Skip to main content
Top

Open Access 28-09-2024 | CORRESPONDENCE

Triamcinolone Acetonide Protects Against Light-Induced Retinal Degeneration by Activating Anti-Inflammatory STAT6/Arg1 Signaling in Microglia

Authors: Xiangcheng Tang, Wei Liu, Jia Liang, Xingfei Zhu, Xiangyu Ge, Dong Fang, Lirong Ling, Fanglan Yuan, Kun Zeng, Qingshan Chen, Guoming Zhang, Lili Gong, Shaochong Zhang

Published in: Inflammation

Login to get access

Excerpt

Retinal microglia are yolk sack-derived resident tissue macrophages in the retina [1]. Under normal conditions, microglia are localized to the retina outer plexiform layer (OPL) and inner plexiform layer (IPL), where they mediate homeostatic functions [24]. During retinal degeneration, reactive microglia are detected in the degenerating photoreceptor layer, where they actively phagocytose viable photoreceptors, secrete proinflammatory cytokines, and induce chronic neuroinflammation, ultimately accelerating photoreceptor loss [5]. Consequently, inhibiting microglial activation is considered a potential treatment for retinal degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Pharmacological inhibition of microglia activation has been shown to reduce photoreceptor death and improve retinal function [68]. However, recent studies have also reported a protective role for microglia in retina. For example, microglia depletion accelerates photoreceptor death in response to light damage (LD) or retinal detachment [3, 9]. This protective effect of microglia may arise from a shift in their transcriptome toward a neuroprotective phenotype in specific locations, such as the subretinal space [3], or through the phagocytosis of injured retinal cell debris [9]. Therefore, the role of retinal microglia is highly dependent on the disease context. …
Appendix
Available only for authorised users
Literature
1.
go back to reference Borst, K., A. A. Dumas, and M. Prinz. 2021. Microglia: Immune and non-immune functions. Immunity 54 (10): 2194–2208.PubMedCrossRef Borst, K., A. A. Dumas, and M. Prinz. 2021. Microglia: Immune and non-immune functions. Immunity 54 (10): 2194–2208.PubMedCrossRef
2.
go back to reference Hume, D. A., V. H. Perry, and S. Gordon. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: Phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. Journal of Cell Biology 97 (1): 253–257.PubMedCrossRef Hume, D. A., V. H. Perry, and S. Gordon. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: Phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. Journal of Cell Biology 97 (1): 253–257.PubMedCrossRef
3.
go back to reference O’Koren, E. G., C. Yu, M. Klingeborn, A. Y. W. Wong, C. L. Prigge, R. Mathew, J. Kalnitsky, R. A. Msallam, A. Silvin, J. N. Kay, et al. 2019. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50 (3): 723-737 e727.PubMedPubMedCentralCrossRef O’Koren, E. G., C. Yu, M. Klingeborn, A. Y. W. Wong, C. L. Prigge, R. Mathew, J. Kalnitsky, R. A. Msallam, A. Silvin, J. N. Kay, et al. 2019. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50 (3): 723-737 e727.PubMedPubMedCentralCrossRef
4.
go back to reference Wang, Z., A. L. Koenig, K. J. Lavine, and R. S. Apte. 2019. Macrophage plasticity and function in the eye and heart. Trends in Immunology 40 (9): 825–841.PubMedPubMedCentralCrossRef Wang, Z., A. L. Koenig, K. J. Lavine, and R. S. Apte. 2019. Macrophage plasticity and function in the eye and heart. Trends in Immunology 40 (9): 825–841.PubMedPubMedCentralCrossRef
5.
go back to reference Zhao, L., M. K. Zabel, X. Wang, W. Ma, P. Shah, R. N. Fariss, H. Qian, C. N. Parkhurst, W. B. Gan, and W. T. Wong. 2015. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Molecular Medicine 7 (9): 1179–1197.PubMedPubMedCentralCrossRef Zhao, L., M. K. Zabel, X. Wang, W. Ma, P. Shah, R. N. Fariss, H. Qian, C. N. Parkhurst, W. B. Gan, and W. T. Wong. 2015. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Molecular Medicine 7 (9): 1179–1197.PubMedPubMedCentralCrossRef
6.
