reference Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRef
35.
go back to reference Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106:15768–73.PubMedPubMedCentralCrossRef Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106:15768–73.PubMedPubMedCentralCrossRef
36.
go back to reference D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.PubMedCrossRef D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.PubMedCrossRef
37.
go back to reference Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32:1121–33.PubMedCrossRef Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32:1121–33.PubMedCrossRef
38.
go back to reference Millman JR, Pagliuca FW. Autologous pluripotent stem cell-derived beta-like cells for diabetes cellular therapy. Diabetes. 2017;66:1111–20.PubMedCrossRef Millman JR, Pagliuca FW. Autologous pluripotent stem cell-derived beta-like cells for diabetes cellular therapy. Diabetes. 2017;66:1111–20.PubMedCrossRef
39.
go back to reference Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.PubMedCrossRef Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.PubMedCrossRef
40.
go back to reference Liang Z, Sun D, Lu S, et al. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets. Nat Metab. 2023;5:29–40.PubMedCrossRef Liang Z, Sun D, Lu S, et al. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets. Nat Metab. 2023;5:29–40.PubMedCrossRef
42.
go back to reference Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell. 2021;28(2047–2061): e2045. Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell. 2021;28(2047–2061): e2045.
43.
go back to reference Kirk K, Hao E, Lahmy R, Itkin-Ansari P. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res. 2014;12:807–14.PubMedCrossRef Kirk K, Hao E, Lahmy R, Itkin-Ansari P. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res. 2014;12:807–14.PubMedCrossRef
44.
45.
go back to reference Wang S, Du Y, Zhang B, et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell. 2024;187(6152–6164): e6118. Wang S, Du Y, Zhang B, et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell. 2024;187(6152–6164): e6118.
46.
go back to reference Hua H, Wang Y, Wang X, et al. Remodeling ceramide homeostasis promotes functional maturation of human pluripotent stem cell-derived beta cells. Cell Stem Cell. 2024;31(850–865): e810. Hua H, Wang Y, Wang X, et al. Remodeling ceramide homeostasis promotes functional maturation of human pluripotent stem cell-derived beta cells. Cell Stem Cell. 2024;31(850–865): e810.
47.
go back to reference Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28:272–82.PubMedCrossRef Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28:272–82.PubMedCrossRef
48.
go back to reference de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol (Lausanne). 2021;12: 631463.PubMedCrossRef de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol (Lausanne). 2021;12: 631463.PubMedCrossRef
50.
go back to reference Forbes S, Halpin A, Lam A, et al. Islet transplantation outcomes in type 1 diabetes and transplantation of HLA-DQ8/DR4: results of a single-centre retrospective cohort in Canada. EClinicalMedicine. 2024;67: 102333.PubMedCrossRef Forbes S, Halpin A, Lam A, et al. Islet transplantation outcomes in type 1 diabetes and transplantation of HLA-DQ8/DR4: results of a single-centre retrospective cohort in Canada. EClinicalMedicine. 2024;67: 102333.PubMedCrossRef
51.
go back to reference Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–10.PubMedCrossRef Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–10.PubMedCrossRef
52.
go back to reference Sambanis A. Engineering challenges in the development of an encapsulated cell system for treatment of type 1 diabetes. Diabetes Technol Ther. 2000;2:81–9.PubMedCrossRef Sambanis A. Engineering challenges in the development of an encapsulated cell system for treatment of type 1 diabetes. Diabetes Technol Ther. 2000;2:81–9.PubMedCrossRef
53.
