Skip to main content
Top
Published in:

22-09-2023

The TICE Pathway: Mechanisms and Potential Clinical Applications

Authors: Huimin Xu, Yiyang Xin, Jiaxin Wang, Zixin Liu, Yutong Cao, Weiguo Li, Yun Zhou, Yandong Wang, Peng Liu

Published in: Current Atherosclerosis Reports | Issue 10/2023

Login to get access

Abstract

Purpose of Review

Transintestinal cholesterol excretion (TICE) is a non-biliary pathway that excretes excess cholesterol from the body through feces. This article focuses on the research progress of the TICE pathway in the last few years, including the discovery process of the TICE pathway, its molecular mechanism, and potential clinical applications.

Recent Findings

Cholesterol homeostasis is vital for cardiovascular diseases, stroke, and neurodegenerative diseases. Beyond the cholesterol excretion via hepatobiliary pathway, TICE contributes significantly to reverse cholesterol transport ex vivo and in vivo. Nuclear receptors are ligand-activated transcription factors that regulate cholesterol metabolism. The farnesoid X receptor (FXR) and liver X receptor (LXR) activated, respectively, by oxysterols and bile acids promote intestinal cholesterol secretion through ABCG5/G8. Nutrient regulators and intestinal flora also modulate cholesterol secretion through the TICE pathway. TICE allows direct elimination of plasma cholesterol, which may provide an attractive therapeutic targets.