go back to reference Scholz, R., M. Sobotka, A. Caramoy, T. Stempfl, C. Moehle, and T. Langmann. 2015. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. Journal of Neuroinflammation 12:209.PubMedPubMedCentralCrossRef Scholz, R., M. Sobotka, A. Caramoy, T. Stempfl, C. Moehle, and T. Langmann. 2015. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. Journal of Neuroinflammation 12:209.PubMedPubMedCentralCrossRef
7.
go back to reference Fernando, N., R. Natoli, K. Valter, J. Provis, and M. Rutar. 2016. The broad-spectrum chemokine inhibitor NR58–3.14.3 modulates macrophage-mediated inflammation in the diseased retina. Journal of Neuroinflammation 13:47.PubMedPubMedCentralCrossRef Fernando, N., R. Natoli, K. Valter, J. Provis, and M. Rutar. 2016. The broad-spectrum chemokine inhibitor NR58–3.14.3 modulates macrophage-mediated inflammation in the diseased retina. Journal of Neuroinflammation 13:47.PubMedPubMedCentralCrossRef
8.
go back to reference Scholz, R., A. Caramoy, M. B. Bhuckory, K. Rashid, M. Chen, H. Xu, C. Grimm, and T. Langmann. 2015. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. Journal of Neuroinflammation 12:201.PubMedPubMedCentralCrossRef Scholz, R., A. Caramoy, M. B. Bhuckory, K. Rashid, M. Chen, H. Xu, C. Grimm, and T. Langmann. 2015. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. Journal of Neuroinflammation 12:201.PubMedPubMedCentralCrossRef
9.
go back to reference Okunuki, Y., R. Mukai, E. A. Pearsall, G. Klokman, D. Husain, D. H. Park, E. Korobkina, H. L. Weiner, O. Butovsky, B. R. Ksander, et al. 2018. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proceedings of the National Academy of Sciences of the United States of America 115 (27): E6264–E6273.PubMedPubMedCentral Okunuki, Y., R. Mukai, E. A. Pearsall, G. Klokman, D. Husain, D. H. Park, E. Korobkina, H. L. Weiner, O. Butovsky, B. R. Ksander, et al. 2018. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proceedings of the National Academy of Sciences of the United States of America 115 (27): E6264–E6273.PubMedPubMedCentral
12.
go back to reference Xu, J., Z. Chen, F. Yu, H. Liu, C. Ma, D. Xie, X. Hu, R. K. Leak, S. H. Y. Chou, R. A. Stetler, et al. 2020. IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proceedings of the National Academy of Sciences of the United States of America 117 (51): 32679–32690.PubMedPubMedCentralCrossRef Xu, J., Z. Chen, F. Yu, H. Liu, C. Ma, D. Xie, X. Hu, R. K. Leak, S. H. Y. Chou, R. A. Stetler, et al. 2020. IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proceedings of the National Academy of Sciences of the United States of America 117 (51): 32679–32690.PubMedPubMedCentralCrossRef
13.
go back to reference Gray, M. J., M. Poljakovic, D. Kepka-Lenhart, and S. M. Morris Jr. 2005. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene 353 (1): 98–106.PubMedCrossRef Gray, M. J., M. Poljakovic, D. Kepka-Lenhart, and S. M. Morris Jr. 2005. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene 353 (1): 98–106.PubMedCrossRef
14.
go back to reference Yang, Z., and X. F. Ming. 2014. Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Frontiers in Immunology 5:533.PubMedPubMedCentralCrossRef Yang, Z., and X. F. Ming. 2014. Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Frontiers in Immunology 5:533.PubMedPubMedCentralCrossRef
15.
go back to reference Cai, W., X. Dai, J. Chen, J. Zhao, M. Xu, L. Zhang, B. Yang, W. Zhang, M. Rocha, T. Nakao, et al. 2019. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4 (20): e131355.PubMedPubMedCentralCrossRef Cai, W., X. Dai, J. Chen, J. Zhao, M. Xu, L. Zhang, B. Yang, W. Zhang, M. Rocha, T. Nakao, et al. 2019. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4 (20): e131355.PubMedPubMedCentralCrossRef
16.
go back to reference Zhou, T., Z. Huang, X. Sun, X. Zhu, L. Zhou, M. Li, B. Cheng, X. Liu, and C. He. 2017. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Frontiers in Neuroanatomy 11:77.PubMedPubMedCentralCrossRef Zhou, T., Z. Huang, X. Sun, X. Zhu, L. Zhou, M. Li, B. Cheng, X. Liu, and C. He. 2017. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Frontiers in Neuroanatomy 11:77.PubMedPubMedCentralCrossRef
17.
