Skip to main content
Top

09-05-2024 | Review

The Insular Cortex: An Interface Between Sensation, Emotion and Cognition

Authors: Ruohan Zhang, Hanfei Deng, Xiong Xiao

Published in: Neuroscience Bulletin

Login to get access

Abstract

The insula is a complex brain region central to the orchestration of taste perception, interoception, emotion, and decision-making. Recent research has shed light on the intricate connections between the insula and other brain regions, revealing the crucial role of this area in integrating sensory, emotional, and cognitive information. The unique anatomical position and extensive connectivity allow the insula to serve as a critical hub in the functional network of the brain. We summarize its role in interoceptive and exteroceptive sensory processing, illustrating insular function as a bridge connecting internal and external experiences. Drawing on recent research, we delineate the insular involvement in emotional processes, highlighting its implications in psychiatric conditions, such as anxiety, depression, and addiction. We further discuss the insular contributions to cognition, focusing on its significant roles in time perception and decision-making. Collectively, the evidence underscores the insular function as a dynamic interface that synthesizes diverse inputs into coherent subjective experiences and decision-making processes. Through this review, we hope to highlight the importance of the insula as an interface between sensation, emotion, and cognition, and to inspire further research into this fascinating brain region.
Literature
1.
go back to reference Contreras M, Ceric F, Torrealba F. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 2007, 318: 655–658.PubMedCrossRef Contreras M, Ceric F, Torrealba F. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 2007, 318: 655–658.PubMedCrossRef
3.
go back to reference Ibañez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage in humans. Brain Struct Funct 2010, 214: 397–410.PubMedCrossRef Ibañez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage in humans. Brain Struct Funct 2010, 214: 397–410.PubMedCrossRef
4.
go back to reference Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 2010, 214: 519–534.PubMedPubMedCentralCrossRef Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 2010, 214: 519–534.PubMedPubMedCentralCrossRef
6.
go back to reference Naqvi NH, Bechara A. The hidden island of addiction: The insula. Trends Neurosci 2009, 32: 56–67.PubMedCrossRef Naqvi NH, Bechara A. The hidden island of addiction: The insula. Trends Neurosci 2009, 32: 56–67.PubMedCrossRef
7.
go back to reference Deng H, Xiao X, Yang T, Ritola K, Hantman A, Li Y. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell 2021, 184: 6344-6360.e18.PubMedPubMedCentralCrossRef Deng H, Xiao X, Yang T, Ritola K, Hantman A, Li Y. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell 2021, 184: 6344-6360.e18.PubMedPubMedCentralCrossRef
8.
go back to reference Kerezoudis P, Howe CL, Wu LJ, Lundstrom BN, Van Gompel JJ. Insula and the Immune System: More than mere Co-existence? Neurosci Bull 2022, 38: 1271–1273.PubMedPubMedCentralCrossRef Kerezoudis P, Howe CL, Wu LJ, Lundstrom BN, Van Gompel JJ. Insula and the Immune System: More than mere Co-existence? Neurosci Bull 2022, 38: 1271–1273.PubMedPubMedCentralCrossRef
9.
go back to reference Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020, 11: 640.PubMedPubMedCentralCrossRef Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020, 11: 640.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 2009, 10: 59–70.PubMedCrossRef Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 2009, 10: 59–70.PubMedCrossRef
12.
go back to reference Craig AD. Interoception: The sense of the physiological condition of the body. Curr Opin Neurobiol 2003, 13: 500–505.PubMedCrossRef Craig AD. Interoception: The sense of the physiological condition of the body. Curr Opin Neurobiol 2003, 13: 500–505.PubMedCrossRef
13.
go back to reference Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 2009, 13: 334–340.PubMedCrossRef Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 2009, 13: 334–340.PubMedCrossRef