Summary

TICE pathway may provide a potential target to stimulate cholesterol elimination and reduce the risk of cardiovascular diseases.
Literature
1.
go back to reference Hu J, et al. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 2010;7:47.PubMedCrossRef Hu J, et al. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 2010;7:47.PubMedCrossRef
3.
go back to reference Glomset JA, Norum KR. The metabolic role of lecithin: cholesterol acyltransferase: perspectives form pathology. Adv Lipid Res. 1973;11:1–65.PubMedCrossRef Glomset JA, Norum KR. The metabolic role of lecithin: cholesterol acyltransferase: perspectives form pathology. Adv Lipid Res. 1973;11:1–65.PubMedCrossRef
4.
go back to reference Garçon D, et al. Transintestinal cholesterol excretion in health and disease. Curr Atheroscler Rep. 2022;24(3):153–60.PubMedCrossRef Garçon D, et al. Transintestinal cholesterol excretion in health and disease. Curr Atheroscler Rep. 2022;24(3):153–60.PubMedCrossRef
5.
go back to reference Stellaard, F. From dietary cholesterol to blood cholesterol, physiological lipid fluxes, and cholesterol homeostasis. Nutrients. 2022; 14(8). Stellaard, F. From dietary cholesterol to blood cholesterol, physiological lipid fluxes, and cholesterol homeostasis. Nutrients. 2022; 14(8).
6.
go back to reference de Boer JF, et al. Intestinal Farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology. 2017;152(5):1126-1138.e6.PubMedCrossRef de Boer JF, et al. Intestinal Farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology. 2017;152(5):1126-1138.e6.PubMedCrossRef
7.
go back to reference Tanaka Y, Kamisako T. Regulation of the expression of cholesterol transporters by lipid-lowering drugs ezetimibe and pemafibrate in rat liver and intestine. Biochim Biophys Acta Mol Basis Dis. 2021;1867(11):166215.PubMedCrossRef Tanaka Y, Kamisako T. Regulation of the expression of cholesterol transporters by lipid-lowering drugs ezetimibe and pemafibrate in rat liver and intestine. Biochim Biophys Acta Mol Basis Dis. 2021;1867(11):166215.PubMedCrossRef
8.
go back to reference •• Luo, J., H. Yang, B.L. Song. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol, 2020. 21(4): 225–245. The study identified the key factors that govern the four pathways of cholesterol biosynthesis, uptake, export and esterification, and the main mechanisms by which they respond to different sterol levels. •• Luo, J., H. Yang, B.L. Song. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol, 2020. 21(4): 225–245. The study identified the key factors that govern the four pathways of cholesterol biosynthesis, uptake, export and esterification, and the main mechanisms by which they respond to different sterol levels.
10.
go back to reference Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012;69(6):915–30.PubMedCrossRef Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012;69(6):915–30.PubMedCrossRef
11.
go back to reference Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999;96(20):11041–8.PubMedPubMedCentralCrossRef Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999;96(20):11041–8.PubMedPubMedCentralCrossRef
12.
go back to reference Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124(1):35–46.PubMedCrossRef Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124(1):35–46.PubMedCrossRef
13.
go back to reference Sun LP, et al. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem. 2005;280(28):26483–90.PubMedCrossRef Sun LP, et al. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem. 2005;280(28):26483–90.PubMedCrossRef
14.
go back to reference Sever N, et al. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol Cell. 2003;11(1):25–33.PubMedCrossRef Sever N, et al. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol Cell. 2003;11(1):25–33.PubMedCrossRef
15.
go back to reference Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys. 2002;397(2):139–48.PubMedCrossRef Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys. 2002;397(2):139–48.PubMedCrossRef
16.
go back to reference Altmann SW, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.PubMedCrossRef Altmann SW, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.PubMedCrossRef
17.
go back to reference van Heek M, et al. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function. Br J Pharmacol. 2001;134(2):409–17.PubMedPubMedCentralCrossRef van Heek M, et al. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function. Br J Pharmacol. 2001;134(2):409–17.PubMedPubMedCentralCrossRef
19.
go back to reference Altmann SW, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta. 2002;1580(1):77–93.PubMedCrossRef Altmann SW, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta. 2002;1580(1):77–93.PubMedCrossRef
20.
go back to reference Li PS, et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med. 2014;20(1):80–6.PubMedCrossRef Li PS, et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med. 2014;20(1):80–6.PubMedCrossRef
21.
22.
23.
go back to reference Anderson RA, et al. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem. 1998;273(41):26747–54.PubMedCrossRef Anderson RA, et al. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem. 1998;273(41):26747–54.PubMedCrossRef
24.
go back to reference Ingram MF, Shelness GS. Folding of the amino-terminal domain of apolipoprotein B initiates microsomal triglyceride transfer protein-dependent lipid transfer to nascent very low density lipoprotein. J Biol Chem. 1997;272(15):10279–86.PubMedCrossRef Ingram MF, Shelness GS. Folding of the amino-terminal domain of apolipoprotein B initiates microsomal triglyceride transfer protein-dependent lipid transfer to nascent very low density lipoprotein. J Biol Chem. 1997;272(15):10279–86.PubMedCrossRef
25.
go back to reference Berge KE, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.PubMedCrossRef Berge KE, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.PubMedCrossRef
26.
27.
go back to reference Yu L, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A. 2002;99(25):16237–42.PubMedPubMedCentralCrossRef Yu L, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A. 2002;99(25):16237–42.PubMedPubMedCentralCrossRef