go back to reference Desai TA, Hansford DJ, Ferrari M. Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng. 2000;17:23–36.PubMedCrossRef Desai TA, Hansford DJ, Ferrari M. Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng. 2000;17:23–36.PubMedCrossRef
54.
go back to reference Clayton HA, James RF, London NJ. Islet microencapsulation: a review. Acta Diabetol. 1993;30:181–9.PubMedCrossRef Clayton HA, James RF, London NJ. Islet microencapsulation: a review. Acta Diabetol. 1993;30:181–9.PubMedCrossRef
55.
go back to reference Basta G, Montanucci P, Luca G, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34:2406–9.PubMedPubMedCentralCrossRef Basta G, Montanucci P, Luca G, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34:2406–9.PubMedPubMedCentralCrossRef
56.
go back to reference Vegas AJ, Veiseh O, Doloff JC, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345–52.PubMedPubMedCentralCrossRef Vegas AJ, Veiseh O, Doloff JC, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345–52.PubMedPubMedCentralCrossRef
57.
go back to reference Mukherjee S, Kim B, Cheng LY, et al. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nat Biomed Eng. 2023;7:867–86.PubMedPubMedCentralCrossRef Mukherjee S, Kim B, Cheng LY, et al. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nat Biomed Eng. 2023;7:867–86.PubMedPubMedCentralCrossRef
58.
go back to reference Vegas AJ, Veiseh O, Gurtler M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306–11.PubMedPubMedCentralCrossRef Vegas AJ, Veiseh O, Gurtler M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306–11.PubMedPubMedCentralCrossRef
59.
go back to reference Doloff JC, Veiseh O, Vegas AJ, et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat Mater. 2017;16:671–80.PubMedPubMedCentralCrossRef Doloff JC, Veiseh O, Vegas AJ, et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat Mater. 2017;16:671–80.PubMedPubMedCentralCrossRef
60.
go back to reference Syed F, Bugliani M, Novelli M, et al. Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: in-vitro and in-vivo studies. Nanomedicine. 2018;14:2191–203.PubMedCrossRef Syed F, Bugliani M, Novelli M, et al. Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: in-vitro and in-vivo studies. Nanomedicine. 2018;14:2191–203.PubMedCrossRef
61.
go back to reference Zhi ZL, Kerby A, King AJ, et al. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia. 2012;55:1081–90.PubMedCrossRef Zhi ZL, Kerby A, King AJ, et al. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia. 2012;55:1081–90.PubMedCrossRef
62.
go back to reference Bochenek MA, Veiseh O, Vegas AJ, et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng. 2018;2:810–21.PubMedPubMedCentralCrossRef Bochenek MA, Veiseh O, Vegas AJ, et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng. 2018;2:810–21.PubMedPubMedCentralCrossRef
63.
go back to reference Rafael E, Wernerson A, Arner P, Tibell A. In vivo studies on insulin permeability of an immunoisolation device intended for islet transplantation using the microdialysis technique. Eur Surg Res. 1999;31:249–58.PubMedCrossRef Rafael E, Wernerson A, Arner P, Tibell A. In vivo studies on insulin permeability of an immunoisolation device intended for islet transplantation using the microdialysis technique. Eur Surg Res. 1999;31:249–58.PubMedCrossRef
64.
go back to reference El-Halawani SM, Gabr MM, El-Far M, et al. Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site. Heliyon. 2020;6: e03914.PubMedPubMedCentralCrossRef El-Halawani SM, Gabr MM, El-Far M, et al. Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site. Heliyon. 2020;6: e03914.PubMedPubMedCentralCrossRef
65.
go back to reference Boettler T, Schneider D, Cheng Y, et al. Pancreatic tissue transplanted in TheraCyte encapsulation devices is protected and prevents hyperglycemia in a mouse model of immune-mediated diabetes. Cell Transplant. 2016;25:609–14.PubMedCrossRef Boettler T, Schneider D, Cheng Y, et al. Pancreatic tissue transplanted in TheraCyte encapsulation devices is protected and prevents hyperglycemia in a mouse model of immune-mediated diabetes. Cell Transplant. 2016;25:609–14.PubMedCrossRef
66.