14.
go back to reference Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cereb Cortex 2013, 23: 739–749.PubMedCrossRef Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cereb Cortex 2013, 23: 739–749.PubMedCrossRef
15.
go back to reference Gehrlach DA, Weiand C, Gaitanos TN, Cho E, Klein AS, Hennrich AA, et al. A whole-brain connectivity map of mouse insular cortex. Elife 2020, 9: e55585.PubMedPubMedCentralCrossRef Gehrlach DA, Weiand C, Gaitanos TN, Cho E, Klein AS, Hennrich AA, et al. A whole-brain connectivity map of mouse insular cortex. Elife 2020, 9: e55585.PubMedPubMedCentralCrossRef
16.
go back to reference Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 2015, 18: 499–500.PubMedPubMedCentralCrossRef Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 2015, 18: 499–500.PubMedPubMedCentralCrossRef
17.
go back to reference Chaminade T, Spatola N. Perceived facial happiness during conversation correlates with insular and hypothalamus activity for humans, not robots. Front Psychol 2022, 13: 871676.PubMedPubMedCentralCrossRef Chaminade T, Spatola N. Perceived facial happiness during conversation correlates with insular and hypothalamus activity for humans, not robots. Front Psychol 2022, 13: 871676.PubMedPubMedCentralCrossRef
19.
go back to reference Sheffield JM, Huang AS, Rogers BP, Blackford JU, Heckers S, Woodward ND. Insula sub-regions across the psychosis spectrum: Morphology and clinical correlates. Transl Psychiatry 2021, 11: 346.PubMedPubMedCentralCrossRef Sheffield JM, Huang AS, Rogers BP, Blackford JU, Heckers S, Woodward ND. Insula sub-regions across the psychosis spectrum: Morphology and clinical correlates. Transl Psychiatry 2021, 11: 346.PubMedPubMedCentralCrossRef
20.
go back to reference Uddin LQ, Kinnison J, Pessoa L, Anderson ML. Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 2014, 26: 16–27.PubMedCrossRef Uddin LQ, Kinnison J, Pessoa L, Anderson ML. Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 2014, 26: 16–27.PubMedCrossRef
21.
go back to reference Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal Ganglia circuitry. Nature 2010, 466: 622–626.PubMedPubMedCentralCrossRef Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal Ganglia circuitry. Nature 2010, 466: 622–626.PubMedPubMedCentralCrossRef
22.
go back to reference Klaus A, Alves da Silva J, Costa RM. What, if, and when to move: Basal Ganglia circuits and self-paced action initiation. Annu Rev Neurosci 2019, 42: 459–483.PubMedCrossRef Klaus A, Alves da Silva J, Costa RM. What, if, and when to move: Basal Ganglia circuits and self-paced action initiation. Annu Rev Neurosci 2019, 42: 459–483.PubMedCrossRef
23.
go back to reference Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 2012, 15: 1281–1289.PubMedPubMedCentralCrossRef Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 2012, 15: 1281–1289.PubMedPubMedCentralCrossRef
24.
go back to reference Xiao X, Deng H, Furlan A, Yang T, Zhang X, Hwang GR, et al. A genetically defined compartmentalized striatal direct pathway for negative reinforcement. Cell 2020, 183: 211-227.e20.PubMedPubMedCentralCrossRef Xiao X, Deng H, Furlan A, Yang T, Zhang X, Hwang GR, et al. A genetically defined compartmentalized striatal direct pathway for negative reinforcement. Cell 2020, 183: 211-227.e20.PubMedPubMedCentralCrossRef
25.
go back to reference Nicolas C, Ju A, Wu Y, Eldirdiri H, Delcasso S, Couderc Y, et al. Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nat Commun 2023, 14: 5073.PubMedPubMedCentralCrossRef Nicolas C, Ju A, Wu Y, Eldirdiri H, Delcasso S, Couderc Y, et al. Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nat Commun 2023, 14: 5073.PubMedPubMedCentralCrossRef
26.
go back to reference Wang L, Gillis-Smith S, Peng Y, Zhang J, Chen X, Salzman CD, et al. The coding of valence and identity in the mammalian taste system. Nature 2018, 558: 127–131.PubMedPubMedCentralCrossRef Wang L, Gillis-Smith S, Peng Y, Zhang J, Chen X, Salzman CD, et al. The coding of valence and identity in the mammalian taste system. Nature 2018, 558: 127–131.PubMedPubMedCentralCrossRef
27.
