Skip to main content
Top

25-09-2024 | Transesophageal Echocardiography | Original Paper

Radiomics prediction models of left atrial appendage hypercoagulability based on machine learning algorithms: an exploration about cardiac computed tomography angiography imaging

Authors: Hongsen Wang, Lan Ge, Hang Zhou, Xu Lu, Zhe Yu, Peng Peng, Xinyan Wang, Ao Liu, Tao Chen, Jun Guo, Yundai Chen

Published in: The International Journal of Cardiovascular Imaging

Login to get access

Abstract

Transesophageal echocardiography (TEE) is the standard method for diagnosing left atrial appendage (LAA) hypercoagulability in patients with atrial fibrillation (AF), which means LAA thrombus/sludge, dense spontaneous echo contrast and slow LAA blood flow velocity (< 0.25 m/s). Based on machine learning algorithms, cardiac computed tomography angiography (CCTA) radiomics features were adopted to construct prediction models and explore a suitable approach for diagnosing LAA hypercoagulability and adjusting anticoagulation. This study included 652 patients with non-valvular AF. The univariate analysis were used to select meaningful clinical characteristics to predict LAA hypercoagulability. Then 3D Slicer software was adopted to extract radiomics features from CCTA imaging. The radiomics score was calculated using the least absolute shrinkage and selection operator logistic regression analysis to predict LAA hypercoagulability. We then combined clinical characteristics and radiomics scores to construct a nomogram model. Finally, we got prediction models based on machine learning algorithms and logistic regression separately. The area under the receiver operating characteristic curve of radiomics score was 0.8449 in the training set and 0.7998 in the validation set. The nomogram model had a concordance index of 0.838. The final machine-learning based prediction models had good performances (best f1 score = 0.85). Radiomics features of long maximum diameter and high uniformity of Hounsfield unit in left atrial were significant predictors of the hypercoagulable state in LAA, with better predictive efficacy than clinical characteristics. Our combined models based on machine learning were reliable for hypercoagulable state screening and anticoagulation adjustment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Krijthe BP, Kunst A, Benjamin EJ et al (2013) Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060[J]. Eur Heart J 34(35):2746–2751CrossRefPubMedPubMedCentral Krijthe BP, Kunst A, Benjamin EJ et al (2013) Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060[J]. Eur Heart J 34(35):2746–2751CrossRefPubMedPubMedCentral
2.
go back to reference Heeringa J, van der Kuip DA, Hofman A et al (2006) Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study[J]. Eur Heart J 27(8):949–953CrossRefPubMed Heeringa J, van der Kuip DA, Hofman A et al (2006) Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study[J]. Eur Heart J 27(8):949–953CrossRefPubMed
3.
go back to reference Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC[J]. Eur Heart J 42(5):373–498CrossRefPubMed Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC[J]. Eur Heart J 42(5):373–498CrossRefPubMed
4.
go back to reference Watson T, Shantsila E, Lip GY (2009) Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited[J]. Lancet 373(9658):155–166CrossRefPubMed Watson T, Shantsila E, Lip GY (2009) Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited[J]. Lancet 373(9658):155–166CrossRefPubMed
5.
go back to reference Einstein AJ, Shaw LJ, Hirschfeld C et al (2021) International Impact of COVID-19 on the diagnosis of Heart Disease[J]. J Am Coll Cardiol 77(2):173–185CrossRefPubMedPubMedCentral Einstein AJ, Shaw LJ, Hirschfeld C et al (2021) International Impact of COVID-19 on the diagnosis of Heart Disease[J]. J Am Coll Cardiol 77(2):173–185CrossRefPubMedPubMedCentral
6.
go back to reference Nagahara D, Kamiyama N, Fujito T et al (2020) A novel scoring system for stroke risk stratification in Japanese patients with low CHADS2 scores: study using a transesophageal-echocardiogram endpoint[J]. J Arrhythm 36(4):624–631CrossRefPubMedPubMedCentral Nagahara D, Kamiyama N, Fujito T et al (2020) A novel scoring system for stroke risk stratification in Japanese patients with low CHADS2 scores: study using a transesophageal-echocardiogram endpoint[J]. J Arrhythm 36(4):624–631CrossRefPubMedPubMedCentral
