Skip to main content
Top

Open Access 25-09-2024 | Transposition of the Great Artery | Original Article

Hemodynamic Analysis in Aortic Dilatation after Arterial Switch Operation for Patients with Transposition of Great Arteries Using Computational Fluid Dynamics

Authors: Woo Young Park, Sang Yun Lee, Jongmin Seo

Published in: Journal of Cardiovascular Translational Research

Login to get access

Abstract

After an arterial switch operation for complete transposition of the great arteries, neo-aortic root dilatation occurs, with unclear hemodynamic effects. This study analyzes three groups (severe dilation, mild dilation, and normal) using computational fluid dynamics (CFD) on cardiac CT scans. Aortic arch angles in severe (median 72.3, range: 68.5–77.2) and mild dilation (76.6, 71.1–85.2) groups are significantly smaller than the normal group (97.3, 87.4–99.0). In the normal and mild dilatation groups, Wall Shear Stress (WSS) exhibits a consistent pattern: it is lowest at the aortic root, gradually increases until just before the bend in the aortic arch, peaks, and then subsequently decreases. However, severe dilation shows disrupted WSS patterns, notably lower in the distal ascending aorta, attributed to local recirculation. This unique WSS pattern observed in severely dilated patients, especially in the transverse aorta. CFD plays an essential role in comprehensively studying the pathophysiology underlying aortic dilation in this population.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Centers for Disease Control and Prevention (CDC). Improved national prevalence estimates for 18 selected major birth defects--United States, 1999–2001. MMWR Morb Mortal Wkly Rep. 2006;54(51):1301–5. Centers for Disease Control and Prevention (CDC). Improved national prevalence estimates for 18 selected major birth defects--United States, 1999–2001. MMWR Morb Mortal Wkly Rep. 2006;54(51):1301–5.
3.
go back to reference Fricke TA, Buratto E, Weintraub RG, et al. Long-term outcomes of the arterial switch operation. J Thorac Cardiovasc Surg. 2022;163(1):212–9.CrossRefPubMed Fricke TA, Buratto E, Weintraub RG, et al. Long-term outcomes of the arterial switch operation. J Thorac Cardiovasc Surg. 2022;163(1):212–9.CrossRefPubMed
4.
go back to reference van der Palen RL, Deurvorst QS, Kroft LJ, et al. Altered ascending aorta hemodynamics in patients after arterial switch operation for transposition of the great arteries. J Magn Reson Imaging. 2020;51(4):1105–16.CrossRefPubMed van der Palen RL, Deurvorst QS, Kroft LJ, et al. Altered ascending aorta hemodynamics in patients after arterial switch operation for transposition of the great arteries. J Magn Reson Imaging. 2020;51(4):1105–16.CrossRefPubMed
5.
go back to reference van der Palen RL, van der Bom T, Dekker A, et al. Progression of aortic root dilatation and aortic valve regurgitation after the arterial switch operation. Heart. 2019;105(22):1732–40.CrossRefPubMed van der Palen RL, van der Bom T, Dekker A, et al. Progression of aortic root dilatation and aortic valve regurgitation after the arterial switch operation. Heart. 2019;105(22):1732–40.CrossRefPubMed
6.
7.
go back to reference McMahon C, Ravekes W, O’Brian Smith E, et al. Risk factors for neo-aortic root enlargement and aortic regurgitation following arterial switch operation. Pediatr Cardiol. 2004;25:329–35.CrossRefPubMed McMahon C, Ravekes W, O’Brian Smith E, et al. Risk factors for neo-aortic root enlargement and aortic regurgitation following arterial switch operation. Pediatr Cardiol. 2004;25:329–35.CrossRefPubMed
8.
go back to reference Losay J, Touchot A, Capderou A, et al. Aortic valve regurgitation after arterial switch operation for transposition of the great arteries: incidence, risk factors, and outcome. J Am Coll Cardiol. 2006;47(10):2057–62.CrossRefPubMed Losay J, Touchot A, Capderou A, et al. Aortic valve regurgitation after arterial switch operation for transposition of the great arteries: incidence, risk factors, and outcome. J Am Coll Cardiol. 2006;47(10):2057–62.CrossRefPubMed
9.
go back to reference Bobylev D, Breymann T, Boethig D, Ono M. Aortic root replacement in a patient with bicuspid pulmonary valve late after arterial switch operation. Thorac Cardiovasc Surg. 2012;61(4):316–9.CrossRefPubMed Bobylev D, Breymann T, Boethig D, Ono M. Aortic root replacement in a patient with bicuspid pulmonary valve late after arterial switch operation. Thorac Cardiovasc Surg. 2012;61(4):316–9.CrossRefPubMed
10.
go back to reference Schwartz ML, Gauvreau K, del Nido P, Mayer JE, Colan SD. Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation. 2004;110(11_suppl_1):II-128-II-32. Schwartz ML, Gauvreau K, del Nido P, Mayer JE, Colan SD. Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation. 2004;110(11_suppl_1):II-128-II-32.
11.
