Skip to main content
Top

14-10-2024 | Thrombosis | Review

Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective

Authors: Arash Amin, Ahmad Mohajerian, Sara Rashki Ghalehnoo, Mehdi Mohamadinia, Shana Ahadi, Tooba Sohbatzadeh, Mahboubeh Pazoki, Afshin Hasanvand, Ferdos Faghihkhorasani, Zeinab Habibi

Published in: Cardiovascular Toxicology

Login to get access

Abstract

Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as “cardiotoxicity.” In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.

Graphical Abstract

Literature
2.
go back to reference Haybar, H., Shahrabi, S., Rezaeeyan, H., Shirzad, R., & Saki, N. (2019). Protective role of heat shock transcription factor 1 in heart failure: A diagnostic approach. Journal of Cellular Physiology., 234(6), 7764–7770.PubMedCrossRef Haybar, H., Shahrabi, S., Rezaeeyan, H., Shirzad, R., & Saki, N. (2019). Protective role of heat shock transcription factor 1 in heart failure: A diagnostic approach. Journal of Cellular Physiology., 234(6), 7764–7770.PubMedCrossRef
3.
go back to reference (2022). The importance of aging in cancer research. Nature Aging, 2(5), 365–636. (2022). The importance of aging in cancer research. Nature Aging, 2(5), 365–636.
4.
go back to reference Haybar, H., Shahrabi, S., Rezaeeyan, H., Jodat, H., & Saki, N. (2019). Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. Journal of cellular physiology, 234(9), 14500–14506.PubMedCrossRef Haybar, H., Shahrabi, S., Rezaeeyan, H., Jodat, H., & Saki, N. (2019). Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. Journal of cellular physiology, 234(9), 14500–14506.PubMedCrossRef
5.
go back to reference Liao, Y., & Meng, Q. (2023). Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. Environmental Research., 238, 116896.PubMedCrossRef Liao, Y., & Meng, Q. (2023). Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. Environmental Research., 238, 116896.PubMedCrossRef
6.
go back to reference Scherlinger, M., Richez, C., Tsokos, G. C., Boilard, E., & Blanco, P. (2023). The role of platelets in immune-mediated inflammatory diseases. Nature Reviews Immunology., 23(8), 495–510.PubMedCrossRef Scherlinger, M., Richez, C., Tsokos, G. C., Boilard, E., & Blanco, P. (2023). The role of platelets in immune-mediated inflammatory diseases. Nature Reviews Immunology., 23(8), 495–510.PubMedCrossRef
7.
8.
go back to reference Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264–274.PubMedCrossRef Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264–274.PubMedCrossRef
9.
go back to reference Kazemi, N., Bordbar, A., Bavarsad, S. S., Ghasemi, P., Bakhshi, M., & Rezaeeyan, H. (2024). Molecular insights into the relationship between platelet activation and endothelial dysfunction: Molecular approaches and clinical practice. Molecular Biotechnology, 66(5), 932–947.PubMedCrossRef Kazemi, N., Bordbar, A., Bavarsad, S. S., Ghasemi, P., Bakhshi, M., & Rezaeeyan, H. (2024). Molecular insights into the relationship between platelet activation and endothelial dysfunction: Molecular approaches and clinical practice. Molecular Biotechnology, 66(5), 932–947.PubMedCrossRef
10.
go back to reference Dehghani, T., & Panitch, A. (2020). Endothelial cells, neutrophils and platelets: Getting to the bottom of an inflammatory triangle. Open Biology, 10(10), 200161.PubMedPubMedCentralCrossRef Dehghani, T., & Panitch, A. (2020). Endothelial cells, neutrophils and platelets: Getting to the bottom of an inflammatory triangle. Open Biology, 10(10), 200161.PubMedPubMedCentralCrossRef
11.
go back to reference Pitchford, S., Pan, D., & Welch, H. C. (2017). Platelets in neutrophil recruitment to sites of inflammation. Current Opinion in Hematology, 24(1), 23–31.PubMedPubMedCentralCrossRef Pitchford, S., Pan, D., & Welch, H. C. (2017). Platelets in neutrophil recruitment to sites of inflammation. Current Opinion in Hematology, 24(1), 23–31.PubMedPubMedCentralCrossRef
12.
go back to reference Ali, R. A., Wuescher, L. M., & Worth, R. G. (2015). Platelets: Essential components of the immune system. Current Trends in Immunology, 16, 65–78.PubMedPubMedCentral Ali, R. A., Wuescher, L. M., & Worth, R. G. (2015). Platelets: Essential components of the immune system. Current Trends in Immunology, 16, 65–78.PubMedPubMedCentral
13.
go back to reference Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236.PubMedPubMedCentralCrossRef Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236.PubMedPubMedCentralCrossRef
14.
go back to reference Chaudhary, P. K., Kim, S., & Kim, S. (2022). An insight into recent advances on platelet function in health and disease. International Journal of Molecular Sciences., 23(11), 6022.PubMedPubMedCentralCrossRef Chaudhary, P. K., Kim, S., & Kim, S. (2022). An insight into recent advances on platelet function in health and disease. International Journal of Molecular Sciences., 23(11), 6022.PubMedPubMedCentralCrossRef
15.
go back to reference Conklin, K. A. (2004). Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integrative Cancer Therapies, 3(4), 294–300.PubMedCrossRef Conklin, K. A. (2004). Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integrative Cancer Therapies, 3(4), 294–300.PubMedCrossRef
16.
go back to reference Melchinger, H., Jain, K., Tyagi, T., & Hwa, J. (2019). Role of platelet mitochondria: Life in a nucleus-free zone. Frontiers in Cardiovascular Medicine, 6, 153.PubMedPubMedCentralCrossRef Melchinger, H., Jain, K., Tyagi, T., & Hwa, J. (2019). Role of platelet mitochondria: Life in a nucleus-free zone. Frontiers in Cardiovascular Medicine, 6, 153.PubMedPubMedCentralCrossRef
17.
go back to reference Wang, Z., Wang, J., Xie, R., Liu, R., & Lu, Y. (2015). Mitochondria-derived reactive oxygen species play an important role in Doxorubicin-induced platelet apoptosis. International Journal of Molecular Sciences, 16(5), 11087–11100.PubMedPubMedCentralCrossRef Wang, Z., Wang, J., Xie, R., Liu, R., & Lu, Y. (2015). Mitochondria-derived reactive oxygen species play an important role in Doxorubicin-induced platelet apoptosis. International Journal of Molecular Sciences, 16(5), 11087–11100.PubMedPubMedCentralCrossRef
18.
go back to reference Zhang, X., Yu, S., Li, X., Wen, X., Liu, S., Zu, R., Ren, H., Li, T., Yang, C., & Luo, H. (2023). Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacological Research, 191, 106777.PubMedCrossRef Zhang, X., Yu, S., Li, X., Wen, X., Liu, S., Zu, R., Ren, H., Li, T., Yang, C., & Luo, H. (2023). Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacological Research, 191, 106777.PubMedCrossRef
19.
go back to reference Iba, T., & Levy, J. H. (2018). Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. Journal of Thrombosis and Haemostasis, 16(2), 231–241.PubMedCrossRef Iba, T., & Levy, J. H. (2018). Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. Journal of Thrombosis and Haemostasis, 16(2), 231–241.PubMedCrossRef
20.
go back to reference Ma, W., Rousseau, Z., Slavkovic, S., Shen, C., Yousef, G. M., & Ni, H. (2022). Doxorubicin-induced platelet activation and clearance relieved by salvianolic acid compound: novel mechanism and potential therapy for chemotherapy-associated thrombosis and thrombocytopenia. Pharmaceuticals (Basel), 15(12), 1444.PubMedCrossRef Ma, W., Rousseau, Z., Slavkovic, S., Shen, C., Yousef, G. M., & Ni, H. (2022). Doxorubicin-induced platelet activation and clearance relieved by salvianolic acid compound: novel mechanism and potential therapy for chemotherapy-associated thrombosis and thrombocytopenia. Pharmaceuticals (Basel), 15(12), 1444.PubMedCrossRef
21.