go back to reference Chen, D., C. Peng, X. M. Ding, Y. Wu, C. J. Zeng, L. Xu, and W. Y. Guo. 2022. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury. Neural Regeneration Research 17 (12): 2755–2760.PubMedPubMedCentralCrossRef Chen, D., C. Peng, X. M. Ding, Y. Wu, C. J. Zeng, L. Xu, and W. Y. Guo. 2022. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury. Neural Regeneration Research 17 (12): 2755–2760.PubMedPubMedCentralCrossRef
18.
go back to reference Quax, R. A., L. Manenschijn, J. W. Koper, J. M. Hazes, S. W. Lamberts, E. F. van Rossum, and R. A. Feelders. 2013. Glucocorticoid sensitivity in health and disease. Nature Reviews. Endocrinology 9 (11): 670–686.PubMedCrossRef Quax, R. A., L. Manenschijn, J. W. Koper, J. M. Hazes, S. W. Lamberts, E. F. van Rossum, and R. A. Feelders. 2013. Glucocorticoid sensitivity in health and disease. Nature Reviews. Endocrinology 9 (11): 670–686.PubMedCrossRef
19.
go back to reference Escoter-Torres, L., G. Caratti, A. Mechtidou, J. Tuckermann, N. H. Uhlenhaut, and S. Vettorazzi. 1859. Fighting the fire: Mechanisms of inflammatory gene regulation by the glucocorticoid receptor. Frontiers in Immunology 2019:10. Escoter-Torres, L., G. Caratti, A. Mechtidou, J. Tuckermann, N. H. Uhlenhaut, and S. Vettorazzi. 1859. Fighting the fire: Mechanisms of inflammatory gene regulation by the glucocorticoid receptor. Frontiers in Immunology 2019:10.
20.
go back to reference Siebelt, M., N. Korthagen, W. Wei, H. Groen, Y. Bastiaansen-Jenniskens, C. Muller, J. H. Waarsing, M. de Jong, and H. Weinans. 2015. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo. Arthritis Research & Therapy 17:352.CrossRef Siebelt, M., N. Korthagen, W. Wei, H. Groen, Y. Bastiaansen-Jenniskens, C. Muller, J. H. Waarsing, M. de Jong, and H. Weinans. 2015. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo. Arthritis Research & Therapy 17:352.CrossRef
21.
go back to reference Barczyk, K., J. Ehrchen, K. Tenbrock, M. Ahlmann, J. Kneidl, D. Viemann, and J. Roth. 2010. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 116 (3): 446–455.PubMedCrossRef Barczyk, K., J. Ehrchen, K. Tenbrock, M. Ahlmann, J. Kneidl, D. Viemann, and J. Roth. 2010. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 116 (3): 446–455.PubMedCrossRef
22.
go back to reference Massin, P., F. Audren, B. Haouchine, A. Erginay, J. F. Bergmann, R. Benosman, C. Caulin, and A. Gaudric. 2004. Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: Preliminary results of a prospective controlled trial. Ophthalmology 111 (2): 218–224 (discussion 224-215).PubMedCrossRef Massin, P., F. Audren, B. Haouchine, A. Erginay, J. F. Bergmann, R. Benosman, C. Caulin, and A. Gaudric. 2004. Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: Preliminary results of a prospective controlled trial. Ophthalmology 111 (2): 218–224 (discussion 224-215).PubMedCrossRef
23.
go back to reference Chaudhary, V., A. Mao, P. L. Hooper, and T. G. Sheidow. 2007. Triamcinolone acetonide as adjunctive treatment to verteporfin in neovascular age-related macular degeneration: A prospective randomized trial. Ophthalmology 114 (12): 2183–2189.PubMedCrossRef Chaudhary, V., A. Mao, P. L. Hooper, and T. G. Sheidow. 2007. Triamcinolone acetonide as adjunctive treatment to verteporfin in neovascular age-related macular degeneration: A prospective randomized trial. Ophthalmology 114 (12): 2183–2189.PubMedCrossRef
24.