28.
go back to reference Yu L, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002;110(5):671–80.PubMedPubMedCentralCrossRef Yu L, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002;110(5):671–80.PubMedPubMedCentralCrossRef
29.
go back to reference Temel RE, et al. Intestinal cholesterol absorption is substantially reduced in mice deficient in both ABCA1 and ACAT2. J Lipid Res. 2005;46(11):2423–31.PubMedCrossRef Temel RE, et al. Intestinal cholesterol absorption is substantially reduced in mice deficient in both ABCA1 and ACAT2. J Lipid Res. 2005;46(11):2423–31.PubMedCrossRef
31.
go back to reference Tang W, et al. Niemann-Pick C1-like 1 is required for an LXR agonist to raise plasma HDL cholesterol in mice. Arterioscler Thromb Vasc Biol. 2008;28(3):448–54.PubMedCrossRef Tang W, et al. Niemann-Pick C1-like 1 is required for an LXR agonist to raise plasma HDL cholesterol in mice. Arterioscler Thromb Vasc Biol. 2008;28(3):448–54.PubMedCrossRef
32.
go back to reference Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(7):762–71.PubMedCrossRef Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(7):762–71.PubMedCrossRef
33.
go back to reference Yu L, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem. 2005;280(10):8742–7.PubMedCrossRef Yu L, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem. 2005;280(10):8742–7.PubMedCrossRef
34.
go back to reference Cheng SH, Stanley MM. Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction. Proc Soc Exp Biol Med. 1959;101(2):223–5.PubMedCrossRef Cheng SH, Stanley MM. Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction. Proc Soc Exp Biol Med. 1959;101(2):223–5.PubMedCrossRef
35.
go back to reference van der Velde AE, et al. Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology. 2007;133(3):967–75.PubMedCrossRef van der Velde AE, et al. Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology. 2007;133(3):967–75.PubMedCrossRef
36.
go back to reference Smit JJ, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993;75(3):451–62.PubMedCrossRef Smit JJ, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993;75(3):451–62.PubMedCrossRef
37.
go back to reference Brown JM, et al. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem. 2008;283(16):10522–34.PubMedPubMedCentralCrossRef Brown JM, et al. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem. 2008;283(16):10522–34.PubMedPubMedCentralCrossRef
38.
go back to reference Simmonds WJ, Hofmann AF, Theodor E. Absorption of cholesterol from a micellar solution: intestinal perfusion studies in man. J Clin Invest. 1967;46(5):874–90.PubMedPubMedCentralCrossRef Simmonds WJ, Hofmann AF, Theodor E. Absorption of cholesterol from a micellar solution: intestinal perfusion studies in man. J Clin Invest. 1967;46(5):874–90.PubMedPubMedCentralCrossRef
39.
go back to reference Le May C, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33(7):1484–93.PubMedCrossRef Le May C, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33(7):1484–93.PubMedCrossRef
40.
go back to reference Jakulj L, et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 2016;24(6):783–94.PubMedCrossRef Jakulj L, et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 2016;24(6):783–94.PubMedCrossRef
41.
go back to reference Moreau F, et al. In vivo evidence for transintestinal cholesterol efflux in patients with complete common bile duct obstruction. J Clin Lipidol. 2019;13(1):213-217.e1.PubMedCrossRef Moreau F, et al. In vivo evidence for transintestinal cholesterol efflux in patients with complete common bile duct obstruction. J Clin Lipidol. 2019;13(1):213-217.e1.PubMedCrossRef
42.
go back to reference Hirata T, et al. Molecular mechanisms of subcellular localization of ABCG5 and ABCG8. Biosci Biotechnol Biochem. 2009;73(3):619–26.PubMedCrossRef Hirata T, et al. Molecular mechanisms of subcellular localization of ABCG5 and ABCG8. Biosci Biotechnol Biochem. 2009;73(3):619–26.PubMedCrossRef
43.
go back to reference Lu K, et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet. 2001;69(2):278–90.PubMedPubMedCentralCrossRef Lu K, et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet. 2001;69(2):278–90.PubMedPubMedCentralCrossRef
44.
go back to reference Sabeva NS, Rouse EJ, Graf GA. Defects in the leptin axis reduce abundance of the ABCG5-ABCG8 sterol transporter in liver. J Biol Chem. 2007;282(31):22397–405.PubMedCrossRef Sabeva NS, Rouse EJ, Graf GA. Defects in the leptin axis reduce abundance of the ABCG5-ABCG8 sterol transporter in liver. J Biol Chem. 2007;282(31):22397–405.PubMedCrossRef
45.
go back to reference Langheim S, et al. ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J Lipid Res. 2005;46(8):1732–8.PubMedCrossRef Langheim S, et al. ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J Lipid Res. 2005;46(8):1732–8.PubMedCrossRef
47.
go back to reference Brown JM, Yu L. Opposing gatekeepers of apical sterol transport: Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem. 2009;9(1):18–29.PubMedPubMedCentralCrossRef Brown JM, Yu L. Opposing gatekeepers of apical sterol transport: Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem. 2009;9(1):18–29.PubMedPubMedCentralCrossRef
48.
go back to reference Jakulj L, et al. Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett. 2010;584(16):3625–8.PubMedCrossRef Jakulj L, et al. Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett. 2010;584(16):3625–8.PubMedCrossRef
49.
go back to reference van der Velde AE, et al. Regulation of direct transintestinal cholesterol excretion in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295(1):G203-g208.PubMedCrossRef van der Velde AE, et al. Regulation of direct transintestinal cholesterol excretion in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295(1):G203-g208.PubMedCrossRef
50.
go back to reference Inagaki T, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2(4):217–25.PubMedCrossRef Inagaki T, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2(4):217–25.PubMedCrossRef
51.