go back to reference Hutter PA, Thomeer BJ, Jansen P, et al. Fate of the aortic root after arterial switch operation. Eur J Cardiothorac Surg. 2001;20(1):82–8.CrossRefPubMed Hutter PA, Thomeer BJ, Jansen P, et al. Fate of the aortic root after arterial switch operation. Eur J Cardiothorac Surg. 2001;20(1):82–8.CrossRefPubMed
12.
go back to reference Bové T, De Meulder F, Vandenplas G, et al. Midterm assessment of the reconstructed arteries after the arterial switch operation. Ann Thorac Surg. 2008;85(3):823–30.CrossRefPubMed Bové T, De Meulder F, Vandenplas G, et al. Midterm assessment of the reconstructed arteries after the arterial switch operation. Ann Thorac Surg. 2008;85(3):823–30.CrossRefPubMed
13.
go back to reference Raman RK, Dewang Y, Raghuwanshi J. A review on applications of computational fluid dynamics. Int J LNCT. 2018;2(6):137–43. Raman RK, Dewang Y, Raghuwanshi J. A review on applications of computational fluid dynamics. Int J LNCT. 2018;2(6):137–43.
14.
go back to reference Dwidmuthe P, Mathpati C, Joshi J, editors. CFD simulation of blood flow inside the human artery: aorta. Proceedings of the 7th International and 45th National Conference on Fluid Mechanics and Fluid Power (FMFP), Mumbai, India; 2018. Dwidmuthe P, Mathpati C, Joshi J, editors. CFD simulation of blood flow inside the human artery: aorta. Proceedings of the 7th International and 45th National Conference on Fluid Mechanics and Fluid Power (FMFP), Mumbai, India; 2018.
15.
go back to reference Petuchova A, Maknickas A. Computational analysis of aortic haemodynamics in the presence of ascending aortic aneurysm. Technol Health Care. 2022;30(1):187–200.CrossRefPubMed Petuchova A, Maknickas A. Computational analysis of aortic haemodynamics in the presence of ascending aortic aneurysm. Technol Health Care. 2022;30(1):187–200.CrossRefPubMed
16.
go back to reference Biglino G, Cosentino D, Steeden JA, et al. Using 4D cardiovascular magnetic resonance imaging to validate computational fluid dynamics: a case study. Front Pediatr. 2015;3:107.CrossRefPubMedPubMedCentral Biglino G, Cosentino D, Steeden JA, et al. Using 4D cardiovascular magnetic resonance imaging to validate computational fluid dynamics: a case study. Front Pediatr. 2015;3:107.CrossRefPubMedPubMedCentral
17.
go back to reference Lopez L, Colan S, Stylianou M, et al. Relationship of echocardiographic Z scores adjusted for body surface area to age, sex, race, and ethnicity: the Pediatric Heart Network Normal Echocardiogram Database. Circ Cardiovasc Imaging. 2017;10(11): e006979.CrossRefPubMedPubMedCentral Lopez L, Colan S, Stylianou M, et al. Relationship of echocardiographic Z scores adjusted for body surface area to age, sex, race, and ethnicity: the Pediatric Heart Network Normal Echocardiogram Database. Circ Cardiovasc Imaging. 2017;10(11): e006979.CrossRefPubMedPubMedCentral
18.
go back to reference Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93(1):62–6.CrossRefPubMed Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93(1):62–6.CrossRefPubMed
19.
go back to reference Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng. 2017;45:525–41.CrossRefPubMed Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng. 2017;45:525–41.CrossRefPubMed
20.
go back to reference Hang S. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw. 2015;41(2):11. Hang S. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw. 2015;41(2):11.
21.
go back to reference Fahraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol-Leg Content. 1931;96(3):562–8.CrossRef Fahraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol-Leg Content. 1931;96(3):562–8.CrossRef
22.
go back to reference Arzani A. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? J R Soc Interface. 2018;15(146):20180486.CrossRefPubMedPubMedCentral Arzani A. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? J R Soc Interface. 2018;15(146):20180486.CrossRefPubMedPubMedCentral
23.
go back to reference Khan M, Valen-Sendstad K, Steinman D. Direct numerical simulation of laminar-turbulent transition in a non-axisymmetric stenosis model for Newtonian vs. shear-thinning non-Newtonian rheologies. Flow Turbulence Combust. 2019;102:43–72.CrossRef Khan M, Valen-Sendstad K, Steinman D. Direct numerical simulation of laminar-turbulent transition in a non-axisymmetric stenosis model for Newtonian vs. shear-thinning non-Newtonian rheologies. Flow Turbulence Combust. 2019;102:43–72.CrossRef
24.
go back to reference Hazinki MF. Cardiovascular disorders. Mannual of pediatric critical care. St. Louis: Mosby-Year Book; 1999. p. 112. Hazinki MF. Cardiovascular disorders. Mannual of pediatric critical care. St. Louis: Mosby-Year Book; 1999. p. 112.
25.
go back to reference Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 2006;195(29–32):3776–96.CrossRef Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 2006;195(29–32):3776–96.CrossRef
26.