go back to reference Weyrich, A. S., Prescott, S. M., & Zimmerman, G. A. (2002). Platelets, endothelial cells, inflammatory chemokines, and restenosis. Circulation, 106(12), 1433–1435.PubMedCrossRef Weyrich, A. S., Prescott, S. M., & Zimmerman, G. A. (2002). Platelets, endothelial cells, inflammatory chemokines, and restenosis. Circulation, 106(12), 1433–1435.PubMedCrossRef
22.
go back to reference Braun, A., Anders, H.-J., Gudermann, T., & Mammadova-Bach, E. (2021). Platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Frontiers in Oncology, 11, 665534.PubMedPubMedCentralCrossRef Braun, A., Anders, H.-J., Gudermann, T., & Mammadova-Bach, E. (2021). Platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Frontiers in Oncology, 11, 665534.PubMedPubMedCentralCrossRef
23.
go back to reference Khayat Kashani, H. R., Alizadeh, P., Salimi, S., Habtemariam, S., Khayatkashani, M., & Tewari, D. (2022). Epidemiologic profile and outcome of primary pediatric brain tumors in Iran: retrospective study and literature review. Child’s Nervous System, 38, 353–360.PubMedCrossRef Khayat Kashani, H. R., Alizadeh, P., Salimi, S., Habtemariam, S., Khayatkashani, M., & Tewari, D. (2022). Epidemiologic profile and outcome of primary pediatric brain tumors in Iran: retrospective study and literature review. Child’s Nervous System, 38, 353–360.PubMedCrossRef
24.
go back to reference Razi, S., Haghparast, A., Chodari Khameneh, S., Ebrahimi Sadrabadi, A., Aziziyan, F., Bakhtiyari, M., Nabi-Afjadi, M., Tarhriz, V., Jalili, A., Zalpoor, H., et al. (2023). The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Communication and Signaling, 21(1), 143.PubMedPubMedCentralCrossRef Razi, S., Haghparast, A., Chodari Khameneh, S., Ebrahimi Sadrabadi, A., Aziziyan, F., Bakhtiyari, M., Nabi-Afjadi, M., Tarhriz, V., Jalili, A., Zalpoor, H., et al. (2023). The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Communication and Signaling, 21(1), 143.PubMedPubMedCentralCrossRef
25.
go back to reference Meigs, J. B., Hu, F. B., Rifai, N., & Manson, J. E. (2004). Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA, 291(16), 1978–1986.PubMedCrossRef Meigs, J. B., Hu, F. B., Rifai, N., & Manson, J. E. (2004). Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA, 291(16), 1978–1986.PubMedCrossRef
26.
go back to reference Zeineddin, A., Dong, J. F., Wu, F., Terse, P., & Kozar, R. A. (2021). Role of von willebrand factor after injury: it may do more than we think. Shock, 55(6), 717–722.PubMedPubMedCentralCrossRef Zeineddin, A., Dong, J. F., Wu, F., Terse, P., & Kozar, R. A. (2021). Role of von willebrand factor after injury: it may do more than we think. Shock, 55(6), 717–722.PubMedPubMedCentralCrossRef
27.
go back to reference da Costa, M. P., García-Vallejo, J. J., van Thienen, J. V., Fernandez-Borja, M., van Gils, J. M., Beckers, C., Horrevoets, A. J., Hordijk, P. L., & Zwaginga, J. J. (2007). P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(5), 1023–1029.CrossRef da Costa, M. P., García-Vallejo, J. J., van Thienen, J. V., Fernandez-Borja, M., van Gils, J. M., Beckers, C., Horrevoets, A. J., Hordijk, P. L., & Zwaginga, J. J. (2007). P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(5), 1023–1029.CrossRef
28.
go back to reference Coenen, D. M., Mastenbroek, T. G., & Cosemans, J. M. E. M. (2017). Platelet interaction with activated endothelium: Mechanistic insights from microfluidics. Blood, 130(26), 2819–2828.PubMedCrossRef Coenen, D. M., Mastenbroek, T. G., & Cosemans, J. M. E. M. (2017). Platelet interaction with activated endothelium: Mechanistic insights from microfluidics. Blood, 130(26), 2819–2828.PubMedCrossRef
29.
go back to reference Haybar, H., Shahrabi, S., Rezaeeyan, H., Shirzad, R., & Saki, N. (2019). Endothelial cells: From dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovascular Toxicology, 19, 13–22.PubMedCrossRef Haybar, H., Shahrabi, S., Rezaeeyan, H., Shirzad, R., & Saki, N. (2019). Endothelial cells: From dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovascular Toxicology, 19, 13–22.PubMedCrossRef
30.
go back to reference Hamilos, M., Petousis, S., & Parthenakis, F. (2018). Interaction between platelets and endothelium: From pathophysiology to new therapeutic options. Cardiovascular Diagnosis and Therapy, 8(5), 568–580.PubMedPubMedCentralCrossRef Hamilos, M., Petousis, S., & Parthenakis, F. (2018). Interaction between platelets and endothelium: From pathophysiology to new therapeutic options. Cardiovascular Diagnosis and Therapy, 8(5), 568–580.PubMedPubMedCentralCrossRef
31.
go back to reference Lu, R., Lin, Q., Chen, S., & Ye, X. (2020). Chemotherapy-induced thrombocytopenia and platelet transfusion in patients with diffuse large B-cell lymphoma. Translational Cancer Research, 9(3), 1640–1651.PubMedPubMedCentralCrossRef Lu, R., Lin, Q., Chen, S., & Ye, X. (2020). Chemotherapy-induced thrombocytopenia and platelet transfusion in patients with diffuse large B-cell lymphoma. Translational Cancer Research, 9(3), 1640–1651.PubMedPubMedCentralCrossRef
33.
go back to reference Soff, G., Leader, A., Al-Samkari, H., Falanga, A., Maraveyas, A., Sanfilippo, K., Wang, T. F., & Zwicker, J. (2024). Management of chemotherapy-induced thrombocytopenia: Guidance from the ISTH Subcommittee on Hemostasis and Malignancy. Journal of Thrombosis and Haemostasis, 22(1), 53–60.PubMedCrossRef Soff, G., Leader, A., Al-Samkari, H., Falanga, A., Maraveyas, A., Sanfilippo, K., Wang, T. F., & Zwicker, J. (2024). Management of chemotherapy-induced thrombocytopenia: Guidance from the ISTH Subcommittee on Hemostasis and Malignancy. Journal of Thrombosis and Haemostasis, 22(1), 53–60.PubMedCrossRef
34.
go back to reference Kuter, D. J. (2022). Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica, 107(6), 1243–1263.PubMedPubMedCentralCrossRef Kuter, D. J. (2022). Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica, 107(6), 1243–1263.PubMedPubMedCentralCrossRef
35.
go back to reference Ma, Y., Liu, H., Wang, Y., Xuan, J., Gao, X., Ding, H., Ma, C., Chen, Y., & Yang, Y. (2022). Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetology and Metabolic Syndrome, 14(1), 169.PubMedPubMedCentralCrossRef Ma, Y., Liu, H., Wang, Y., Xuan, J., Gao, X., Ding, H., Ma, C., Chen, Y., & Yang, Y. (2022). Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetology and Metabolic Syndrome, 14(1), 169.PubMedPubMedCentralCrossRef
36.
go back to reference Landry, P., Plante, I., Ouellet, D. L., Perron, M. P., Rousseau, G., & Provost, P. (2009). Existence of a microRNA pathway in anucleate platelets. Nature Structural & Molecular Biology, 16(9), 961–966.CrossRef Landry, P., Plante, I., Ouellet, D. L., Perron, M. P., Rousseau, G., & Provost, P. (2009). Existence of a microRNA pathway in anucleate platelets. Nature Structural & Molecular Biology, 16(9), 961–966.CrossRef
37.
