Skip to main content
Top

Open Access 08-06-2024 | Research

The Spinocerebellar Ataxia 34-Causing W246G ELOVL4 Mutation Does Not Alter Cerebellar Neuron Populations in a Rat Model

Authors: Jennifer L. Fessler, Megan A. Stiles, Martin-Paul Agbaga, Mohiuddin Ahmad, David M. Sherry

Published in: The Cerebellum

Login to get access

Abstract

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28–34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.
Literature
2.
go back to reference Cameron DJ, et al. Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int J Biol Sci. 2007;3(2):111–9.PubMedPubMedCentralCrossRef Cameron DJ, et al. Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int J Biol Sci. 2007;3(2):111–9.PubMedPubMedCentralCrossRef
3.
go back to reference Agbaga MP, et al. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A. 2008;105(35):12843–8.PubMedPubMedCentralCrossRef Agbaga MP, et al. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A. 2008;105(35):12843–8.PubMedPubMedCentralCrossRef
4.
go back to reference Mandal MN, et al. Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics. 2004;83(4):626–35.PubMedCrossRef Mandal MN, et al. Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics. 2004;83(4):626–35.PubMedCrossRef
5.
go back to reference McMahon A, Lu H, Butovich IA. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Invest Ophthalmol Vis Sci. 2014;55(5):2832–40.PubMedPubMedCentralCrossRef McMahon A, Lu H, Butovich IA. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Invest Ophthalmol Vis Sci. 2014;55(5):2832–40.PubMedPubMedCentralCrossRef
6.
go back to reference McMahon A, et al. Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol Vis. 2007;13:258–72.PubMedPubMedCentral McMahon A, et al. Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol Vis. 2007;13:258–72.PubMedPubMedCentral
8.
go back to reference Aveldano MI. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J Biol Chem. 1987;262(3):1172–9.PubMedCrossRef Aveldano MI. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J Biol Chem. 1987;262(3):1172–9.PubMedCrossRef
9.
go back to reference Aveldano MI, Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem. 1987;262(3):1180–6.PubMedCrossRef Aveldano MI, Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem. 1987;262(3):1180–6.PubMedCrossRef
10.
go back to reference Nagaraja RY, et al. W246G mutant ELOVL4 impairs synaptic plasticity in parallel and climbing fibers and Causes Motor defects in a rat model of SCA34. Mol Neurobiol. 2021;58(10):4921–43.PubMedPubMedCentralCrossRef Nagaraja RY, et al. W246G mutant ELOVL4 impairs synaptic plasticity in parallel and climbing fibers and Causes Motor defects in a rat model of SCA34. Mol Neurobiol. 2021;58(10):4921–43.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Nagaraja RY et al. W246G mutant ELOVL4 impairs synaptic plasticity in parallel and climbing fibers and Causes Motor defects in a rat model of SCA34. Mol Neurobiol, 2021. Nagaraja RY et al. W246G mutant ELOVL4 impairs synaptic plasticity in parallel and climbing fibers and Causes Motor defects in a rat model of SCA34. Mol Neurobiol, 2021.
13.
go back to reference Hopiavuori BR, et al. Homozygous expression of mutant ELOVL4 leads to seizures and death in a Novel Animal Model of very long-chain fatty acid Deficiency. Mol Neurobiol. 2018;55(2):1795–813.PubMedCrossRef Hopiavuori BR, et al. Homozygous expression of mutant ELOVL4 leads to seizures and death in a Novel Animal Model of very long-chain fatty acid Deficiency. Mol Neurobiol. 2018;55(2):1795–813.PubMedCrossRef
14.
go back to reference Agbaga MP, et al. The Elovl4 spinocerebellar Ataxia-34 mutation 736T > G (p.W246G) impairs retinal function in the absence of photoreceptor degeneration. Mol Neurobiol. 2020;57(11):4735–53.PubMedPubMedCentralCrossRef Agbaga MP, et al. The Elovl4 spinocerebellar Ataxia-34 mutation 736T > G (p.W246G) impairs retinal function in the absence of photoreceptor degeneration. Mol Neurobiol. 2020;57(11):4735–53.PubMedPubMedCentralCrossRef
15.
