Skip to main content
Top

16-05-2024 | Thyroid Cancer | Original Article

TFCP2L1, a potential differentiation regulator, predicts favorable prognosis and dampens thyroid cancer progression

Authors: C. Zeng, Y. Zhang, C. Lin, W. Liang, J. Chen, Y. Chen, H. Xiao, Y. Li, H. Guan

Published in: Journal of Endocrinological Investigation

Login to get access

Abstract

Purpose

Thyroid cancer has an overwhelming incidence in the population. Thus, there is an urgent need to understand the underlying mechanism of its occurrence and development, which may provide new insights into therapeutic strategies. The role and mechanism of TFCP2L1 in regulating the progression of thyroid cancer remains unclear.

Methods

Public databases and clinical samples were used to detect the expression of TFCP2L1 in cancer and non-cancer tissues. Kaplan–Meier and Cox regression analyses were used to compare the differences in survival probability of the TFCP2L1 highly expressing group and the TFCP2L1 lowly expressing group. Functional assays were used to evaluate the biological effect of TFCP2L1 on thyroid cancer cells. RNA sequencing and enrichment analyses were used to find out pathways that were activated or inactivated by TFCP2L1.

Results

We demonstrated that TFCP2L1 was significantly downregulated in thyroid cancer. Decreased expression of TFCP2L1 was associated with malignant clinicopathological characteristics. Kaplan–Meier and Cox regression analyses indicated that thyroid tumor patients with low TFCP2L1 expression presented shorter disease-free interval and progression-free interval. Additionally, TFCP2L1 expression was positively correlated with thyroid differentiation degree. Overexpression of TFCP2L1 in thyroid cancer cells inhibited cell growth and motility in vitro, and tumorigenicity and metastasis in vivo. Mechanistically, the NF-κB signaling pathway was found inactivated by overexpressing TFCP2L1.