7.
go back to reference Calkins H, Hindricks G, Cappato R et al (2018) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation[J]. Europace 20(1):e1–e160CrossRefPubMed Calkins H, Hindricks G, Cappato R et al (2018) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation[J]. Europace 20(1):e1–e160CrossRefPubMed
8.
go back to reference Jongbloed MR, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation–initial experience[J]. Radiology 234(3):702–709CrossRefPubMed Jongbloed MR, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation–initial experience[J]. Radiology 234(3):702–709CrossRefPubMed
9.
go back to reference Spagnolo P, Giglio M, Di Marco D et al (2021) Diagnosis of left atrial appendage thrombus in patients with atrial fibrillation: delayed contrast-enhanced cardiac CT[J]. Eur Radiol 31(3):1236–1244CrossRefPubMed Spagnolo P, Giglio M, Di Marco D et al (2021) Diagnosis of left atrial appendage thrombus in patients with atrial fibrillation: delayed contrast-enhanced cardiac CT[J]. Eur Radiol 31(3):1236–1244CrossRefPubMed
10.
go back to reference Li XN, Yin WH, Sun Y et al (2022) Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis[J]. Eur Radiol 32(6):4003–4013CrossRefPubMed Li XN, Yin WH, Sun Y et al (2022) Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis[J]. Eur Radiol 32(6):4003–4013CrossRefPubMed
11.
go back to reference Ebrahimian S, Digumarthy SR, Homayounieh F et al (2021) Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography[J]. Int J Cardiovasc Imaging 37(6):2071–2078CrossRefPubMedPubMedCentral Ebrahimian S, Digumarthy SR, Homayounieh F et al (2021) Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography[J]. Int J Cardiovasc Imaging 37(6):2071–2078CrossRefPubMedPubMedCentral
12.
go back to reference Currie G, Hawk KE, Rohren E et al (2019) Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging[J]. J Med Imaging Radiat Sci 50(4):477–487CrossRefPubMed Currie G, Hawk KE, Rohren E et al (2019) Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging[J]. J Med Imaging Radiat Sci 50(4):477–487CrossRefPubMed
13.
go back to reference Fatkin D, Kelly RP, Feneley MP (1994) Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo[J]. J Am Coll Cardiol 23(4):961–969CrossRefPubMed Fatkin D, Kelly RP, Feneley MP (1994) Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo[J]. J Am Coll Cardiol 23(4):961–969CrossRefPubMed
15.
go back to reference Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image Biomarker Standardization Initiative: standardized quantitative Radiomics for High-Throughput Image-based Phenotyping[J]. Radiology 295(2):328–338CrossRefPubMed Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image Biomarker Standardization Initiative: standardized quantitative Radiomics for High-Throughput Image-based Phenotyping[J]. Radiology 295(2):328–338CrossRefPubMed
16.
go back to reference Demircioğlu Aydin (2022) Benchmarking feature selection methods in Radiomics[J]. Invest Radiol 57(7):433–443CrossRefPubMed Demircioğlu Aydin (2022) Benchmarking feature selection methods in Radiomics[J]. Invest Radiol 57(7):433–443CrossRefPubMed
17.
go back to reference Harrell FE Jr., Califf RM, Pryor DB et al (1982) Evaluating the yield of medical tests[J]. JAMA 247(18):2543–2546CrossRefPubMed Harrell FE Jr., Califf RM, Pryor DB et al (1982) Evaluating the yield of medical tests[J]. JAMA 247(18):2543–2546CrossRefPubMed
18.
go back to reference Pepe MS, Feng Z, Huang Y et al (2008) Integrating the predictiveness of a marker with its performance as a classifier[J]. Am J Epidemiol 167(3):362–368CrossRefPubMed Pepe MS, Feng Z, Huang Y et al (2008) Integrating the predictiveness of a marker with its performance as a classifier[J]. Am J Epidemiol 167(3):362–368CrossRefPubMed
19.
go back to reference Mahesh TR, Dhilip Kumar V, Vinoth Kumar V et al (2022) AdaBoost Ensemble methods using K-Fold Cross Validation for Survivability with the early detection of Heart Disease[J]. Comput Intell Neurosci 2022:9005278CrossRefPubMedPubMedCentral Mahesh TR, Dhilip Kumar V, Vinoth Kumar V et al (2022) AdaBoost Ensemble methods using K-Fold Cross Validation for Survivability with the early detection of Heart Disease[J]. Comput Intell Neurosci 2022:9005278CrossRefPubMedPubMedCentral