go back to reference Nagaraja RY, et al. Synapse-specific defects in synaptic transmission in the Cerebellum of W246G Mutant ELOVL4 Rats-a model of human SCA34. J Neurosci. 2023;43(33):5963–74.PubMedPubMedCentralCrossRef Nagaraja RY, et al. Synapse-specific defects in synaptic transmission in the Cerebellum of W246G Mutant ELOVL4 Rats-a model of human SCA34. J Neurosci. 2023;43(33):5963–74.PubMedPubMedCentralCrossRef
16.
go back to reference Poulos A, et al. The occurrence of polyenoic very long chain fatty acids with greater than 32 carbon atoms in molecular species of phosphatidylcholine in normal and peroxisome-deficient (Zellweger’s syndrome) brain. Biochem J. 1988;253(3):645–50.PubMedPubMedCentralCrossRef Poulos A, et al. The occurrence of polyenoic very long chain fatty acids with greater than 32 carbon atoms in molecular species of phosphatidylcholine in normal and peroxisome-deficient (Zellweger’s syndrome) brain. Biochem J. 1988;253(3):645–50.PubMedPubMedCentralCrossRef
18.
go back to reference Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett. 2019;688:49–57.PubMedCrossRef Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett. 2019;688:49–57.PubMedCrossRef
19.
go back to reference Ozaki K, et al. Prevalence and clinicoradiological features of spinocerebellar ataxia type 34 in a Japanese ataxia cohort. Parkinsonism Relat Disord. 2019;65:238–42.PubMedCrossRef Ozaki K, et al. Prevalence and clinicoradiological features of spinocerebellar ataxia type 34 in a Japanese ataxia cohort. Parkinsonism Relat Disord. 2019;65:238–42.PubMedCrossRef
20.
go back to reference Ozaki K, et al. A novel mutation in ELOVL4 leading to Spinocerebellar Ataxia (SCA) with the Hot Cross Bun sign but lacking Erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol. 2015;72(7):797–805.PubMedCrossRef Ozaki K, et al. A novel mutation in ELOVL4 leading to Spinocerebellar Ataxia (SCA) with the Hot Cross Bun sign but lacking Erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol. 2015;72(7):797–805.PubMedCrossRef
21.
go back to reference Bourassa CV, et al. A new ELOVL4 mutation in a case of Spinocerebellar Ataxia with Erythrokeratodermia. JAMA Neurol. 2015;72(8):942–3.PubMedCrossRef Bourassa CV, et al. A new ELOVL4 mutation in a case of Spinocerebellar Ataxia with Erythrokeratodermia. JAMA Neurol. 2015;72(8):942–3.PubMedCrossRef
22.
23.
go back to reference Cadieux-Dion M, et al. Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large french-canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 2014;71(4):470–5.PubMedCrossRef Cadieux-Dion M, et al. Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large french-canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 2014;71(4):470–5.PubMedCrossRef
24.
go back to reference Gyening YK, et al. A novel ELOVL4 variant, L168S, causes early childhood-onset spinocerebellar ataxia-34 and retinal dysfunction: a case report. Acta Neuropathol Commun. 2023;11(1):131.PubMedPubMedCentralCrossRef Gyening YK, et al. A novel ELOVL4 variant, L168S, causes early childhood-onset spinocerebellar ataxia-34 and retinal dysfunction: a case report. Acta Neuropathol Commun. 2023;11(1):131.PubMedPubMedCentralCrossRef
25.
26.
27.
go back to reference Xiao C et al. A family with spinocerebellar ataxia and retinitis pigmentosa attributed to an ELOVL4 mutation. Neurol Genet, 2019. 5(5). Xiao C et al. A family with spinocerebellar ataxia and retinitis pigmentosa attributed to an ELOVL4 mutation. Neurol Genet, 2019. 5(5).
28.
go back to reference Bernstein PS, et al. Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest Ophthalmol Vis Sci. 2001;42(13):3331–6.PubMed Bernstein PS, et al. Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest Ophthalmol Vis Sci. 2001;42(13):3331–6.PubMed
29.
go back to reference Edwards AO, Donoso LA, Ritter R 3. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophthalmol Vis Sci. 2001;42(11):2652–63.PubMed Edwards AO, Donoso LA, Ritter R 3. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophthalmol Vis Sci. 2001;42(11):2652–63.PubMed
30.
go back to reference Maugeri A, et al. A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest Ophthalmol Vis Sci. 2004;45(12):4263–7.PubMedCrossRef Maugeri A, et al. A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest Ophthalmol Vis Sci. 2004;45(12):4263–7.PubMedCrossRef