Conclusion

Our results suggest that TFCP2L1 is a tumor suppressor and potential differentiation regulator, and might be a potential therapeutic target in thyroid cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249CrossRefPubMed
2.
go back to reference Yan T, Qiu W, Song J, Fan Y, Yang Z (2021) ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol 66(1):1–10PubMedCrossRef Yan T, Qiu W, Song J, Fan Y, Yang Z (2021) ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol 66(1):1–10PubMedCrossRef
3.
go back to reference Liu HQ, Chen Q, Liu BH, Wang JX, Chen C, Sun SR (2023) Blood profiles in the prediction of radioiodine refractory papillary thyroid cancer: a case- control study. J Multidiscip Healthc 16:535–546PubMedPubMedCentralCrossRef Liu HQ, Chen Q, Liu BH, Wang JX, Chen C, Sun SR (2023) Blood profiles in the prediction of radioiodine refractory papillary thyroid cancer: a case- control study. J Multidiscip Healthc 16:535–546PubMedPubMedCentralCrossRef
4.
go back to reference Zheng L M, Li L, He QQ, Wang M, Ma Y H, Zhu J et al (2021) Response to immunotherapy in a patient with anaplastic thyroid cancer A case report. Medicine 100(32). Zheng L M, Li L, He QQ, Wang M, Ma Y H, Zhu J et al (2021) Response to immunotherapy in a patient with anaplastic thyroid cancer A case report. Medicine 100(32).
5.
go back to reference Jana T, Brodsky S, Barkai N (2021) Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet 37(5):421–432PubMedCrossRef Jana T, Brodsky S, Barkai N (2021) Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet 37(5):421–432PubMedCrossRef
8.
go back to reference Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F et al (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29(11):2190–2202PubMedPubMedCentralCrossRef Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F et al (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29(11):2190–2202PubMedPubMedCentralCrossRef
9.
go back to reference Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T (2018) TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 420:72–79PubMedCrossRef Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T (2018) TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 420:72–79PubMedCrossRef
10.
go back to reference Qiu DB, Ye SD, Ruiz B, Zhou XL, Liu DH, Zhang Q et al (2015) Klf2 and Tfcp2l1, Two Wnt/beta-catenin targets, Act synergistically to induce and maintain naive pluripotency. Stem Cell Rep 5(3):314–322CrossRef Qiu DB, Ye SD, Ruiz B, Zhou XL, Liu DH, Zhang Q et al (2015) Klf2 and Tfcp2l1, Two Wnt/beta-catenin targets, Act synergistically to induce and maintain naive pluripotency. Stem Cell Rep 5(3):314–322CrossRef
11.
go back to reference Sun HW, You Y, Guo MM, Wang XH, Zhang Y, Ye S (2018) Tfcp2l1 safeguards the maintenance of human embryonic stem cell self-renewal. J Cell Physiol 233(9):6944–6951PubMedCrossRef Sun HW, You Y, Guo MM, Wang XH, Zhang Y, Ye S (2018) Tfcp2l1 safeguards the maintenance of human embryonic stem cell self-renewal. J Cell Physiol 233(9):6944–6951PubMedCrossRef
12.
go back to reference Zhang M, Ji JX, Wang XX, Zhang XB, Zhang Y, Li YT et al (2021) The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem 297(4). Zhang M, Ji JX, Wang XX, Zhang XB, Zhang Y, Li YT et al (2021) The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem 297(4).
13.
go back to reference Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. Embo Mol Med 12(1) Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. Embo Mol Med 12(1)
14.
go back to reference Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S et al (2022) The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 54(6):801–811PubMedPubMedCentralCrossRef Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S et al (2022) The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 54(6):801–811PubMedPubMedCentralCrossRef
15.
go back to reference Tun H W, Marlow L A, von Roemeling C A, Cooper S J, Kreinest P, Wu K et al (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. Plos One 5(5). Tun H W, Marlow L A, von Roemeling C A, Cooper S J, Kreinest P, Wu K et al (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. Plos One 5(5).
16.
go back to reference Vokshi B H, Davidson G, Sedehi N T P, Helleux A, Rippinger M, Haller A R et al (2023) SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 14(1). Vokshi B H, Davidson G, Sedehi N T P, Helleux A, Rippinger M, Haller A R et al (2023) SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 14(1).
17.
go back to reference Otto B, Streichert T, Wegwitz F, Gevensleben H, Klatschke K, Wagener C et al (2013) Transcription factors link mouse WAP-T mammary tumors with human breast cancer. Int J Cancer 132(6):1311–1322PubMedCrossRef Otto B, Streichert T, Wegwitz F, Gevensleben H, Klatschke K, Wagener C et al (2013) Transcription factors link mouse WAP-T mammary tumors with human breast cancer. Int J Cancer 132(6):1311–1322PubMedCrossRef
18.
go back to reference Yang J, Bergdorf K, Yan C, Luo W, Chen S C, Ayers G D et al (2023) CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 22(1). Yang J, Bergdorf K, Yan C, Luo W, Chen S C, Ayers G D et al (2023) CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 22(1).
19.
go back to reference Li XY, Yang S, Zhao CY, Yang J, Li C, Shen WH et al (2021) CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346. Endocr J 68(8):1011–1025PubMedCrossRef Li XY, Yang S, Zhao CY, Yang J, Li C, Shen WH et al (2021) CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346. Endocr J 68(8):1011–1025PubMedCrossRef
20.
go back to reference Guan H, Guo Y, Liu L, Ye R, Liang W, Li H et al (2018) INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci 8:26PubMedPubMedCentralCrossRef Guan H, Guo Y, Liu L, Ye R, Liang W, Li H et al (2018) INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci 8:26PubMedPubMedCentralCrossRef