go back to reference Qi, H., Ren, J., Mingyao, E., Zhang, Q., Cao, Y., Ba, L., Song, C., Shi, P., Fu, B., & Sun, H. (2019). MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. Journal of Cellular and Molecular Medicine, 23(3), 1926–1939.PubMedPubMedCentralCrossRef Qi, H., Ren, J., Mingyao, E., Zhang, Q., Cao, Y., Ba, L., Song, C., Shi, P., Fu, B., & Sun, H. (2019). MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. Journal of Cellular and Molecular Medicine, 23(3), 1926–1939.PubMedPubMedCentralCrossRef
38.
go back to reference Ghosh, N., Fenton, S., van Hout, I., Jones, G. T., Coffey, S., Williams, M. J. A., Sugunesegran, R., Parry, D., Davis, P., Schwenke, D. O., Chatterjee, A., & Katare, R. (2022). Therapeutic knockdown of miR-320 improves deteriorated cardiac function in a pre-clinical model of non-ischemic diabetic heart disease. Molecular Therapy-Nucleic Acids, 13(29), 330–342.CrossRef Ghosh, N., Fenton, S., van Hout, I., Jones, G. T., Coffey, S., Williams, M. J. A., Sugunesegran, R., Parry, D., Davis, P., Schwenke, D. O., Chatterjee, A., & Katare, R. (2022). Therapeutic knockdown of miR-320 improves deteriorated cardiac function in a pre-clinical model of non-ischemic diabetic heart disease. Molecular Therapy-Nucleic Acids, 13(29), 330–342.CrossRef
39.
go back to reference Li, Y., Du, Y., Cao, J., Gao, Q., Li, H., Chen, Y., & Lu, N. (2018). MiR-130a inhibition protects rat cardiac myocytes from hypoxia-triggered apoptosis by targeting Smad4. Kardiologia Polska, 76(6), 993–1001.PubMedCrossRef Li, Y., Du, Y., Cao, J., Gao, Q., Li, H., Chen, Y., & Lu, N. (2018). MiR-130a inhibition protects rat cardiac myocytes from hypoxia-triggered apoptosis by targeting Smad4. Kardiologia Polska, 76(6), 993–1001.PubMedCrossRef
40.
go back to reference Lin, R., Rahtu-Korpela, L., Szabo, Z., Kemppi, A., Skarp, S., Kiviniemi, A. M., Lepojärvi, E. S., Halmetoja, E., Kilpiö, T., Porvari, K., Pakanen, L., Tolva, J., Paakkanen, R., Segersvärd, H., Tikkanen, I., Laine, M., Sinisalo, J., Lakkisto, P., Huikuri, H., … Kerkelä, R. (2022). MiR-185-5p regulates the development of myocardial fibrosis. Journal of Molecular and Cellular Cardiology, 165, 130–140.PubMedCrossRef Lin, R., Rahtu-Korpela, L., Szabo, Z., Kemppi, A., Skarp, S., Kiviniemi, A. M., Lepojärvi, E. S., Halmetoja, E., Kilpiö, T., Porvari, K., Pakanen, L., Tolva, J., Paakkanen, R., Segersvärd, H., Tikkanen, I., Laine, M., Sinisalo, J., Lakkisto, P., Huikuri, H., … Kerkelä, R. (2022). MiR-185-5p regulates the development of myocardial fibrosis. Journal of Molecular and Cellular Cardiology, 165, 130–140.PubMedCrossRef
41.
go back to reference Du, K., Zhao, C., Wang, L., Wang, Y., Zhang, K. Z., Shen, X. Y., Sun, H. X., Gao, W., & Lu, X. (2019). MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging (Albany NY), 11(9), 2762–2786.PubMedCrossRef Du, K., Zhao, C., Wang, L., Wang, Y., Zhang, K. Z., Shen, X. Y., Sun, H. X., Gao, W., & Lu, X. (2019). MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging (Albany NY), 11(9), 2762–2786.PubMedCrossRef
42.
go back to reference Xie, J., Zhang, L., Fan, X., Dong, X., Zhang, Z., & Fan, W. (2019). MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Experimental and Therapeutic Medicine, 18(1), 779–785.PubMedPubMedCentral Xie, J., Zhang, L., Fan, X., Dong, X., Zhang, Z., & Fan, W. (2019). MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Experimental and Therapeutic Medicine, 18(1), 779–785.PubMedPubMedCentral
43.
go back to reference Mahdavi, F. S., Mardi, S., Mohammadi, S., Ansari, S., Yaslianifard, S., Fallah, P., & Mozhgani, S. H. (2022). MicroRNA-146: biomarker and mediator of cardiovascular disease. Disease Markers, 2022, 7767598.PubMedPubMedCentralCrossRef Mahdavi, F. S., Mardi, S., Mohammadi, S., Ansari, S., Yaslianifard, S., Fallah, P., & Mozhgani, S. H. (2022). MicroRNA-146: biomarker and mediator of cardiovascular disease. Disease Markers, 2022, 7767598.PubMedPubMedCentralCrossRef
44.
go back to reference Li, S., Ren, J., & Sun, Q. (2018). The expression of microRNA-23a regulates acute myocardial infarction in patients and in vitro through targeting PTEN. Molecular Medicine Reports, 17(5), 6866–6872.PubMed Li, S., Ren, J., & Sun, Q. (2018). The expression of microRNA-23a regulates acute myocardial infarction in patients and in vitro through targeting PTEN. Molecular Medicine Reports, 17(5), 6866–6872.PubMed
45.
go back to reference Carbone, P. P., Bono, V., Frei, E., 3rd., & Brindley, C. O. (1963). Clinical studies with vincristine. Blood, 21, 640–647.PubMedCrossRef Carbone, P. P., Bono, V., Frei, E., 3rd., & Brindley, C. O. (1963). Clinical studies with vincristine. Blood, 21, 640–647.PubMedCrossRef
46.
go back to reference Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N., & Mackman, N. (2021). Cancer therapy-associated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1291–1305.PubMedPubMedCentralCrossRef Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N., & Mackman, N. (2021). Cancer therapy-associated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1291–1305.PubMedPubMedCentralCrossRef
47.
go back to reference Kim, E. J., Lim, K. M., Kim, K. Y., Bae, O. N., Noh, J. Y., Chung, S. M., Shin, S., Yun, Y. P., & Chung, J. H. (2009). Doxorubicin-induced platelet cytotoxicity: A new contributory factor for doxorubicin-mediated thrombocytopenia. Journal of Thrombosis and Haemostasis, 7(7), 1172–1183.PubMedCrossRef Kim, E. J., Lim, K. M., Kim, K. Y., Bae, O. N., Noh, J. Y., Chung, S. M., Shin, S., Yun, Y. P., & Chung, J. H. (2009). Doxorubicin-induced platelet cytotoxicity: A new contributory factor for doxorubicin-mediated thrombocytopenia. Journal of Thrombosis and Haemostasis, 7(7), 1172–1183.PubMedCrossRef
48.
go back to reference Terwoord, J. D., Beyer, A. M., & Gutterman, D. D. (2022). Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacology & Therapeutics, 237, 108116.CrossRef Terwoord, J. D., Beyer, A. M., & Gutterman, D. D. (2022). Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacology & Therapeutics, 237, 108116.CrossRef
49.
go back to reference Tera, Y., Azzam, H., Abousamra, N., Zaki, M., Eltantawy, A., Awad, M., Ghoneim, H., & Othman, M. (2022). Platelet activation and platelet indices as markers for disease progression in women with breast cancer: Platelets and prognosis of breast cancer. Archives of Breast Cancer, 346–353. Tera, Y., Azzam, H., Abousamra, N., Zaki, M., Eltantawy, A., Awad, M., Ghoneim, H., & Othman, M. (2022). Platelet activation and platelet indices as markers for disease progression in women with breast cancer: Platelets and prognosis of breast cancer. Archives of Breast Cancer, 346–353.