31.
go back to reference Tran HV, et al. Swiss Family with Dominant Stargardt Disease caused by a recurrent mutation in the ELOVL4 gene. Klin Monatsbl Augenheilkd. 2016;233(4):475–7.PubMedCrossRef Tran HV, et al. Swiss Family with Dominant Stargardt Disease caused by a recurrent mutation in the ELOVL4 gene. Klin Monatsbl Augenheilkd. 2016;233(4):475–7.PubMedCrossRef
32.
go back to reference Zhang K, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet. 2001;27(1):89–93.PubMedCrossRef Zhang K, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet. 2001;27(1):89–93.PubMedCrossRef
33.
go back to reference Logan S, et al. Endoplasmic reticulum microenvironment and conserved histidines govern ELOVL4 fatty acid elongase activity. J Lipid Res. 2014;55(4):698–708.PubMedPubMedCentralCrossRef Logan S, et al. Endoplasmic reticulum microenvironment and conserved histidines govern ELOVL4 fatty acid elongase activity. J Lipid Res. 2014;55(4):698–708.PubMedPubMedCentralCrossRef
34.
go back to reference Aldahmesh MA, et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet. 2011;89(6):745–50.PubMedPubMedCentralCrossRef Aldahmesh MA, et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet. 2011;89(6):745–50.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Diociaiuti A, et al. Two Italian patients with ELOVL4-Related Neuro-Ichthyosis: expanding the genotypic and phenotypic spectrum and ultrastructural characterization. Genes. 2021;12(3):343.PubMedPubMedCentralCrossRef Diociaiuti A, et al. Two Italian patients with ELOVL4-Related Neuro-Ichthyosis: expanding the genotypic and phenotypic spectrum and ultrastructural characterization. Genes. 2021;12(3):343.PubMedPubMedCentralCrossRef
37.
go back to reference Agbaga M-P, et al. The Elovl4 spinocerebellar Ataxia-34 mutation 736T > G (p.W246G) impairs retinal function in the absence of photoreceptor degeneration. Molecular Neurobiology; 2020. Agbaga M-P, et al. The Elovl4 spinocerebellar Ataxia-34 mutation 736T > G (p.W246G) impairs retinal function in the absence of photoreceptor degeneration. Molecular Neurobiology; 2020.
38.
go back to reference Gyening YK, et al. ELOVL4 mutations that cause spinocerebellar Ataxia-34 differentially alter very long chain fatty acid biosynthesis. J Lipid Res. 2023;64(1):100317.PubMedCrossRef Gyening YK, et al. ELOVL4 mutations that cause spinocerebellar Ataxia-34 differentially alter very long chain fatty acid biosynthesis. J Lipid Res. 2023;64(1):100317.PubMedCrossRef
39.
go back to reference Wheway G, et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol. 2015;17(8):1074–87.PubMedPubMedCentralCrossRef Wheway G, et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol. 2015;17(8):1074–87.PubMedPubMedCentralCrossRef
42.
go back to reference Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebratesxs. Development. 1992;116(1):201–11.PubMedCrossRef Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebratesxs. Development. 1992;116(1):201–11.PubMedCrossRef
43.
go back to reference Weyer A, Schilling K. Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res. 2003;73(3):400–9.PubMedCrossRef Weyer A, Schilling K. Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res. 2003;73(3):400–9.PubMedCrossRef
44.
go back to reference Dey MR, et al. Granule cells constitute one of the major neuronal subtypes in the Molecular Layer of the posterior cerebellum. Eneuro. 2022;9(3):ENEURO0289–21.CrossRef Dey MR, et al. Granule cells constitute one of the major neuronal subtypes in the Molecular Layer of the posterior cerebellum. Eneuro. 2022;9(3):ENEURO0289–21.CrossRef
45.
46.
go back to reference Resibois A, Rogers JH. Calretinin in rat brain: an immunohistochemical study. Neuroscience. 1992;46(1):101–34.PubMedCrossRef Resibois A, Rogers JH. Calretinin in rat brain: an immunohistochemical study. Neuroscience. 1992;46(1):101–34.PubMedCrossRef
47.
go back to reference Rogers JH. Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience. 1989;31(3):711–21.PubMedCrossRef Rogers JH. Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience. 1989;31(3):711–21.PubMedCrossRef