go back to reference Zamir M, Sinclair P, Wonnacott TH. Relation between diameter and flow in major branches of the arch of the aorta. J Biomech. 1992;25(11):1303–10.CrossRefPubMed Zamir M, Sinclair P, Wonnacott TH. Relation between diameter and flow in major branches of the arch of the aorta. J Biomech. 1992;25(11):1303–10.CrossRefPubMed
27.
go back to reference Lan IS, Liu J, Yang W, Zimmermann J, Ennis DB, Marsden AL. Validation of the reduced unified continuum formulation against in vitro 4D-flow MRI. Ann Biomed Eng. 2023;51(2):377–93.CrossRefPubMed Lan IS, Liu J, Yang W, Zimmermann J, Ennis DB, Marsden AL. Validation of the reduced unified continuum formulation against in vitro 4D-flow MRI. Ann Biomed Eng. 2023;51(2):377–93.CrossRefPubMed
28.
go back to reference Kung EO, Les AS, Medina F, Wicker RB, McConnell MV, Taylor CA. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng. 2011;133(4): 041003.CrossRefPubMed Kung EO, Les AS, Medina F, Wicker RB, McConnell MV, Taylor CA. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng. 2011;133(4): 041003.CrossRefPubMed
29.
go back to reference Eslami P, Hartman EM, Albaghadai M, et al. Validation of wall shear stress assessment in non-invasive coronary CTA versus invasive imaging: a patient-specific computational study. Ann Biomed Eng. 2021;49:1151–68.CrossRefPubMed Eslami P, Hartman EM, Albaghadai M, et al. Validation of wall shear stress assessment in non-invasive coronary CTA versus invasive imaging: a patient-specific computational study. Ann Biomed Eng. 2021;49:1151–68.CrossRefPubMed
30.
go back to reference Arzani A, Les AS, Dalman RL, Shadden SC. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing. Int J Numer Method Biomed Eng. 2014;30(2):280–95.CrossRefPubMed Arzani A, Les AS, Dalman RL, Shadden SC. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing. Int J Numer Method Biomed Eng. 2014;30(2):280–95.CrossRefPubMed
31.
go back to reference Boccadifuoco A, Mariotti A, Capellini K, Celi S, Salvetti MV. Validation of numerical simulations of thoracic aorta hemodynamics: comparison with in vivo measurements and stochastic sensitivity analysis. Cardiovasc Eng Technol. 2018;9:688–706.CrossRefPubMed Boccadifuoco A, Mariotti A, Capellini K, Celi S, Salvetti MV. Validation of numerical simulations of thoracic aorta hemodynamics: comparison with in vivo measurements and stochastic sensitivity analysis. Cardiovasc Eng Technol. 2018;9:688–706.CrossRefPubMed
33.
go back to reference Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–93.CrossRefPubMed Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–93.CrossRefPubMed
34.
go back to reference Boussel L, Rayz V, McCulloch C, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39(11):2997–3002.CrossRefPubMedPubMedCentral Boussel L, Rayz V, McCulloch C, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39(11):2997–3002.CrossRefPubMedPubMedCentral
35.
go back to reference Bürk J, Blanke P, Stankovic Z, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson. 2012;14(1):1–11.CrossRef Bürk J, Blanke P, Stankovic Z, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson. 2012;14(1):1–11.CrossRef
36.
go back to reference Agnoletti G, Ou P, Celermajer DS, et al. Acute angulation of the aortic arch predisposes a patient to ascending aortic dilatation and aortic regurgitation late after the arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg. 2008;135(3):568–72.CrossRefPubMed Agnoletti G, Ou P, Celermajer DS, et al. Acute angulation of the aortic arch predisposes a patient to ascending aortic dilatation and aortic regurgitation late after the arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg. 2008;135(3):568–72.CrossRefPubMed
37.
go back to reference van der Palen RL, Juffermans JF, Kroft LJ, et al. Wall shear stress in the thoracic aorta at rest and with dobutamine stress after arterial switch operation. Eur J Cardiothorac Surg. 2021;59(4):814–22.CrossRefPubMed van der Palen RL, Juffermans JF, Kroft LJ, et al. Wall shear stress in the thoracic aorta at rest and with dobutamine stress after arterial switch operation. Eur J Cardiothorac Surg. 2021;59(4):814–22.CrossRefPubMed
38.
go back to reference Guzzardi DG, Barker AJ, Van Ooij P, et al. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol. 2015;66(8):892–900.CrossRefPubMedPubMedCentral Guzzardi DG, Barker AJ, Van Ooij P, et al. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol. 2015;66(8):892–900.CrossRefPubMedPubMedCentral
39.
go back to reference Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. Taylor & Francis Group; 2011. p. 22. Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. Taylor & Francis Group; 2011. p. 22.
Metadata
Title
Hemodynamic Analysis in Aortic Dilatation after Arterial Switch Operation for Patients with Transposition of Great Arteries Using Computational Fluid Dynamics
Authors
Woo Young Park
Sang Yun Lee
Jongmin Seo
Publication date
25-09-2024
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-024-10562-2

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now