50.
go back to reference Chu, Y., Guo, H., Zhang, Y., & Qiao, R. (2021). Procoagulant platelets: Generation, characteristics, and therapeutic target. Journal of Clinical Laboratory Analysis, 35(5), e23750.PubMedPubMedCentralCrossRef Chu, Y., Guo, H., Zhang, Y., & Qiao, R. (2021). Procoagulant platelets: Generation, characteristics, and therapeutic target. Journal of Clinical Laboratory Analysis, 35(5), e23750.PubMedPubMedCentralCrossRef
51.
go back to reference Vogel, S., Bodenstein, R., Chen, Q., Feil, S., Feil, R., Rheinlaender, J., Schäffer, T. E., Bohn, E., Frick, J. S., Borst, O., Münzer, P., Walker, B., Markel, J., Csanyi, G., Pagano, P. J., Loughran, P., Jessup, M. E., Watkins, S. C., Bullock, G. C., … Neal, M. D. (2015). Platelet-derived HMGB1 is a critical mediator of thrombosis. The Journal of Clinical Investigation, 125(12), 4638–4654.PubMedPubMedCentralCrossRef Vogel, S., Bodenstein, R., Chen, Q., Feil, S., Feil, R., Rheinlaender, J., Schäffer, T. E., Bohn, E., Frick, J. S., Borst, O., Münzer, P., Walker, B., Markel, J., Csanyi, G., Pagano, P. J., Loughran, P., Jessup, M. E., Watkins, S. C., Bullock, G. C., … Neal, M. D. (2015). Platelet-derived HMGB1 is a critical mediator of thrombosis. The Journal of Clinical Investigation, 125(12), 4638–4654.PubMedPubMedCentralCrossRef
52.
go back to reference Idoudi, S., Bedhiafi, T., Pedersen, S., Elahtem, M., Alremawi, I., Akhtar, S., Dermime, S., Merhi, M., & Uddin, S. (2023). Role of HMGB1 and its associated signaling pathways in human malignancies. Cellular Signalling, 112, 110904.PubMedCrossRef Idoudi, S., Bedhiafi, T., Pedersen, S., Elahtem, M., Alremawi, I., Akhtar, S., Dermime, S., Merhi, M., & Uddin, S. (2023). Role of HMGB1 and its associated signaling pathways in human malignancies. Cellular Signalling, 112, 110904.PubMedCrossRef
53.
go back to reference Ren, W., Zhao, L., Sun, Y., Wang, X., & Shi, X. (2023). HMGB1 and Toll-like receptors: Potential therapeutic targets in autoimmune diseases. Molecular Medicine, 29(1), 117.PubMedPubMedCentralCrossRef Ren, W., Zhao, L., Sun, Y., Wang, X., & Shi, X. (2023). HMGB1 and Toll-like receptors: Potential therapeutic targets in autoimmune diseases. Molecular Medicine, 29(1), 117.PubMedPubMedCentralCrossRef
54.
go back to reference Safari, H., Ajudani, R., Savaie, M., Babadi, A. J., & Alizadeh, P. (2024). Intracerebral hemorrhage in methanol toxicity patients during COVID-19 pandemic: case report and review of literature. Forensic Toxicology, 42(2), 242–247.PubMedCrossRef Safari, H., Ajudani, R., Savaie, M., Babadi, A. J., & Alizadeh, P. (2024). Intracerebral hemorrhage in methanol toxicity patients during COVID-19 pandemic: case report and review of literature. Forensic Toxicology, 42(2), 242–247.PubMedCrossRef
55.
go back to reference Wang, J., Li, R., Peng, Z., Hu, B., Rao, X., & Li, J. (2020). HMGB1 participates in LPS‑induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF‑κB signaling pathways Corrigendum in /10.3892/ijmm.2020.4530. International Journal of Molecular Medicine, 45(1), 61–80.PubMedCrossRef Wang, J., Li, R., Peng, Z., Hu, B., Rao, X., & Li, J. (2020). HMGB1 participates in LPS‑induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF‑κB signaling pathways Corrigendum in /10.3892/ijmm.2020.4530. International Journal of Molecular Medicine, 45(1), 61–80.PubMedCrossRef
56.
go back to reference Zhu, X., Dou, Y., Lin, Y., Chu, G., Wang, J., & Ma, L. (2024). HMGB1 regulates Th17 cell differentiation and function in patients with psoriasis. Immunity, Inflammation and Disease, 12(2), e1205.PubMedPubMedCentralCrossRef Zhu, X., Dou, Y., Lin, Y., Chu, G., Wang, J., & Ma, L. (2024). HMGB1 regulates Th17 cell differentiation and function in patients with psoriasis. Immunity, Inflammation and Disease, 12(2), e1205.PubMedPubMedCentralCrossRef
58.
go back to reference Bangert, A., Andrassy, M., Müller, A. M., Bockstahler, M., Fischer, A., Volz, C. H., Leib, C., Göser, S., Korkmaz-Icöz, S., Zittrich, S., Jungmann, A., Lasitschka, F., Pfitzer, G., Müller, O. J., Katus, H. A., & Kaya, Z. (2016). Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences U S A, 113(2), E155–E164.CrossRef Bangert, A., Andrassy, M., Müller, A. M., Bockstahler, M., Fischer, A., Volz, C. H., Leib, C., Göser, S., Korkmaz-Icöz, S., Zittrich, S., Jungmann, A., Lasitschka, F., Pfitzer, G., Müller, O. J., Katus, H. A., & Kaya, Z. (2016). Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences U S A, 113(2), E155–E164.CrossRef
59.
go back to reference Denorme, F., & Campbell, R. A. (2022). Procoagulant platelets: Novel players in thromboinflammation. American Journal of Physiology-Cell Physiology, 323(4), C951–C958.PubMedPubMedCentralCrossRef Denorme, F., & Campbell, R. A. (2022). Procoagulant platelets: Novel players in thromboinflammation. American Journal of Physiology-Cell Physiology, 323(4), C951–C958.PubMedPubMedCentralCrossRef
60.
61.
go back to reference Walsh, T. G., & Poole, A. W. (2018). Do platelets promote cardiac recovery after myocardial infarction: Roles beyond occlusive ischemic damage. American Journal of Physiology. Heart and Circulatory Physiology, 314(5), H1043–H1048.PubMedPubMedCentralCrossRef Walsh, T. G., & Poole, A. W. (2018). Do platelets promote cardiac recovery after myocardial infarction: Roles beyond occlusive ischemic damage. American Journal of Physiology. Heart and Circulatory Physiology, 314(5), H1043–H1048.PubMedPubMedCentralCrossRef
62.
go back to reference Leng, Q., Ding, J., Dai, M., Liu, L., Fang, Q., Wang, D. W., Wu, L., & Wang, Y. (2022). Insights into platelet-derived MicroRNAs in cardiovascular and oncologic diseases: potential predictor and therapeutic target. Frontiers in Cardiovascular Medicine, 9(9), 879351.PubMedPubMedCentralCrossRef Leng, Q., Ding, J., Dai, M., Liu, L., Fang, Q., Wang, D. W., Wu, L., & Wang, Y. (2022). Insights into platelet-derived MicroRNAs in cardiovascular and oncologic diseases: potential predictor and therapeutic target. Frontiers in Cardiovascular Medicine, 9(9), 879351.PubMedPubMedCentralCrossRef
63.
go back to reference Zeng, N., Huang, Y. Q., Yan, Y. M., Hu, Z. Q., Zhang, Z., Feng, J. X., Guo, J. S., Zhu, J. N., Fu, Y. H., Wang, X. P., Zhang, M. Z., Duan, J. Z., Zheng, X. L., Xu, J. D., & Shan, Z. X. (2021). Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. Molecular Therapy-Nucleic Acids, 20(26), 1035–1050.CrossRef Zeng, N., Huang, Y. Q., Yan, Y. M., Hu, Z. Q., Zhang, Z., Feng, J. X., Guo, J. S., Zhu, J. N., Fu, Y. H., Wang, X. P., Zhang, M. Z., Duan, J. Z., Zheng, X. L., Xu, J. D., & Shan, Z. X. (2021). Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. Molecular Therapy-Nucleic Acids, 20(26), 1035–1050.CrossRef
64.