go back to reference Kok, H., C. Lau, N. Maycock, P. McCluskey, and S. Lightman. 2005. Outcome of intravitreal triamcinolone in uveitis. Ophthalmology 112 (11): 1916 e1911-1917.CrossRef Kok, H., C. Lau, N. Maycock, P. McCluskey, and S. Lightman. 2005. Outcome of intravitreal triamcinolone in uveitis. Ophthalmology 112 (11): 1916 e1911-1917.CrossRef
25.
go back to reference Karasu, B. 2020. Short-term outcomes of subtenon triamcinolone acetonide injections in patients with retinitis pigmentosa-associated cystoid macular edema unresponsive to carbonic anhydrase inhibitors. International Ophthalmology 40 (3): 677–687.PubMedCrossRef Karasu, B. 2020. Short-term outcomes of subtenon triamcinolone acetonide injections in patients with retinitis pigmentosa-associated cystoid macular edema unresponsive to carbonic anhydrase inhibitors. International Ophthalmology 40 (3): 677–687.PubMedCrossRef
26.
go back to reference Cho, H., S. P. Kambhampati, M. J. Lai, L. Zhou, G. Lee, Y. Xie, Q. Hui, R. M. Kannan, and E. J. Duh. 2021. Dendrimer-triamcinolone acetonide reduces neuroinflammation, pathological angiogenesis, and neuroretinal dysfunction in ischemic retinopathy. Advanced Therapeutics (Weinh) 4 (2): 2000181.CrossRef Cho, H., S. P. Kambhampati, M. J. Lai, L. Zhou, G. Lee, Y. Xie, Q. Hui, R. M. Kannan, and E. J. Duh. 2021. Dendrimer-triamcinolone acetonide reduces neuroinflammation, pathological angiogenesis, and neuroretinal dysfunction in ischemic retinopathy. Advanced Therapeutics (Weinh) 4 (2): 2000181.CrossRef
27.
go back to reference Storey, P. P., A. Obeid, M. Pancholy, J. Goodman, D. Borkar, D. Su, and C. Regillo. 2020. Ocular hypertension after intravitreal injection of 2-Mg triamcinolone. Retina 40 (1): 75–79.PubMedCrossRef Storey, P. P., A. Obeid, M. Pancholy, J. Goodman, D. Borkar, D. Su, and C. Regillo. 2020. Ocular hypertension after intravitreal injection of 2-Mg triamcinolone. Retina 40 (1): 75–79.PubMedCrossRef
28.
go back to reference Ehlers, J. P., S. Yeh, M. G. Maguire, J. R. Smith, P. Mruthyunjaya, N. Jain, L. A. Kim, C. Y. Weng, C. J. Flaxel, S. D. Schoenberger, et al. 2022. Intravitreal pharmacotherapies for diabetic macular edema: A report by the American Academy of Ophthalmology. Ophthalmology 129 (1): 88–99.PubMedCrossRef Ehlers, J. P., S. Yeh, M. G. Maguire, J. R. Smith, P. Mruthyunjaya, N. Jain, L. A. Kim, C. Y. Weng, C. J. Flaxel, S. D. Schoenberger, et al. 2022. Intravitreal pharmacotherapies for diabetic macular edema: A report by the American Academy of Ophthalmology. Ophthalmology 129 (1): 88–99.PubMedCrossRef
29.
go back to reference Wenzel, A., C. Grimm, M. Samardzija, and C. E. Reme. 2005. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Progress in Retinal and Eye Research 24 (2): 275–306.PubMedCrossRef Wenzel, A., C. Grimm, M. Samardzija, and C. E. Reme. 2005. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Progress in Retinal and Eye Research 24 (2): 275–306.PubMedCrossRef
30.
go back to reference Zhu, X., W. Liu, X. Tang, Y. Chen, X. Ge, Q. Ke, X. Liang, Y. Gan, Y. Zheng, M. Zou, et al. 2023. The BET PROTAC inhibitor dBET6 protects against retinal degeneration and inhibits the cGAS-STING in response to light damage. Journal of Neuroinflammation 20 (1): 119.PubMedPubMedCentralCrossRef Zhu, X., W. Liu, X. Tang, Y. Chen, X. Ge, Q. Ke, X. Liang, Y. Gan, Y. Zheng, M. Zou, et al. 2023. The BET PROTAC inhibitor dBET6 protects against retinal degeneration and inhibits the cGAS-STING in response to light damage. Journal of Neuroinflammation 20 (1): 119.PubMedPubMedCentralCrossRef
31.