48.
49.
go back to reference Goldowitz D, Mullen RJ. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci. 1982;2(10):1474–85.PubMedPubMedCentralCrossRef Goldowitz D, Mullen RJ. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci. 1982;2(10):1474–85.PubMedPubMedCentralCrossRef
50.
go back to reference Herrup K. The weaver mouse: a most cantankerous rodent. 1996. 93(20): p. 10541–2. Herrup K. The weaver mouse: a most cantankerous rodent. 1996. 93(20): p. 10541–2.
51.
go back to reference Hirano A, CEREBELLAR ALTERATIONS IN THE WEAVER, MOUSE. 1973. 56(2): p. 478–86. Hirano A, CEREBELLAR ALTERATIONS IN THE WEAVER, MOUSE. 1973. 56(2): p. 478–86.
52.
go back to reference Sekerkova G, et al. Early Onset of Ataxia in Moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje Cell Dysfunction. J Neurosci. 2013;33(50):19689–94.PubMedPubMedCentralCrossRef Sekerkova G, et al. Early Onset of Ataxia in Moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje Cell Dysfunction. J Neurosci. 2013;33(50):19689–94.PubMedPubMedCentralCrossRef
54.
go back to reference Chizhikov VV, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27(36):9780–9.PubMedPubMedCentralCrossRef Chizhikov VV, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27(36):9780–9.PubMedPubMedCentralCrossRef
55.
go back to reference Plotnikova OV, Pugacheva EN, Golemis EA. Primary Cilia and the Cell Cycle. 2009, Elsevier. pp. 137–160. Plotnikova OV, Pugacheva EN, Golemis EA. Primary Cilia and the Cell Cycle. 2009, Elsevier. pp. 137–160.
56.
go back to reference Kozareva V, et al. Author correction: a transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature. 2022;602(7896):E21–21.PubMedPubMedCentralCrossRef Kozareva V, et al. Author correction: a transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature. 2022;602(7896):E21–21.PubMedPubMedCentralCrossRef
57.
go back to reference Dey MR et al. Granule cells constitute one of the major neuronal subtypes in the Molecular Layer of the posterior cerebellum. eNeuro, 2022. 9(3). Dey MR et al. Granule cells constitute one of the major neuronal subtypes in the Molecular Layer of the posterior cerebellum. eNeuro, 2022. 9(3).
58.
go back to reference Harvey RJ, Napper RM. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol. 1988;274(2):151–7.PubMedCrossRef Harvey RJ, Napper RM. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol. 1988;274(2):151–7.PubMedCrossRef
59.
go back to reference Sawada K, et al. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp (Wars). 2009;69(1):138–45.PubMedCrossRef Sawada K, et al. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp (Wars). 2009;69(1):138–45.PubMedCrossRef
60.
go back to reference Palay SL, Chan-Palay V. Cytology and Organization. Cerebellar Cortex: Springer Berlin Heidelberg; 2012. Palay SL, Chan-Palay V. Cytology and Organization. Cerebellar Cortex: Springer Berlin Heidelberg; 2012.
61.
go back to reference Mugnaini E, Floris A. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol. 1994;339(2):174–80.PubMedCrossRef Mugnaini E, Floris A. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol. 1994;339(2):174–80.PubMedCrossRef
62.
go back to reference Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. 2011. 66(1–2): p. 220–45. Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. 2011. 66(1–2): p. 220–45.
63.
go back to reference Osorno T, et al. Candelabrum cells are ubiquitous cerebellar cortex interneurons with specialized circuit properties. Nat Neurosci. 2022;25(6):702–13.PubMedPubMedCentralCrossRef Osorno T, et al. Candelabrum cells are ubiquitous cerebellar cortex interneurons with specialized circuit properties. Nat Neurosci. 2022;25(6):702–13.PubMedPubMedCentralCrossRef
Metadata
Title
The Spinocerebellar Ataxia 34-Causing W246G ELOVL4 Mutation Does Not Alter Cerebellar Neuron Populations in a Rat Model
Authors
Jennifer L. Fessler
Megan A. Stiles
Martin-Paul Agbaga
Mohiuddin Ahmad
David M. Sherry
Publication date
08-06-2024
Publisher
Springer US
Published in
The Cerebellum
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-024-01708-8