go back to reference Zhang, Y., Yuan, B., Xu, Y., Zhou, N., Zhang, R., Lu, L., & Feng, Z. (2022). MiR-208b/miR-21 promotes the progression of cardiac fibrosis through the activation of the TGF-β1/Smad-3 signaling pathway: an in vitro and in vivo study. Frontiers in Cardiovascular Medicine, 5(9), 924629.CrossRef Zhang, Y., Yuan, B., Xu, Y., Zhou, N., Zhang, R., Lu, L., & Feng, Z. (2022). MiR-208b/miR-21 promotes the progression of cardiac fibrosis through the activation of the TGF-β1/Smad-3 signaling pathway: an in vitro and in vivo study. Frontiers in Cardiovascular Medicine, 5(9), 924629.CrossRef
65.
go back to reference Pan, Z., Sun, X., Shan, H., Wang, N., Wang, J., Ren, J., Feng, S., Xie, L., Lu, C., Yuan, Y., Zhang, Y., Wang, Y., Lu, Y., & Yang, B. (2012). MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation, 126(7), 840–850.PubMedCrossRef Pan, Z., Sun, X., Shan, H., Wang, N., Wang, J., Ren, J., Feng, S., Xie, L., Lu, C., Yuan, Y., Zhang, Y., Wang, Y., Lu, Y., & Yang, B. (2012). MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation, 126(7), 840–850.PubMedCrossRef
66.
go back to reference Liu, Y., Liu, G., Zhang, H., & Wang, J. (2016). MiRNA-199a-5p influences pulmonary artery hypertension via downregulating Smad3. Biochemical and Biophysical Research Communications, 473(4), 859–866.PubMedCrossRef Liu, Y., Liu, G., Zhang, H., & Wang, J. (2016). MiRNA-199a-5p influences pulmonary artery hypertension via downregulating Smad3. Biochemical and Biophysical Research Communications, 473(4), 859–866.PubMedCrossRef
67.
go back to reference Zhong, X., Chung, A. C., Chen, H. Y., Meng, X. M., & Lan, H. Y. (2011). Smad3-mediated upregulation of miR-21 promotes renal fibrosis. Journal of the American Society of Nephrology, 22(9), 1668–1681.PubMedPubMedCentralCrossRef Zhong, X., Chung, A. C., Chen, H. Y., Meng, X. M., & Lan, H. Y. (2011). Smad3-mediated upregulation of miR-21 promotes renal fibrosis. Journal of the American Society of Nephrology, 22(9), 1668–1681.PubMedPubMedCentralCrossRef
68.
go back to reference Li, Q., Zhang, D., Wang, Y., Sun, P., Hou, X., Larner, J., Xiong, W., & Mi, J. (2013). MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Science and Reports, 3, 2038.CrossRef Li, Q., Zhang, D., Wang, Y., Sun, P., Hou, X., Larner, J., Xiong, W., & Mi, J. (2013). MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Science and Reports, 3, 2038.CrossRef
69.
go back to reference Khazaei, F., Ghanbari, E., & Khazaei, M. (2020). Protective effect of royal jelly against cyclophosphamide-induced thrombocytopenia and spleen and bone marrow damages in rats. Cell Journal, 22(3), 302–309.PubMed Khazaei, F., Ghanbari, E., & Khazaei, M. (2020). Protective effect of royal jelly against cyclophosphamide-induced thrombocytopenia and spleen and bone marrow damages in rats. Cell Journal, 22(3), 302–309.PubMed
70.
go back to reference Elandt, K., Hassler, M. R., Oberndorfer, S., Brücke, T., Zielinski, C. C., & Marosi, C. (2008). Severe thrombocytopenia after the first cycle of temozolomide: Who is at risk? Journal of Clinical Oncology, 26(15_suppl), 13019.CrossRef Elandt, K., Hassler, M. R., Oberndorfer, S., Brücke, T., Zielinski, C. C., & Marosi, C. (2008). Severe thrombocytopenia after the first cycle of temozolomide: Who is at risk? Journal of Clinical Oncology, 26(15_suppl), 13019.CrossRef
71.
go back to reference Zhang, W., Zhao, L., Liu, J., Du, J., Wang, Z., Ruan, C., & Dai, K. (2012). Cisplatin induces platelet apoptosis through the ERK signaling pathway. Thrombosis Research, 130(1), 81–91.PubMedCrossRef Zhang, W., Zhao, L., Liu, J., Du, J., Wang, Z., Ruan, C., & Dai, K. (2012). Cisplatin induces platelet apoptosis through the ERK signaling pathway. Thrombosis Research, 130(1), 81–91.PubMedCrossRef
72.
go back to reference Ahmed, S., Shahid, R. K., Sami, A., Yadav, S., Ahmad, I., Mirchandani, D., Popkin, D., & Haider, K. (2006). Gemcitabine-related thrombocytosis: Does it increase the risk of thrombosis? Journal of Clinical Oncology, 24(18_suppl), 6091–6091.CrossRef Ahmed, S., Shahid, R. K., Sami, A., Yadav, S., Ahmad, I., Mirchandani, D., Popkin, D., & Haider, K. (2006). Gemcitabine-related thrombocytosis: Does it increase the risk of thrombosis? Journal of Clinical Oncology, 24(18_suppl), 6091–6091.CrossRef
73.
go back to reference Lien, L. M., Lu, W. J., Lin, K. H., Kang, L. H., Chen, T. Y., Lin, B. J., Lu, Y. C., Huang, C. Y., Shih, C. M., Chen, H., Tsai, Y. C., Chen, R. J., & Sheu, J. R. (2021). Influence of vincristine, clinically used in cancer therapy and immune thrombocytopenia, on the function of human platelets. Molecules, 26(17), 5340.PubMedPubMedCentralCrossRef Lien, L. M., Lu, W. J., Lin, K. H., Kang, L. H., Chen, T. Y., Lin, B. J., Lu, Y. C., Huang, C. Y., Shih, C. M., Chen, H., Tsai, Y. C., Chen, R. J., & Sheu, J. R. (2021). Influence of vincristine, clinically used in cancer therapy and immune thrombocytopenia, on the function of human platelets. Molecules, 26(17), 5340.PubMedPubMedCentralCrossRef
74.
go back to reference Yun, S. H., Sim, E. H., Goh, R. Y., Park, J. I., & Han, J. Y. (2016). Platelet activation: the mechanisms and potential biomarkers. BioMed Research International, 2016, 9060143.PubMedPubMedCentralCrossRef Yun, S. H., Sim, E. H., Goh, R. Y., Park, J. I., & Han, J. Y. (2016). Platelet activation: the mechanisms and potential biomarkers. BioMed Research International, 2016, 9060143.PubMedPubMedCentralCrossRef
75.
go back to reference Hałucha, K., Rak-Pasikowska, A., & Bil-Lula, I. (2021). Protective role of platelets in myocardial infarction and ischemia/reperfusion injury. Cardiology Research and Practice, 2021, 5545416.PubMedPubMedCentralCrossRef Hałucha, K., Rak-Pasikowska, A., & Bil-Lula, I. (2021). Protective role of platelets in myocardial infarction and ischemia/reperfusion injury. Cardiology Research and Practice, 2021, 5545416.PubMedPubMedCentralCrossRef
76.
go back to reference Ludwig, N., Hilger, A., Zarbock, A., & Rossaint, J. (2022). Platelets at the crossroads of pro-inflammatory and resolution pathways during Inflammation. Cells, 11(12), 1957.PubMedPubMedCentralCrossRef Ludwig, N., Hilger, A., Zarbock, A., & Rossaint, J. (2022). Platelets at the crossroads of pro-inflammatory and resolution pathways during Inflammation. Cells, 11(12), 1957.PubMedPubMedCentralCrossRef
78.
go back to reference Gupta, A. K., Joshi, M. B., Philippova, M., Erne, P., Hasler, P., Hahn, S., & Resink, T. J. (2010). Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Letters, 584(14), 3193–3197.PubMedCrossRef Gupta, A. K., Joshi, M. B., Philippova, M., Erne, P., Hasler, P., Hahn, S., & Resink, T. J. (2010). Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Letters, 584(14), 3193–3197.PubMedCrossRef
79.