go back to reference Wang, X., L. Zhao, Y. Zhang, W. Ma, S. R. Gonzalez, J. Fan, F. Kretschmer, T. C. Badea, H. H. Qian, and W. T. Wong. 2017. Tamoxifen provides structural and functional rescue in murine models of photoreceptor degeneration. Journal of Neuroscience 37 (12): 3294–3310.PubMedCrossRef Wang, X., L. Zhao, Y. Zhang, W. Ma, S. R. Gonzalez, J. Fan, F. Kretschmer, T. C. Badea, H. H. Qian, and W. T. Wong. 2017. Tamoxifen provides structural and functional rescue in murine models of photoreceptor degeneration. Journal of Neuroscience 37 (12): 3294–3310.PubMedCrossRef
32.
33.
go back to reference Morris, S. M., Jr., D. Kepka-Lenhart, and L. C. Chen. 1998. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. American Journal of Physiology 275 (5): E740-747.PubMed Morris, S. M., Jr., D. Kepka-Lenhart, and L. C. Chen. 1998. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. American Journal of Physiology 275 (5): E740-747.PubMed
34.
go back to reference Nelms, K., A. D. Keegan, J. Zamorano, J. J. Ryan, and W. E. Paul. 1999. The IL-4 receptor: Signaling mechanisms and biologic functions. Annual Review of Immunology 17:701–738.PubMedCrossRef Nelms, K., A. D. Keegan, J. Zamorano, J. J. Ryan, and W. E. Paul. 1999. The IL-4 receptor: Signaling mechanisms and biologic functions. Annual Review of Immunology 17:701–738.PubMedCrossRef
35.
go back to reference Ke, Q., L. Gong, X. Zhu, R. Qi, M. Zou, B. Chen, W. Liu, S. Huang, Y. Liu, and D. W. Li. 2022. Multinucleated retinal pigment epithelial cells adapt to vision and exhibit increased DNA damage response. Cells 11 (9): 1552.PubMedPubMedCentralCrossRef Ke, Q., L. Gong, X. Zhu, R. Qi, M. Zou, B. Chen, W. Liu, S. Huang, Y. Liu, and D. W. Li. 2022. Multinucleated retinal pigment epithelial cells adapt to vision and exhibit increased DNA damage response. Cells 11 (9): 1552.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Liao, Y., G. K. Smyth, and W. Shi. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 (7): 923–930.PubMedCrossRef Liao, Y., G. K. Smyth, and W. Shi. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 (7): 923–930.PubMedCrossRef
38.
go back to reference Love, M. I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 (12): 550.PubMedPubMedCentralCrossRef Love, M. I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 (12): 550.PubMedPubMedCentralCrossRef
39.
go back to reference Hao, Y., S. Hao, E. Andersen-Nissen, W. M. Mauck 3rd., S. Zheng, A. Butler, M. J. Lee, A. J. Wilk, C. Darby, M. Zager, et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184 (13): 3573-3587 e3529.PubMedPubMedCentralCrossRef Hao, Y., S. Hao, E. Andersen-Nissen, W. M. Mauck 3rd., S. Zheng, A. Butler, M. J. Lee, A. J. Wilk, C. Darby, M. Zager, et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184 (13): 3573-3587 e3529.PubMedPubMedCentralCrossRef
40.
go back to reference Zou, M., Q. Ke, Q. Nie, R. Qi, X. Zhu, W. Liu, X. Hu, Q. Sun, J. L. Fu, X. Tang, et al. 2022. Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration. Cell Death and Differentiation 29 (9): 1816–1833.PubMedPubMedCentralCrossRef Zou, M., Q. Ke, Q. Nie, R. Qi, X. Zhu, W. Liu, X. Hu, Q. Sun, J. L. Fu, X. Tang, et al. 2022. Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration. Cell Death and Differentiation 29 (9): 1816–1833.PubMedPubMedCentralCrossRef
41.
go back to reference Ryu, S., S. Sidorov, E. Ravussin, M. Artyomov, A. Iwasaki, A. Wang, and V. D. Dixit. 2022. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 55 (9): 1609-1626 e1607.PubMedCrossRef Ryu, S., S. Sidorov, E. Ravussin, M. Artyomov, A. Iwasaki, A. Wang, and V. D. Dixit. 2022. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 55 (9): 1609-1626 e1607.PubMedCrossRef
42.