21.
go back to reference Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W et al (2021) SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. J Cell Biochem 122(8):814–826PubMedCrossRef Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W et al (2021) SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. J Cell Biochem 122(8):814–826PubMedCrossRef
22.
go back to reference Li H, Guan H Y, Guo Y, Liang W W, Liu L H, He X Y et al (2018) CITED1 promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and p27. Cell Biosci 8. Li H, Guan H Y, Guo Y, Liang W W, Liu L H, He X Y et al (2018) CITED1 promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and p27. Cell Biosci 8.
23.
go back to reference Zeng C M, Li H, Liang W W, Chen J X, Zhang Y L, Zhang H R et al (2023) Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine. Zeng C M, Li H, Liang W W, Chen J X, Zhang Y L, Zhang H R et al (2023) Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine.
24.
go back to reference Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690CrossRef Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690CrossRef
25.
go back to reference Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173(2):338-354.e15PubMedPubMedCentralCrossRef Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173(2):338-354.e15PubMedPubMedCentralCrossRef
26.
go back to reference Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066PubMedPubMedCentralCrossRef Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066PubMedPubMedCentralCrossRef
27.
go back to reference Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514.
28.
go back to reference Zhou J, Xu M, Tan J, Zhou L, Dong F, Huang T (2022) MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front Oncol 12:1030590PubMedPubMedCentralCrossRef Zhou J, Xu M, Tan J, Zhou L, Dong F, Huang T (2022) MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front Oncol 12:1030590PubMedPubMedCentralCrossRef
29.
go back to reference He W, Sun Y, Ge J, Wang X, Lin B, Yu S et al (2023) STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol (Lausanne) 14:1076640PubMedCrossRef He W, Sun Y, Ge J, Wang X, Lin B, Yu S et al (2023) STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol (Lausanne) 14:1076640PubMedCrossRef
30.
go back to reference Yu P, Qu N, Zhu R, Hu J, Han P, Wu J et al (2023) TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. Sci Adv 9(35):eadg7125PubMedPubMedCentralCrossRef Yu P, Qu N, Zhu R, Hu J, Han P, Wu J et al (2023) TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. Sci Adv 9(35):eadg7125PubMedPubMedCentralCrossRef
31.
go back to reference Jendrzejewski J, Thomas A, Liyanarachchi S, Eiterman A, Tomsic J, He H et al (2015) PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab 100(10):E1370–E1377PubMedPubMedCentralCrossRef Jendrzejewski J, Thomas A, Liyanarachchi S, Eiterman A, Tomsic J, He H et al (2015) PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab 100(10):E1370–E1377PubMedPubMedCentralCrossRef
32.
go back to reference Geng QS, Huang T, Li LF, Shen ZB, Xue WH, Zhao J (2021) Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Front Med (Lausanne) 8:812278PubMedCrossRef Geng QS, Huang T, Li LF, Shen ZB, Xue WH, Zhao J (2021) Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Front Med (Lausanne) 8:812278PubMedCrossRef
33.
go back to reference Li Y, He J, Wang F, Wang X, Yang F, Zhao C et al (2020) Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol 18(1):181PubMedPubMedCentralCrossRef Li Y, He J, Wang F, Wang X, Yang F, Zhao C et al (2020) Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol 18(1):181PubMedPubMedCentralCrossRef
34.
go back to reference Rotondi M, Coperchini F, Latrofa F, Chiovato L (2018) Role of chemokines in thyroid cancer microenvironment: is CXCL8 the main player? Front Endocrinol (Lausanne) 9:314PubMedCrossRef Rotondi M, Coperchini F, Latrofa F, Chiovato L (2018) Role of chemokines in thyroid cancer microenvironment: is CXCL8 the main player? Front Endocrinol (Lausanne) 9:314PubMedCrossRef
35.
go back to reference Lumachi F, Basso SM, Orlando R (2010) Cytokines, thyroid diseases and thyroid cancer. Cytokine 50(3):229–233PubMedCrossRef Lumachi F, Basso SM, Orlando R (2010) Cytokines, thyroid diseases and thyroid cancer. Cytokine 50(3):229–233PubMedCrossRef
36.
go back to reference Zeng W, Chang H, Ma M, Li Y (2014) CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol 97(1):184–190PubMedCrossRef Zeng W, Chang H, Ma M, Li Y (2014) CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol 97(1):184–190PubMedCrossRef
37.
go back to reference Zhang G Q, Xi C, Shen C T, Song H J, Luo Q Y, and Qiu Z L (2023) Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells. Endocr Relat Cancer 30(9). Zhang G Q, Xi C, Shen C T, Song H J, Luo Q Y, and Qiu Z L (2023) Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells. Endocr Relat Cancer 30(9).
38.
go back to reference Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436PubMedCrossRef Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436PubMedCrossRef
39.
go back to reference Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324PubMedCrossRef Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324PubMedCrossRef
40.
go back to reference Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O et al (2018) NFkappaB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12. Gastroenterology 155(3):880-891.e8PubMedCrossRef Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O et al (2018) NFkappaB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12. Gastroenterology 155(3):880-891.e8PubMedCrossRef
41.
go back to reference Jiang SH, Zhu LL, Zhang M, Li RK, Yang Q, Yan JY et al (2019) GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner. Gut 68(11):1994–2006PubMedCrossRef Jiang SH, Zhu LL, Zhang M, Li RK, Yang Q, Yan JY et al (2019) GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner. Gut 68(11):1994–2006PubMedCrossRef