20.
go back to reference Sraitih M, Jabrane Y, El Hassani H (2022) A. A robustness evaluation of machine learning algorithms for ECG myocardial infarction Detection[J]. J Clin Med, 11(17) Sraitih M, Jabrane Y, El Hassani H (2022) A. A robustness evaluation of machine learning algorithms for ECG myocardial infarction Detection[J]. J Clin Med, 11(17)
21.
go back to reference Kucheryavskiy Sergey R, Oxana P, Alexey (2023) Procrustes cross-validation of multivariate regression models[J]. Anal Chim Acta, 1255: 341096 Kucheryavskiy Sergey R, Oxana P, Alexey (2023) Procrustes cross-validation of multivariate regression models[J]. Anal Chim Acta, 1255: 341096
22.
go back to reference Teran F, Burns KM, Narasimhan M et al (2020) Critical care Transesophageal Echocardiography in patients during the COVID-19 Pandemic[J]. J Am Soc Echocardiogr 33(8):1040–1047CrossRefPubMedPubMedCentral Teran F, Burns KM, Narasimhan M et al (2020) Critical care Transesophageal Echocardiography in patients during the COVID-19 Pandemic[J]. J Am Soc Echocardiogr 33(8):1040–1047CrossRefPubMedPubMedCentral
23.
go back to reference Akhtar T, Wallace R, Daimee UA et al (2021) Transition from transesophageal echocardiography to cardiac computed tomography for the evaluation of left atrial appendage thrombus prior to atrial fibrillation ablation and incidence of cerebrovascular events during the COVID-19 pandemic[J]. J Cardiovasc Electrophysiol 32(12):3125–3134CrossRefPubMed Akhtar T, Wallace R, Daimee UA et al (2021) Transition from transesophageal echocardiography to cardiac computed tomography for the evaluation of left atrial appendage thrombus prior to atrial fibrillation ablation and incidence of cerebrovascular events during the COVID-19 pandemic[J]. J Cardiovasc Electrophysiol 32(12):3125–3134CrossRefPubMed
24.
go back to reference Soulat-Dufour L, Lang S, Etienney A et al (2020) Correlation between left atrial spontaneous echocardiographic contrast and 5-year stroke/death in patients with non-valvular atrial fibrillation[J]. Arch Cardiovasc Dis 113(8–9):525–533CrossRefPubMed Soulat-Dufour L, Lang S, Etienney A et al (2020) Correlation between left atrial spontaneous echocardiographic contrast and 5-year stroke/death in patients with non-valvular atrial fibrillation[J]. Arch Cardiovasc Dis 113(8–9):525–533CrossRefPubMed
25.
go back to reference Tanaka M, Yasuoka R, Nagano T et al (2021) A novel method to demonstrate thrombus formation of the left atrial appendage in patients with persistent atrial fibrillation by cardiac computed tomography[J]. Int J Cardiol Heart Vasc 36:100866PubMedPubMedCentral Tanaka M, Yasuoka R, Nagano T et al (2021) A novel method to demonstrate thrombus formation of the left atrial appendage in patients with persistent atrial fibrillation by cardiac computed tomography[J]. Int J Cardiol Heart Vasc 36:100866PubMedPubMedCentral
26.
go back to reference Guha A, Dunleavy MP, Hayes S et al (2020) Accuracy of contrast-enhanced computed tomography for thrombus detection prior to atrial fibrillation ablation and role of novel left atrial appendage Enhancement Index in appendage flow assessment[J]. Int J Cardiol 318:147–152CrossRefPubMed Guha A, Dunleavy MP, Hayes S et al (2020) Accuracy of contrast-enhanced computed tomography for thrombus detection prior to atrial fibrillation ablation and role of novel left atrial appendage Enhancement Index in appendage flow assessment[J]. Int J Cardiol 318:147–152CrossRefPubMed
27.
go back to reference Chen Qian P, Tao WY, Ning et al (2023) A coronary CT angiography Radiomics Model to identify vulnerable Plaque and Predict Cardiovascular Events[J]. Radiology, 307(2) Chen Qian P, Tao WY, Ning et al (2023) A coronary CT angiography Radiomics Model to identify vulnerable Plaque and Predict Cardiovascular Events[J]. Radiology, 307(2)
28.
go back to reference Kapłon-Cieślicka A, Budnik M, Gawałko M et al (2019) Atrial fibrillation type and renal dysfunction as important predictors of left atrial thrombus[J]. Heart 105(17):1310–1315CrossRefPubMed Kapłon-Cieślicka A, Budnik M, Gawałko M et al (2019) Atrial fibrillation type and renal dysfunction as important predictors of left atrial thrombus[J]. Heart 105(17):1310–1315CrossRefPubMed