go back to reference Tabel, M., A. Wolf, M. Szczepan, H. Xu, H. Jagle, C. Moehle, M. Chen, and T. Langmann. 2022. Genetic targeting or pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal degeneration. Journal of Neuroinflammation 19 (1): 229.PubMedPubMedCentralCrossRef Tabel, M., A. Wolf, M. Szczepan, H. Xu, H. Jagle, C. Moehle, M. Chen, and T. Langmann. 2022. Genetic targeting or pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal degeneration. Journal of Neuroinflammation 19 (1): 229.PubMedPubMedCentralCrossRef
43.
go back to reference Matsumoto, H., Y. Murakami, K. Kataoka, H. Lin, K. M. Connor, J. W. Miller, D. Zhou, J. Avruch, and D. G. Vavvas. 2014. Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death & Disease 5:e1269.CrossRef Matsumoto, H., Y. Murakami, K. Kataoka, H. Lin, K. M. Connor, J. W. Miller, D. Zhou, J. Avruch, and D. G. Vavvas. 2014. Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death & Disease 5:e1269.CrossRef
44.
go back to reference Li, H., L. Lian, B. Liu, Y. Chen, J. Yang, S. Jian, J. Zhou, Y. Xu, X. Ma, J. Qu, et al. 2020. KIT ligand protects against both light-induced and genetic photoreceptor degeneration. Elife 9:e51698.PubMedPubMedCentralCrossRef Li, H., L. Lian, B. Liu, Y. Chen, J. Yang, S. Jian, J. Zhou, Y. Xu, X. Ma, J. Qu, et al. 2020. KIT ligand protects against both light-induced and genetic photoreceptor degeneration. Elife 9:e51698.PubMedPubMedCentralCrossRef
45.
go back to reference Hoang, T., J. Wang, P. Boyd, F. Wang, C. Santiago, L. Jiang, S. Yoo, M. Lahne, L. J. Todd, M. Jia, et al. 2020. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370 (6519): eabb8598.PubMedPubMedCentralCrossRef Hoang, T., J. Wang, P. Boyd, F. Wang, C. Santiago, L. Jiang, S. Yoo, M. Lahne, L. J. Todd, M. Jia, et al. 2020. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370 (6519): eabb8598.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang, X., Y. Lan, J. Xu, F. Quan, E. Zhao, C. Deng, T. Luo, L. Xu, G. Liao, M. Yan, et al. 2019. Cell marker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Research 47 (D1): D721–D728.PubMedCrossRef Zhang, X., Y. Lan, J. Xu, F. Quan, E. Zhao, C. Deng, T. Luo, L. Xu, G. Liao, M. Yan, et al. 2019. Cell marker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Research 47 (D1): D721–D728.PubMedCrossRef
47.
go back to reference Butovsky, O., M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J. Lanser, G. Gabriely, T. Koeglsperger, B. Dake, P. M. Wu, C. E. Doykan, et al. 2014. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nature Neuroscience 17 (1): 131–143.PubMedCrossRef Butovsky, O., M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J. Lanser, G. Gabriely, T. Koeglsperger, B. Dake, P. M. Wu, C. E. Doykan, et al. 2014. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nature Neuroscience 17 (1): 131–143.PubMedCrossRef
48.
go back to reference Keren-Shaul, H., A. Spinrad, A. Weiner, O. Matcovitch-Natan, R. Dvir-Szternfeld, T. K. Ulland, E. David, K. Baruch, D. Lara-Astaiso, B. Toth, et al. 2017. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169 (7): 1276-1290 e1217.PubMedCrossRef Keren-Shaul, H., A. Spinrad, A. Weiner, O. Matcovitch-Natan, R. Dvir-Szternfeld, T. K. Ulland, E. David, K. Baruch, D. Lara-Astaiso, B. Toth, et al. 2017. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169 (7): 1276-1290 e1217.PubMedCrossRef
49.
go back to reference Hu, X., P. Li, Y. Guo, H. Wang, R. K. Leak, S. Chen, Y. Gao, and J. Chen. 2012. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43 (11): 3063–3070.PubMedCrossRef Hu, X., P. Li, Y. Guo, H. Wang, R. K. Leak, S. Chen, Y. Gao, and J. Chen. 2012. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43 (11): 3063–3070.PubMedCrossRef
50.
go back to reference Gordon, W. C., D. M. Casey, W. J. Lukiw, and N. G. Bazan. 2002. DNA damage and repair in light-induced photoreceptor degeneration. Investigative Ophthalmology & Visual Science 43 (11): 3511–3521. Gordon, W. C., D. M. Casey, W. J. Lukiw, and N. G. Bazan. 2002. DNA damage and repair in light-induced photoreceptor degeneration. Investigative Ophthalmology & Visual Science 43 (11): 3511–3521.