42.
go back to reference Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115PubMedCrossRef Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115PubMedCrossRef
43.
go back to reference Ma B, Xu W, Wei W, Wen D, Lu Z, Yang S et al (2018) Clinicopathological and survival outcomes of well-differentiated thyroid carcinoma undergoing dedifferentiation: a retrospective study from FUSCC. Int J Endocrinol 2018:2383715PubMedPubMedCentralCrossRef Ma B, Xu W, Wei W, Wen D, Lu Z, Yang S et al (2018) Clinicopathological and survival outcomes of well-differentiated thyroid carcinoma undergoing dedifferentiation: a retrospective study from FUSCC. Int J Endocrinol 2018:2383715PubMedPubMedCentralCrossRef
44.
go back to reference Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K et al (2019) 2019 European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J 8(5):227–245PubMedPubMedCentralCrossRef Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K et al (2019) 2019 European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J 8(5):227–245PubMedPubMedCentralCrossRef
45.
go back to reference Hou XK, Tian MR, Ning JY, Wang ZY, Guo FL, Zhang W et al (2023) PARP inhibitor shuts down the global translation of thyroid cancer through promoting Pol II binding to DIMT1 pause. Int J Biol Sci 19(12):3970–3986PubMedPubMedCentralCrossRef Hou XK, Tian MR, Ning JY, Wang ZY, Guo FL, Zhang W et al (2023) PARP inhibitor shuts down the global translation of thyroid cancer through promoting Pol II binding to DIMT1 pause. Int J Biol Sci 19(12):3970–3986PubMedPubMedCentralCrossRef
46.
go back to reference Zhang X, Ren D, Wu XQ, Lin X, Ye LP, Lin CY et al (2018) miR-1266 contributes to pancreatic cancer progression and chemoresistance by the STAT3 and NF-kappa B signaling pathways. Mol Therapy-Nucleic Acids 11:142–158CrossRef Zhang X, Ren D, Wu XQ, Lin X, Ye LP, Lin CY et al (2018) miR-1266 contributes to pancreatic cancer progression and chemoresistance by the STAT3 and NF-kappa B signaling pathways. Mol Therapy-Nucleic Acids 11:142–158CrossRef
47.
go back to reference Ye R Y, Liu D W, Guan H Y, AiErken N, Fang Z, Shi Y W et al (2021) AHNAK2 promotes thyroid carcinoma progression by activating the NF-kappa B pathway. Life Sci 286 Ye R Y, Liu D W, Guan H Y, AiErken N, Fang Z, Shi Y W et al (2021) AHNAK2 promotes thyroid carcinoma progression by activating the NF-kappa B pathway. Life Sci 286
48.
go back to reference Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708PubMedCrossRef Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708PubMedCrossRef
49.
go back to reference Huang D, Zeng Y, Deng H Y, Fu B D, Ke Y, Luo J Y et al (2022) SYTL5 promotes papillary thyroid carcinoma progression by enhancing activation of the NF-kappa B signaling pathway. Endocrinology 164(1). Huang D, Zeng Y, Deng H Y, Fu B D, Ke Y, Luo J Y et al (2022) SYTL5 promotes papillary thyroid carcinoma progression by enhancing activation of the NF-kappa B signaling pathway. Endocrinology 164(1).
50.
go back to reference Feng L, Wang R, Yang Y F, Shen X X, Shi Q, Lian M et al (2021) KPNA4 regulated by miR-548b-3p promotes the malignant phenotypes of papillary thyroid cancer. Life Sci 265. Feng L, Wang R, Yang Y F, Shen X X, Shi Q, Lian M et al (2021) KPNA4 regulated by miR-548b-3p promotes the malignant phenotypes of papillary thyroid cancer. Life Sci 265.
51.
go back to reference Ke S, Pan Q, Wang C, Su Z, Li M, Liu X (2023) NKD2 trigger NF-kappaB signaling pathway and facilitates thyroid cancer cell proliferation. Mol Biotechnol 65(11):1846–1856PubMedPubMedCentralCrossRef Ke S, Pan Q, Wang C, Su Z, Li M, Liu X (2023) NKD2 trigger NF-kappaB signaling pathway and facilitates thyroid cancer cell proliferation. Mol Biotechnol 65(11):1846–1856PubMedPubMedCentralCrossRef
52.
go back to reference Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T et al (2023) Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 42(5):112451PubMedPubMedCentralCrossRef Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T et al (2023) Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 42(5):112451PubMedPubMedCentralCrossRef
53.
54.
go back to reference Stein L, Rothschild J, Luce J, Cowell JK, Thomas G, Bogdanova TI et al (2010) Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. Thyroid 20(5):475–487PubMedCrossRef Stein L, Rothschild J, Luce J, Cowell JK, Thomas G, Bogdanova TI et al (2010) Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. Thyroid 20(5):475–487PubMedCrossRef
55.
go back to reference Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580PubMedCrossRef Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580PubMedCrossRef
56.
go back to reference Guo K, Qian K, Shi Y, Sun T, Wang Z (2021) LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis 12(12):1097PubMedPubMedCentralCrossRef Guo K, Qian K, Shi Y, Sun T, Wang Z (2021) LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis 12(12):1097PubMedPubMedCentralCrossRef
57.
go back to reference Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M (2020) Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne) 11:102PubMedCrossRef Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M (2020) Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne) 11:102PubMedCrossRef
Metadata
Title
TFCP2L1, a potential differentiation regulator, predicts favorable prognosis and dampens thyroid cancer progression
Authors
C. Zeng
Y. Zhang
C. Lin
W. Liang
J. Chen
Y. Chen
H. Xiao
Y. Li
H. Guan
Publication date
16-05-2024
Publisher
Springer International Publishing
Published in
Journal of Endocrinological Investigation
Electronic ISSN: 1720-8386
DOI
https://doi.org/10.1007/s40618-024-02392-5

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more