29.
go back to reference Rapacciuolo A, Mancusi C, Canciello G et al (2019) CHA(2)DS(2)-VASc score and left atrial volume dilatation synergistically predict incident atrial fibrillation in hypertension: an observational study from the Campania Salute Network registry[J]. Sci Rep 9(1):7888CrossRefPubMedPubMedCentral Rapacciuolo A, Mancusi C, Canciello G et al (2019) CHA(2)DS(2)-VASc score and left atrial volume dilatation synergistically predict incident atrial fibrillation in hypertension: an observational study from the Campania Salute Network registry[J]. Sci Rep 9(1):7888CrossRefPubMedPubMedCentral
30.
go back to reference Zheng N, Zhang J (2022) External validation and comparison of CHA(2)DS(2)-VASc-RAF and CHA(2)DS(2)-VASc-LAF scores for predicting left atrial thrombus and spontaneous echo contrast in patients with non-valvular atrial fibrillation[J]. J Interv Card Electrophysiol 65(2):535–542CrossRefPubMed Zheng N, Zhang J (2022) External validation and comparison of CHA(2)DS(2)-VASc-RAF and CHA(2)DS(2)-VASc-LAF scores for predicting left atrial thrombus and spontaneous echo contrast in patients with non-valvular atrial fibrillation[J]. J Interv Card Electrophysiol 65(2):535–542CrossRefPubMed
31.
go back to reference Sun P, Guo ZH, Zhang HB (2020) CHA(2)DS(2)-VASc score as a predictor for left atrial Thrombus or spontaneous Echo contrast in patients with Nonvalvular Atrial Fibrillation: a Meta-Analysis[J]. Biomed Res Int, 2020:2679539. Sun P, Guo ZH, Zhang HB (2020) CHA(2)DS(2)-VASc score as a predictor for left atrial Thrombus or spontaneous Echo contrast in patients with Nonvalvular Atrial Fibrillation: a Meta-Analysis[J]. Biomed Res Int, 2020:2679539.
32.
go back to reference Chun SH, Suh YJ, Han K et al (2021) Differentiation of left atrial appendage thrombus from circulatory stasis using cardiac CT radiomics in patients with valvular heart disease[J]. Eur Radiol 31(2):1130–1139CrossRefPubMed Chun SH, Suh YJ, Han K et al (2021) Differentiation of left atrial appendage thrombus from circulatory stasis using cardiac CT radiomics in patients with valvular heart disease[J]. Eur Radiol 31(2):1130–1139CrossRefPubMed
33.
go back to reference Markl M, Lee DC, Furiasse N et al (2016) Left atrial and left atrial appendage 4D blood Flow Dynamics in Atrial Fibrillation[J]. Circ Cardiovasc Imaging 9(9):e004984CrossRefPubMedPubMedCentral Markl M, Lee DC, Furiasse N et al (2016) Left atrial and left atrial appendage 4D blood Flow Dynamics in Atrial Fibrillation[J]. Circ Cardiovasc Imaging 9(9):e004984CrossRefPubMedPubMedCentral
34.
go back to reference Spartera M, Stracquadanio A, Pessoa-Amorim G et al (2021) The impact of atrial fibrillation and stroke risk factors on left atrial blood flow characteristics[J]. Eur Heart J Cardiovasc Imaging 23(1):115–123CrossRefPubMedPubMedCentral Spartera M, Stracquadanio A, Pessoa-Amorim G et al (2021) The impact of atrial fibrillation and stroke risk factors on left atrial blood flow characteristics[J]. Eur Heart J Cardiovasc Imaging 23(1):115–123CrossRefPubMedPubMedCentral
35.
go back to reference Bieging ET, Morris A, Chang L et al (2021) Statistical shape analysis of the left atrial appendage predicts stroke in atrial fibrillation[J]. Int J Cardiovasc Imaging 37(8):2521–2527CrossRefPubMedPubMedCentral Bieging ET, Morris A, Chang L et al (2021) Statistical shape analysis of the left atrial appendage predicts stroke in atrial fibrillation[J]. Int J Cardiovasc Imaging 37(8):2521–2527CrossRefPubMedPubMedCentral
36.
go back to reference Baeßler Bettina E, Sandy H, Amar et al (2024) Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging[J]. Circ Cardiovasc Imaging, 17(6). Baeßler Bettina E, Sandy H, Amar et al (2024) Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging[J]. Circ Cardiovasc Imaging, 17(6).
Metadata
Title
Radiomics prediction models of left atrial appendage hypercoagulability based on machine learning algorithms: an exploration about cardiac computed tomography angiography imaging
Authors
Hongsen Wang
Lan Ge
Hang Zhou
Xu Lu
Zhe Yu
Peng Peng
Xinyan Wang
Ao Liu
Tao Chen
Jun Guo
Yundai Chen
Publication date
25-09-2024
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-024-03248-y

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now