51.
go back to reference Specht, S., M. Leffak, R. M. Darrow, and D. T. Organisciak. 1999. Damage to rat retinal DNA induced in vivo by visible light. Photochemistry and Photobiology 69 (1): 91–98.PubMedCrossRef Specht, S., M. Leffak, R. M. Darrow, and D. T. Organisciak. 1999. Damage to rat retinal DNA induced in vivo by visible light. Photochemistry and Photobiology 69 (1): 91–98.PubMedCrossRef
52.
go back to reference Okunuki, Y., R. Mukai, T. Nakao, S. J. Tabor, O. Butovsky, R. Dana, B. R. Ksander, and K. M. Connor. 2019. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proceedings of the National Academy of Sciences of the United States of America 116 (20): 9989–9998.PubMedPubMedCentralCrossRef Okunuki, Y., R. Mukai, T. Nakao, S. J. Tabor, O. Butovsky, R. Dana, B. R. Ksander, and K. M. Connor. 2019. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proceedings of the National Academy of Sciences of the United States of America 116 (20): 9989–9998.PubMedPubMedCentralCrossRef
53.
go back to reference Bakthavatchalam, M., F. H. P. Lai, S. S. Rong, D. S. Ng, and M. E. Brelen. 2018. Treatment of cystoid macular edema secondary to retinitis pigmentosa: A systematic review. Survey of Ophthalmology 63 (3): 329–339.PubMedCrossRef Bakthavatchalam, M., F. H. P. Lai, S. S. Rong, D. S. Ng, and M. E. Brelen. 2018. Treatment of cystoid macular edema secondary to retinitis pigmentosa: A systematic review. Survey of Ophthalmology 63 (3): 329–339.PubMedCrossRef
54.
go back to reference Usui-Ouchi, A., Y. Usui, T. Kurihara, E. Aguilar, M. I. Dorrell, Y. Ideguchi, S. Sakimoto, S. Bravo, and M. Friedlander. 2020. Retinal microglia are critical for subretinal neovascular formation. JCI Insight 5 (12): e137317.PubMedPubMedCentralCrossRef Usui-Ouchi, A., Y. Usui, T. Kurihara, E. Aguilar, M. I. Dorrell, Y. Ideguchi, S. Sakimoto, S. Bravo, and M. Friedlander. 2020. Retinal microglia are critical for subretinal neovascular formation. JCI Insight 5 (12): e137317.PubMedPubMedCentralCrossRef
55.
go back to reference Ueki, Y., J. Wang, S. Chollangi, and J. D. Ash. 2008. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. Journal of Neurochemistry 105 (3): 784–796.PubMedCrossRef Ueki, Y., J. Wang, S. Chollangi, and J. D. Ash. 2008. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. Journal of Neurochemistry 105 (3): 784–796.PubMedCrossRef
56.
go back to reference Cherry, J. D., J. A. Olschowka, and M. K. O’Banion. 2014. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. Journal of Neuroinflammation 11:98.PubMedPubMedCentralCrossRef Cherry, J. D., J. A. Olschowka, and M. K. O’Banion. 2014. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. Journal of Neuroinflammation 11:98.PubMedPubMedCentralCrossRef
57.
go back to reference Osorio, E. Y., B. L. Travi, A. M. da Cruz, O. A. Saldarriaga, A. A. Medina, and P. C. Melby. 2014. Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis. PLoS Pathogens 10 (6): e1004165.PubMedPubMedCentralCrossRef Osorio, E. Y., B. L. Travi, A. M. da Cruz, O. A. Saldarriaga, A. A. Medina, and P. C. Melby. 2014. Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis. PLoS Pathogens 10 (6): e1004165.PubMedPubMedCentralCrossRef
59.