go back to reference Evron Y, Colton CK, Ludwig B, et al. Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply. Sci Rep. 2018;8:6508.PubMedPubMedCentralCrossRef Evron Y, Colton CK, Ludwig B, et al. Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply. Sci Rep. 2018;8:6508.PubMedPubMedCentralCrossRef
67.
go back to reference Barkai U, Weir GC, Colton CK, et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant. 2013;22:1463–76.PubMedCrossRef Barkai U, Weir GC, Colton CK, et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant. 2013;22:1463–76.PubMedCrossRef
68.
go back to reference Ludwig B, Ludwig S, Steffen A, et al. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc Natl Acad Sci USA. 2017;114:11745–50.PubMedPubMedCentralCrossRef Ludwig B, Ludwig S, Steffen A, et al. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc Natl Acad Sci USA. 2017;114:11745–50.PubMedPubMedCentralCrossRef
69.
go back to reference Su J, Hu BH, Lowe WL Jr, et al. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials. 2010;31:308–14.PubMedCrossRef Su J, Hu BH, Lowe WL Jr, et al. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials. 2010;31:308–14.PubMedCrossRef
70.
go back to reference Hwang DG, Jo Y, Kim M, et al (2021) A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 14 Hwang DG, Jo Y, Kim M, et al (2021) A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 14
71.
73.
go back to reference Parent AV, Faleo G, Chavez J, et al. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep. 2021;36: 109538.PubMedCrossRef Parent AV, Faleo G, Chavez J, et al. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep. 2021;36: 109538.PubMedCrossRef
74.
go back to reference Hu X, Gattis C, Olroyd AG, et al. Human hypoimmune primary pancreatic islets avoid rejection and autoimmunity and alleviate diabetes in allogeneic humanized mice. Sci Transl Med. 2023;15: eadg5794.PubMedCrossRef Hu X, Gattis C, Olroyd AG, et al. Human hypoimmune primary pancreatic islets avoid rejection and autoimmunity and alleviate diabetes in allogeneic humanized mice. Sci Transl Med. 2023;15: eadg5794.PubMedCrossRef
75.
go back to reference Gerace D, Zhou Q, Kenty JH, et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep Med. 2023;4: 100879.PubMedPubMedCentralCrossRef Gerace D, Zhou Q, Kenty JH, et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep Med. 2023;4: 100879.PubMedPubMedCentralCrossRef
Metadata
Title
Cell Therapy for T1D Beyond BLA: Gearing Up Toward Clinical Practice
Authors
Yong Wang
YingYing Chen
James McGarrigle
Jenny Cook
Peter D. Rios
Giovanna La Monica
Wei Wei
Jose Oberholzer
Publication date
11-04-2025
Publisher
Springer Healthcare
Published in
Diabetes Therapy
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-025-01732-9

Keynote series | Spotlight on managing health in obesity

Obesity is a major contributor to cardiorenal metabolic disease, but its impact extends throughout the body. Understand how obesity can affect other organ systems and impact treatment, and whether weight-loss measures improve outcomes.

Prof. Eva L. Feldman
Prof. Jonette Keri
Developed by: Springer Medicine
Watch now
Video

Women’s health knowledge hub

Elevate your patient care with our comprehensive, evidence-based medical education on women's health. Designed to help you provide exceptional care for your female patients at every stage of life, we provide expert insights into topics such as reproductive health, menopause, breast cancer and sex-specific health risks and precision medicine.

Read more

Keynote webinar | Spotlight on advances in lupus

  • Live
  • Webinar | 27-05-2025 | 18:00 (CEST)

Systemic lupus erythematosus is a severe autoimmune disease that can cause damage to almost every system of the body. Join this session to learn more about novel biomarkers for diagnosis and monitoring and familiarise yourself with current and emerging targeted therapies.

Join us live: Tuesday 27th May, 18:00-19:15 (CEST)

Prof. Edward Vital
Prof. Ronald F. van Vollenhoven
Developed by: Springer Medicine
Register now
Webinar