go back to reference Zhou, Y., Xu, Z., & Liu, Z. (2022). Impact of neutrophil extracellular traps on thrombosis formation: New findings and future perspective. Frontiers in Cellular and Infection Microbiology, 12, 910908.PubMedPubMedCentralCrossRef Zhou, Y., Xu, Z., & Liu, Z. (2022). Impact of neutrophil extracellular traps on thrombosis formation: New findings and future perspective. Frontiers in Cellular and Infection Microbiology, 12, 910908.PubMedPubMedCentralCrossRef
81.
go back to reference Cun, Y., Diao, B., Zhang, Z., Wang, G., Yu, J., Ma, L., & Rao, Z. (2021). Role of the stromal cell derived factor-1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Experimental and Therapeutic Medicine, 21(1), 39.PubMedCrossRef Cun, Y., Diao, B., Zhang, Z., Wang, G., Yu, J., Ma, L., & Rao, Z. (2021). Role of the stromal cell derived factor-1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Experimental and Therapeutic Medicine, 21(1), 39.PubMedCrossRef
83.
go back to reference Ziff, O. J., Bromage, D. I., Yellon, D. M., & Davidson, S. M. (2018). Therapeutic strategies utilizing SDF-1α in ischaemic cardiomyopathy. Cardiovascular Research, 114(3), 358–367.PubMedCrossRef Ziff, O. J., Bromage, D. I., Yellon, D. M., & Davidson, S. M. (2018). Therapeutic strategies utilizing SDF-1α in ischaemic cardiomyopathy. Cardiovascular Research, 114(3), 358–367.PubMedCrossRef
84.
go back to reference Kalbassi, S., Radfar, L., Azimi, M., Shadanpoor, S., & Ranjbary, A. G. (2022). A comparison of the characteristics of cytokine storm between lichen planus and oral squamous cell carcinoma. Asian Pacific Journal of Cancer Prevention: APJCP, 23(11), 3843.PubMedPubMedCentralCrossRef Kalbassi, S., Radfar, L., Azimi, M., Shadanpoor, S., & Ranjbary, A. G. (2022). A comparison of the characteristics of cytokine storm between lichen planus and oral squamous cell carcinoma. Asian Pacific Journal of Cancer Prevention: APJCP, 23(11), 3843.PubMedPubMedCentralCrossRef
86.
go back to reference Elschami, M., Scherr, M., Philippens, B., & Gerardy-Schahn, R. (2013). Reduction of STAT3 expression induces mitochondrial dysfunction and autophagy in cardiac HL-1 cells. European Journal of Cell Biology, 92(1), 21–29.PubMedCrossRef Elschami, M., Scherr, M., Philippens, B., & Gerardy-Schahn, R. (2013). Reduction of STAT3 expression induces mitochondrial dysfunction and autophagy in cardiac HL-1 cells. European Journal of Cell Biology, 92(1), 21–29.PubMedCrossRef
87.
go back to reference Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N., & Walsh, K. (2000). Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation, 101(6), 660–667.PubMedPubMedCentralCrossRef Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N., & Walsh, K. (2000). Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation, 101(6), 660–667.PubMedPubMedCentralCrossRef
88.
go back to reference Feuerstein, G., Rabinovici, R., Leor, J., Winkler, J. D., & Vonhof, S. (1997). Platelet-activating factor and cardiac diseases: Therapeutic potential for PAF inhibitors. Journal of Lipid Mediators and Cell Signalling, 15(3), 255–284.PubMedCrossRef Feuerstein, G., Rabinovici, R., Leor, J., Winkler, J. D., & Vonhof, S. (1997). Platelet-activating factor and cardiac diseases: Therapeutic potential for PAF inhibitors. Journal of Lipid Mediators and Cell Signalling, 15(3), 255–284.PubMedCrossRef
89.
go back to reference Schon, H. T., & Weiskirchen, R. (2014). Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surgery and Nutrition, 3(6), 386–406.PubMedPubMedCentral Schon, H. T., & Weiskirchen, R. (2014). Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surgery and Nutrition, 3(6), 386–406.PubMedPubMedCentral
90.
go back to reference Cognasse, F., Duchez, A. C., Audoux, E., Ebermeyer, T., Arthaud, C. A., Prier, A., Eyraud, M. A., Mismetti, P., Garraud, O., Bertoletti, L., & Hamzeh-Cognasse, H. (2022). Platelets as key factors in inflammation: Focus on CD40L/CD40. Frontiers in Immunology, 3(13), 825892.CrossRef Cognasse, F., Duchez, A. C., Audoux, E., Ebermeyer, T., Arthaud, C. A., Prier, A., Eyraud, M. A., Mismetti, P., Garraud, O., Bertoletti, L., & Hamzeh-Cognasse, H. (2022). Platelets as key factors in inflammation: Focus on CD40L/CD40. Frontiers in Immunology, 3(13), 825892.CrossRef
91.
go back to reference van der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: New concepts and clinical perspectives. Nature Reviews Cardiology, 16(3), 166–179.PubMedCrossRef van der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: New concepts and clinical perspectives. Nature Reviews Cardiology, 16(3), 166–179.PubMedCrossRef
92.
go back to reference Di Micco, R., Krizhanovsky, V., Baker, D., & d’Adda di Fagagna, F. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology., 22(2), 75–95.PubMedCrossRef Di Micco, R., Krizhanovsky, V., Baker, D., & d’Adda di Fagagna, F. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology., 22(2), 75–95.PubMedCrossRef
93.
94.
go back to reference Jain, A., Casanova, D., Padilla, A. V., Paniagua Bojorges, A., Kotla, S., Ko, K. A., Samanthapudi, V. S. K., Chau, K., Nguyen, M. T. H., Wen, J., Hernandez Gonzalez, S. L., Rodgers, S. P., Olmsted-Davis, E. A., Hamilton, D. J., Reyes-Gibby, C., Yeung, S. J., Cooke, J. P., Herrmann, J., Chini, E. N., … Le, N. T. (2023). Premature senescence and cardiovascular disease following cancer treatments: Mechanistic insights. Frontiers in Cardiovascular Medicine, 14(10), 1212174.CrossRef Jain, A., Casanova, D., Padilla, A. V., Paniagua Bojorges, A., Kotla, S., Ko, K. A., Samanthapudi, V. S. K., Chau, K., Nguyen, M. T. H., Wen, J., Hernandez Gonzalez, S. L., Rodgers, S. P., Olmsted-Davis, E. A., Hamilton, D. J., Reyes-Gibby, C., Yeung, S. J., Cooke, J. P., Herrmann, J., Chini, E. N., … Le, N. T. (2023). Premature senescence and cardiovascular disease following cancer treatments: Mechanistic insights. Frontiers in Cardiovascular Medicine, 14(10), 1212174.CrossRef
95.
go back to reference Chen, M. S., Lee, R. T., & Garbern, J. C. (2022). Senescence mechanisms and targets in the heart. Cardiovascular Research, 118(5), 1173–1187.PubMedCrossRef Chen, M. S., Lee, R. T., & Garbern, J. C. (2022). Senescence mechanisms and targets in the heart. Cardiovascular Research, 118(5), 1173–1187.PubMedCrossRef
96.
go back to reference Booth, L. K., Redgrave, R. E., Folaranmi, O., Gill, J. H., & Richardson, G. D. (2022). Anthracycline-induced cardiotoxicity and senescence. Frontiers in Aging, 3, 1058435.PubMedPubMedCentralCrossRef Booth, L. K., Redgrave, R. E., Folaranmi, O., Gill, J. H., & Richardson, G. D. (2022). Anthracycline-induced cardiotoxicity and senescence. Frontiers in Aging, 3, 1058435.PubMedPubMedCentralCrossRef
97.
go back to reference Luan, Y., Zhu, X., Jiao, Y., Liu, H., Huang, Z., Pei, J., Xu, Y., Yang, Y., & Ren, K. (2024). Cardiac cell senescence: Molecular mechanisms, key proteins and therapeutic targets. Cell Death Discovery, 10(1), 78.PubMedPubMedCentralCrossRef Luan, Y., Zhu, X., Jiao, Y., Liu, H., Huang, Z., Pei, J., Xu, Y., Yang, Y., & Ren, K. (2024). Cardiac cell senescence: Molecular mechanisms, key proteins and therapeutic targets. Cell Death Discovery, 10(1), 78.PubMedPubMedCentralCrossRef
98.
go back to reference Tang, X., Li, P. H., & Chen, H. Z. (2020). Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Frontiers in Endocrinology (Lausanne), 11, 280.CrossRef Tang, X., Li, P. H., & Chen, H. Z. (2020). Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Frontiers in Endocrinology (Lausanne), 11, 280.CrossRef
99.
go back to reference D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., Laviola, L., & Giorgino, F. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 14(2020), 5732956. D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., Laviola, L., & Giorgino, F. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 14(2020), 5732956.