go back to reference Zhou, Y., S. Yoshida, S. Nakao, T. Yoshimura, Y. Kobayashi, T. Nakama, Y. Kubo, K. Miyawaki, M. Yamaguchi, K. Ishikawa, et al. 2015. M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science 56 (8): 4767–4777.CrossRef Zhou, Y., S. Yoshida, S. Nakao, T. Yoshimura, Y. Kobayashi, T. Nakama, Y. Kubo, K. Miyawaki, M. Yamaguchi, K. Ishikawa, et al. 2015. M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science 56 (8): 4767–4777.CrossRef
60.
go back to reference Zandi, S., S. Nakao, K. H. Chun, P. Fiorina, D. Sun, R. Arita, M. Zhao, E. Kim, O. Schueller, S. Campbell, et al. 2015. ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Reports 10 (7): 1173–1186.PubMedCrossRef Zandi, S., S. Nakao, K. H. Chun, P. Fiorina, D. Sun, R. Arita, M. Zhao, E. Kim, O. Schueller, S. Campbell, et al. 2015. ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Reports 10 (7): 1173–1186.PubMedCrossRef
61.
go back to reference Sasaki, F., T. Koga, M. Ohba, K. Saeki, T. Okuno, K. Ishikawa, T. Nakama, S. Nakao, S. Yoshida, T. Ishibashi, et al. 2018. Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight 3 (18): e96902.PubMedPubMedCentralCrossRef Sasaki, F., T. Koga, M. Ohba, K. Saeki, T. Okuno, K. Ishikawa, T. Nakama, S. Nakao, S. Yoshida, T. Ishibashi, et al. 2018. Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight 3 (18): e96902.PubMedPubMedCentralCrossRef
62.
go back to reference Ghoraba, H. H., M. Leila, S. M. Elgouhary, E. E. M. Elgemai, H. M. Abdelfattah, H. H. Ghoraba, and M. A. Heikal. 2018. Safety of high-dose intravitreal triamcinolone acetonide as low-cost alternative to anti-vascular endothelial growth factor agents in lower-middle-income countries. Clinical Ophthalmology 12:2383–2391.PubMedPubMedCentralCrossRef Ghoraba, H. H., M. Leila, S. M. Elgouhary, E. E. M. Elgemai, H. M. Abdelfattah, H. H. Ghoraba, and M. A. Heikal. 2018. Safety of high-dose intravitreal triamcinolone acetonide as low-cost alternative to anti-vascular endothelial growth factor agents in lower-middle-income countries. Clinical Ophthalmology 12:2383–2391.PubMedPubMedCentralCrossRef
63.
go back to reference Campagno, K. E., W. Lu, A. H. Jassim, F. Albalawi, A. Cenaj, H. Y. Tso, S. P. Clark, P. Sripinun, N. M. Gomez, and C. H. Mitchell. 2021. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. Journal of Neuroinflammation 18 (1): 217.PubMedPubMedCentralCrossRef Campagno, K. E., W. Lu, A. H. Jassim, F. Albalawi, A. Cenaj, H. Y. Tso, S. P. Clark, P. Sripinun, N. M. Gomez, and C. H. Mitchell. 2021. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. Journal of Neuroinflammation 18 (1): 217.PubMedPubMedCentralCrossRef
64.
go back to reference Li, Q., Y. Wang, L. Shi, Q. Wang, G. Yang, L. Deng, Y. Tian, X. Hua, and X. Yuan. 2023. Arginase-1 promotes lens epithelial-to-mesenchymal transition in different models of anterior subcapsular cataract. Cell Communication and Signaling: CCS 21 (1): 236.PubMedPubMedCentralCrossRef Li, Q., Y. Wang, L. Shi, Q. Wang, G. Yang, L. Deng, Y. Tian, X. Hua, and X. Yuan. 2023. Arginase-1 promotes lens epithelial-to-mesenchymal transition in different models of anterior subcapsular cataract. Cell Communication and Signaling: CCS 21 (1): 236.PubMedPubMedCentralCrossRef
Metadata
Title
Triamcinolone Acetonide Protects Against Light-Induced Retinal Degeneration by Activating Anti-Inflammatory STAT6/Arg1 Signaling in Microglia
Authors
Xiangcheng Tang
Wei Liu
Jia Liang
Xingfei Zhu
Xiangyu Ge
Dong Fang
Lirong Ling
Fanglan Yuan
Kun Zeng
Qingshan Chen
Guoming Zhang
Lili Gong
Shaochong Zhang
Publication date
28-09-2024
Publisher
Springer US
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02152-w

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more