go back to reference •• Blankestijn, M., et al., Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats. Pediatr Res. 2021; 89(3): 510–517. Findings from this study suggest that OCA enhanced TICE by activating FXR. •• Blankestijn, M., et al., Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats. Pediatr Res. 2021; 89(3): 510–517. Findings from this study suggest that OCA enhanced TICE by activating FXR.
52.
go back to reference Janowski BA, et al. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–31.PubMedCrossRef Janowski BA, et al. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–31.PubMedCrossRef
53.
go back to reference Plōsch T, et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem. 2002;277(37):33870–7.PubMedCrossRef Plōsch T, et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem. 2002;277(37):33870–7.PubMedCrossRef
54.
go back to reference Repa JJ, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289(5484):1524–9.PubMedCrossRef Repa JJ, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289(5484):1524–9.PubMedCrossRef
55.
go back to reference Kruit JK, et al. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology. 2005;128(1):147–56.PubMedCrossRef Kruit JK, et al. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology. 2005;128(1):147–56.PubMedCrossRef
56.
go back to reference van der Veen JN, et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem. 2009;284(29):19211–9.PubMedPubMedCentralCrossRef van der Veen JN, et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem. 2009;284(29):19211–9.PubMedPubMedCentralCrossRef
57.
go back to reference • Lifsey HC et al. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J NutrBiochem, 2020; 76: 108263. This study shows that LXR agonist T0901317 stimulates the TICE pathway by increasing the expression of ABCG5 and ABCG8 in the liver and duodenum. • Lifsey HC et al. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J NutrBiochem, 2020; 76: 108263.  This study shows that LXR agonist T0901317 stimulates the TICE pathway by increasing the expression of ABCG5 and ABCG8 in the liver and duodenum.
58.
go back to reference Grefhorst A, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem. 2002;277(37):34182–90.PubMedCrossRef Grefhorst A, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem. 2002;277(37):34182–90.PubMedCrossRef
59.
go back to reference van der Veen JN, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005;46(3):526–34.PubMedCrossRef van der Veen JN, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005;46(3):526–34.PubMedCrossRef
60.
go back to reference Oliver WR Jr, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 2001;98(9):5306–11.PubMedPubMedCentralCrossRef Oliver WR Jr, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 2001;98(9):5306–11.PubMedPubMedCentralCrossRef
61.
go back to reference Sprecher DL, et al. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arterioscler Thromb Vasc Biol. 2007;27(2):359–65.PubMedCrossRef Sprecher DL, et al. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arterioscler Thromb Vasc Biol. 2007;27(2):359–65.PubMedCrossRef
62.
go back to reference Zhang DW, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282(25):18602–12.PubMedCrossRef Zhang DW, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282(25):18602–12.PubMedCrossRef
63.
go back to reference Sachdev V, et al. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochim Biophys Acta. 2016;1861(9 Pt A):1132–41.PubMedPubMedCentralCrossRef Sachdev V, et al. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochim Biophys Acta. 2016;1861(9 Pt A):1132–41.PubMedPubMedCentralCrossRef
64.
go back to reference Marshall SM, et al. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS One. 2014;9(6):e98953.PubMedPubMedCentralCrossRef Marshall SM, et al. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS One. 2014;9(6):e98953.PubMedPubMedCentralCrossRef
65.
go back to reference Sokolović M, et al. Unexpected effects of fasting on murine lipid homeostasis–transcriptomic and lipid profiling. J Hepatol. 2010;52(5):737–44.PubMedCrossRef Sokolović M, et al. Unexpected effects of fasting on murine lipid homeostasis–transcriptomic and lipid profiling. J Hepatol. 2010;52(5):737–44.PubMedCrossRef
66.
go back to reference Calpe-Berdiel L, Escolà-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis. 2009;203(1):18–31.PubMedCrossRef Calpe-Berdiel L, Escolà-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis. 2009;203(1):18–31.PubMedCrossRef
68.
70.
go back to reference Sehayek E, Hazen SL. Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol. 2008;28(7):1296–7.PubMedPubMedCentralCrossRef Sehayek E, Hazen SL. Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol. 2008;28(7):1296–7.PubMedPubMedCentralCrossRef
71.
72.
go back to reference Vrins CL, et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res. 2009;50(10):2046–54.PubMedPubMedCentralCrossRef Vrins CL, et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res. 2009;50(10):2046–54.PubMedPubMedCentralCrossRef
73.
go back to reference Chandak PG, et al. Lack of acyl-CoA:diacylglycerol acyltransferase 1 reduces intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E knockout mice. Biochim Biophys Acta. 2011;1811(12):1011–20.PubMedPubMedCentralCrossRef Chandak PG, et al. Lack of acyl-CoA:diacylglycerol acyltransferase 1 reduces intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E knockout mice. Biochim Biophys Acta. 2011;1811(12):1011–20.PubMedPubMedCentralCrossRef
Metadata
Title
The TICE Pathway: Mechanisms and Potential Clinical Applications
Authors
Huimin Xu
Yiyang Xin
Jiaxin Wang
Zixin Liu
Yutong Cao
Weiguo Li
Yun Zhou
Yandong Wang
Peng Liu
Publication date
22-09-2023
Publisher
Springer US
Published in
Current Atherosclerosis Reports / Issue 10/2023
Print ISSN: 1523-3804
Electronic ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-023-01147-6

Other articles of this Issue 10/2023

Current Atherosclerosis Reports 10/2023 Go to the issue

A quick guide to ECGs

Electrocardiography Training Course

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

Obesity Clinical Trial Summary

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more