100.
go back to reference Shabani, M., Javanshir, H. T., Bereimipour, A., Sadrabadi, A. E., Jalili, A., & Nayernia, K. (2021). Contradictory effect of Notch1 and Notch2 on phosphatase and tensin homolog and its influence on glioblastoma angiogenesis. Galen Medical Journal, 10, e2091.PubMedPubMedCentralCrossRef Shabani, M., Javanshir, H. T., Bereimipour, A., Sadrabadi, A. E., Jalili, A., & Nayernia, K. (2021). Contradictory effect of Notch1 and Notch2 on phosphatase and tensin homolog and its influence on glioblastoma angiogenesis. Galen Medical Journal, 10, e2091.PubMedPubMedCentralCrossRef
101.
go back to reference Xie, S., Xu, S.-C., Deng, W., & Tang, Q. (2023). Metabolic landscape in cardiac aging: Insights into molecular biology and therapeutic implications. Signal Transduction and Targeted Therapy, 8(1), 114.PubMedPubMedCentralCrossRef Xie, S., Xu, S.-C., Deng, W., & Tang, Q. (2023). Metabolic landscape in cardiac aging: Insights into molecular biology and therapeutic implications. Signal Transduction and Targeted Therapy, 8(1), 114.PubMedPubMedCentralCrossRef
102.
go back to reference Tominaga, K., & Suzuki, H. I. (2019). TGF-β signaling in cellular senescence and aging-related pathology. International Journal of Molecular Sciences, 20(20), 5002.PubMedPubMedCentralCrossRef Tominaga, K., & Suzuki, H. I. (2019). TGF-β signaling in cellular senescence and aging-related pathology. International Journal of Molecular Sciences, 20(20), 5002.PubMedPubMedCentralCrossRef
103.
go back to reference Xulu, K. R., & Augustine, T. N. (2022). Targeting platelet activation pathways to limit tumour progression: current state of affairs. Pharmaceuticals (Basel), 15(12), 1532.PubMedCrossRef Xulu, K. R., & Augustine, T. N. (2022). Targeting platelet activation pathways to limit tumour progression: current state of affairs. Pharmaceuticals (Basel), 15(12), 1532.PubMedCrossRef
104.
go back to reference Zaki, S. M., Algaleel, W. A., Imam, R. A., & Abdelmoaty, M. M. (2019). Mesenchymal stem cells pretreated with platelet-rich plasma modulate doxorubicin-induced cardiotoxicity. Human and Experimental Toxicology, 38(7), 857–874.PubMedCrossRef Zaki, S. M., Algaleel, W. A., Imam, R. A., & Abdelmoaty, M. M. (2019). Mesenchymal stem cells pretreated with platelet-rich plasma modulate doxorubicin-induced cardiotoxicity. Human and Experimental Toxicology, 38(7), 857–874.PubMedCrossRef
105.
go back to reference Zhao, M.-T., Ye, S., Su, J., & Garg, V. (2020). Cardiomyocyte proliferation and maturation: two sides of the same coin for heart regeneration. Frontiers in Cell and Developmental Biology, 8, 594226.PubMedPubMedCentralCrossRef Zhao, M.-T., Ye, S., Su, J., & Garg, V. (2020). Cardiomyocyte proliferation and maturation: two sides of the same coin for heart regeneration. Frontiers in Cell and Developmental Biology, 8, 594226.PubMedPubMedCentralCrossRef
106.
go back to reference Yue, Z., Chen, J., Lian, H., Pei, J., Li, Y., Chen, X., Song, S., Xia, J., Zhou, B., Feng, J., Zhang, X., Hu, S., & Nie, Y. (2019). PDGFR-β signaling regulates cardiomyocyte proliferation and myocardial regeneration. Cell Reports, 28(4), 966-978.e4.PubMedCrossRef Yue, Z., Chen, J., Lian, H., Pei, J., Li, Y., Chen, X., Song, S., Xia, J., Zhou, B., Feng, J., Zhang, X., Hu, S., & Nie, Y. (2019). PDGFR-β signaling regulates cardiomyocyte proliferation and myocardial regeneration. Cell Reports, 28(4), 966-978.e4.PubMedCrossRef
107.
go back to reference Goumans, M. J., de Boer, T. P., Smits, A. M., van Laake, L. W., van Vliet, P., Metz, C. H., Korfage, T. H., Kats, K. P., Hochstenbach, R., Pasterkamp, G., Verhaar, M. C., van der Heyden, M. A., de Kleijn, D., Mummery, C. L., van Veen, T. A., Sluijter, J. P., & Doevendans, P. A. (2007). TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 1(2), 138–149.PubMedCrossRef Goumans, M. J., de Boer, T. P., Smits, A. M., van Laake, L. W., van Vliet, P., Metz, C. H., Korfage, T. H., Kats, K. P., Hochstenbach, R., Pasterkamp, G., Verhaar, M. C., van der Heyden, M. A., de Kleijn, D., Mummery, C. L., van Veen, T. A., Sluijter, J. P., & Doevendans, P. A. (2007). TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 1(2), 138–149.PubMedCrossRef
108.
go back to reference Li, T. S., Hayashi, M., Ito, H., Furutani, A., Murata, T., Matsuzaki, M., & Hamano, K. (2005). Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation, 111(19), 2438–2445.PubMedCrossRef Li, T. S., Hayashi, M., Ito, H., Furutani, A., Murata, T., Matsuzaki, M., & Hamano, K. (2005). Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation, 111(19), 2438–2445.PubMedCrossRef
109.
go back to reference Shirinsokhan, A., Azarmehr, Z., Jalili, A., Sadrabadi, A. E., Partan, A. S., Tutunchi, S., & Bereimipour, A. (2022). Selection hub MicroRNAs as biomarkers in breast cancer stem cells in extracellular matrix using bioinformatics analyses. Egyptian Journal of Medical Human Genetics, 23(1), 159.CrossRef Shirinsokhan, A., Azarmehr, Z., Jalili, A., Sadrabadi, A. E., Partan, A. S., Tutunchi, S., & Bereimipour, A. (2022). Selection hub MicroRNAs as biomarkers in breast cancer stem cells in extracellular matrix using bioinformatics analyses. Egyptian Journal of Medical Human Genetics, 23(1), 159.CrossRef
110.
go back to reference Rainer, P. P., Hao, S., Vanhoutte, D., Lee, D. I., Koitabashi, N., Molkentin, J. D., & Kass, D. A. (2014). Cardiomyocyte-specific transforming growth factor β suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circulation Research, 114(8), 1246–1257.PubMedPubMedCentralCrossRef Rainer, P. P., Hao, S., Vanhoutte, D., Lee, D. I., Koitabashi, N., Molkentin, J. D., & Kass, D. A. (2014). Cardiomyocyte-specific transforming growth factor β suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circulation Research, 114(8), 1246–1257.PubMedPubMedCentralCrossRef
111.
go back to reference Tao, Y., Zhang, H., Huang, S., Pei, L., Feng, M., Zhao, X., Ouyang, Z., Yao, S., Jiang, R., & Wei, K. (2019). miR-199a-3p promotes cardiomyocyte proliferation by inhibiting Cd151 expression. Biochemical and Biophysical Research Communications, 516(1), 28–36.PubMedCrossRef Tao, Y., Zhang, H., Huang, S., Pei, L., Feng, M., Zhao, X., Ouyang, Z., Yao, S., Jiang, R., & Wei, K. (2019). miR-199a-3p promotes cardiomyocyte proliferation by inhibiting Cd151 expression. Biochemical and Biophysical Research Communications, 516(1), 28–36.PubMedCrossRef
112.
go back to reference Ke, D., Zhang, Z., Liu, J., Chen, P., Li, J., Sun, X., Chu, Y., & Li, L. (2023). Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Frontiers in Cardiovascular Medicine, 10(10), 1135723.PubMedPubMedCentralCrossRef Ke, D., Zhang, Z., Liu, J., Chen, P., Li, J., Sun, X., Chu, Y., & Li, L. (2023). Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Frontiers in Cardiovascular Medicine, 10(10), 1135723.PubMedPubMedCentralCrossRef
114.
go back to reference Vantler, M., Karikkineth, B. C., Naito, H., Tiburcy, M., Didié, M., Nose, M., Rosenkranz, S., & Zimmermann, W. H. (2010). PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. Journal of Molecular and Cellular Cardiology, 48(6), 1316–1323.PubMedCrossRef Vantler, M., Karikkineth, B. C., Naito, H., Tiburcy, M., Didié, M., Nose, M., Rosenkranz, S., & Zimmermann, W. H. (2010). PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. Journal of Molecular and Cellular Cardiology, 48(6), 1316–1323.PubMedCrossRef
115.
go back to reference Ranjbary, A. G., Saleh, G. K., Azimi, M., Karimian, F., Mehrzad, J., & Zohdi, J. (2023). Superparamagnetic iron oxide nanoparticles induce apoptosis in HT-29 cells by stimulating oxidative stress and damaging DNA. Biological Trace Element Research, 201(3), 1163–1173.PubMedCrossRef Ranjbary, A. G., Saleh, G. K., Azimi, M., Karimian, F., Mehrzad, J., & Zohdi, J. (2023). Superparamagnetic iron oxide nanoparticles induce apoptosis in HT-29 cells by stimulating oxidative stress and damaging DNA. Biological Trace Element Research, 201(3), 1163–1173.PubMedCrossRef
116.
117.
go back to reference Soltanpor Dehkordi, A., Sayahinouri, M., Hosseininia, H. S., Kazempour, A., Mehtar Araghinia, R., Saadati Partan, A., Ebrahimi Sadrabadi, A., & Jalili, A. (2023). Wnt7b as a novel candidate in silico analysis of angiogenesis-related expressed genes in non-small cell lung cancer patients. Iranian Journal of Blood and Cancer, 15(4), 236–252.CrossRef Soltanpor Dehkordi, A., Sayahinouri, M., Hosseininia, H. S., Kazempour, A., Mehtar Araghinia, R., Saadati Partan, A., Ebrahimi Sadrabadi, A., & Jalili, A. (2023). Wnt7b as a novel candidate in silico analysis of angiogenesis-related expressed genes in non-small cell lung cancer patients. Iranian Journal of Blood and Cancer, 15(4), 236–252.CrossRef
118.
go back to reference Renko, O., Tolonen, A. M., Rysä, J., Magga, J., Mustonen, E., Ruskoaho, H., & Serpi, R. (2018). SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Science and Reports, 8(1), 1160.CrossRef Renko, O., Tolonen, A. M., Rysä, J., Magga, J., Mustonen, E., Ruskoaho, H., & Serpi, R. (2018). SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Science and Reports, 8(1), 1160.CrossRef
119.
go back to reference Azimi, M., Mehrzad, J., Ahmadi, A., Ahmadi, E., & Ghorbani, R. A. (2021). Apoptosis induced by Ziziphora tenuior essential oil in human colorectal cancer cells. BioMed Research International, 2021(1), 5522964.PubMedPubMedCentral Azimi, M., Mehrzad, J., Ahmadi, A., Ahmadi, E., & Ghorbani, R. A. (2021). Apoptosis induced by Ziziphora tenuior essential oil in human colorectal cancer cells. BioMed Research International, 2021(1), 5522964.PubMedPubMedCentral
120.
go back to reference Miao, S., Zhang, Q., Ding, W., Hou, B., Su, Z., Li, M., Yang, L., Zhang, J., Chang, W., & Wang, J. (2023). Platelet internalization mediates ferroptosis in myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(2), 218–230.PubMedCrossRef Miao, S., Zhang, Q., Ding, W., Hou, B., Su, Z., Li, M., Yang, L., Zhang, J., Chang, W., & Wang, J. (2023). Platelet internalization mediates ferroptosis in myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(2), 218–230.PubMedCrossRef
121.
go back to reference Jaboury, S., Wang, K., O’Sullivan, K. M., Ooi, J. D., & Ho, G. Y. (2023). NETosis as an oncologic therapeutic target: A mini review. Frontiers in Immunology, 14, 1170603.PubMedPubMedCentralCrossRef Jaboury, S., Wang, K., O’Sullivan, K. M., Ooi, J. D., & Ho, G. Y. (2023). NETosis as an oncologic therapeutic target: A mini review. Frontiers in Immunology, 14, 1170603.PubMedPubMedCentralCrossRef
122.
go back to reference Tuzovic, M., Herrmann, J., Iliescu, C., Marmagkiolis, K., Ziaeian, B., & Yang, E. H. (2018). Arterial thrombosis in patients with cancer. Current Treatment Options in Cardiovascular Medicine, 20(5), 40.PubMedPubMedCentralCrossRef Tuzovic, M., Herrmann, J., Iliescu, C., Marmagkiolis, K., Ziaeian, B., & Yang, E. H. (2018). Arterial thrombosis in patients with cancer. Current Treatment Options in Cardiovascular Medicine, 20(5), 40.PubMedPubMedCentralCrossRef
123.
go back to reference Labarrere, C. A., Dabiri, A. E., & Kassab, G. S. (2020). Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front Bioeng Biotechnol, 8, 123.PubMedPubMedCentralCrossRef Labarrere, C. A., Dabiri, A. E., & Kassab, G. S. (2020). Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front Bioeng Biotechnol, 8, 123.PubMedPubMedCentralCrossRef
124.
go back to reference Wu, P., Han, J., Gong, Y., Liu, C., Yu, H., & Xie, N. (2022). Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: Current advances and applications. Pharmaceutics, 14(10), 1990.PubMedPubMedCentralCrossRef Wu, P., Han, J., Gong, Y., Liu, C., Yu, H., & Xie, N. (2022). Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: Current advances and applications. Pharmaceutics, 14(10), 1990.PubMedPubMedCentralCrossRef
125.
go back to reference Niculescu, A. G., & Grumezescu, A. M. (2022). Novel tumor-targeting nanoparticles for cancer treatment-a review. International Journal of Molecular Sciences., 23(9), 5253.PubMedPubMedCentralCrossRef Niculescu, A. G., & Grumezescu, A. M. (2022). Novel tumor-targeting nanoparticles for cancer treatment-a review. International Journal of Molecular Sciences., 23(9), 5253.PubMedPubMedCentralCrossRef
126.
go back to reference Schott, D., Pizon, M., Pachmann, U. A., Schill, E., & Pachmann, K. (2022). How circulating cancer cells disguise: The role of platelets. Journal of Clinical Oncology, 40(16_suppl), e15011-e.CrossRef Schott, D., Pizon, M., Pachmann, U. A., Schill, E., & Pachmann, K. (2022). How circulating cancer cells disguise: The role of platelets. Journal of Clinical Oncology, 40(16_suppl), e15011-e.CrossRef
Metadata
Title
Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective
Authors
Arash Amin
Ahmad Mohajerian
Sara Rashki Ghalehnoo
Mehdi Mohamadinia
Shana Ahadi
Tooba Sohbatzadeh
Mahboubeh Pazoki
Afshin Hasanvand
Ferdos Faghihkhorasani
Zeinab Habibi
Publication date
14-10-2024
Publisher
Springer US
Keyword
Thrombosis
Published in
Cardiovascular Toxicology
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09924-8

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now