go back to reference Floresco SB. The nucleus accumbens: An interface between cognition, emotion, and action. Annu Rev Psychol 2015, 66: 25–52.PubMedCrossRef Floresco SB. The nucleus accumbens: An interface between cognition, emotion, and action. Annu Rev Psychol 2015, 66: 25–52.PubMedCrossRef
28.
go back to reference Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021, 24: 1757–1771.PubMedPubMedCentralCrossRef Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021, 24: 1757–1771.PubMedPubMedCentralCrossRef
29.
go back to reference Martiros N, Kapoor V, Kim SE, Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum’s olfactory tubercle. eLife 2022, 11: e75463.PubMedPubMedCentralCrossRef Martiros N, Kapoor V, Kim SE, Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum’s olfactory tubercle. eLife 2022, 11: e75463.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, et al. Genetically identified amygdala-striatal circuits for valence-specific behaviors. Nat Neurosci 2021, 24: 1586–1600.PubMedPubMedCentralCrossRef Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, et al. Genetically identified amygdala-striatal circuits for valence-specific behaviors. Nat Neurosci 2021, 24: 1586–1600.PubMedPubMedCentralCrossRef
31.
go back to reference Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: What happens in vagus…. Neuron 2019, 101: 998–1002.PubMedCrossRef Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: What happens in vagus…. Neuron 2019, 101: 998–1002.PubMedCrossRef
35.
go back to reference Mazzola L, Royet JP, Catenoix H, Montavont A, Isnard J, Mauguière F. Gustatory and olfactory responses to stimulation of the human insula. Ann Neurol 2017, 82: 360–370.PubMedCrossRef Mazzola L, Royet JP, Catenoix H, Montavont A, Isnard J, Mauguière F. Gustatory and olfactory responses to stimulation of the human insula. Ann Neurol 2017, 82: 360–370.PubMedCrossRef
36.
go back to reference Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. Distinct representations of basic taste qualities in human gustatory cortex. Nat Commun 2019, 10: 1048.PubMedPubMedCentralCrossRef Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. Distinct representations of basic taste qualities in human gustatory cortex. Nat Commun 2019, 10: 1048.PubMedPubMedCentralCrossRef
37.
go back to reference Jao Keehn RJ, Pueschel EB, Gao Y, Jahedi A, Alemu K, Carper R, et al. Underconnectivity between visual and salience networks and links with sensory abnormalities in autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2021, 60: 274–285.PubMedCrossRef Jao Keehn RJ, Pueschel EB, Gao Y, Jahedi A, Alemu K, Carper R, et al. Underconnectivity between visual and salience networks and links with sensory abnormalities in autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2021, 60: 274–285.PubMedCrossRef
38.
39.
41.
go back to reference Chen K, Kogan JF, Fontanini A. Spatially distributed representation of taste quality in the gustatory insular cortex of behaving mice. Curr Biol 2021, 31: 247-256.e4.PubMedCrossRef Chen K, Kogan JF, Fontanini A. Spatially distributed representation of taste quality in the gustatory insular cortex of behaving mice. Curr Biol 2021, 31: 247-256.e4.PubMedCrossRef
42.
go back to reference Peng Y, Gillis-Smith S, Jin H, Tränkner D, Ryba NJP, Zuker CS. Sweet and bitter taste in the brain of awake behaving animals. Nature 2015, 527: 512–515.PubMedPubMedCentralCrossRef Peng Y, Gillis-Smith S, Jin H, Tränkner D, Ryba NJP, Zuker CS. Sweet and bitter taste in the brain of awake behaving animals. Nature 2015, 527: 512–515.PubMedPubMedCentralCrossRef
43.
44.
go back to reference Lu C, Yang T, Zhao H, Zhang M, Meng F, Fu H, et al. Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci Bull 2016, 32: 191–201.PubMedPubMedCentralCrossRef Lu C, Yang T, Zhao H, Zhang M, Meng F, Fu H, et al. Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci Bull 2016, 32: 191–201.PubMedPubMedCentralCrossRef
45.
46.
go back to reference Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: A single-trial fMRI study. Pain 2007, 128: 20–30.PubMedCrossRef Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: A single-trial fMRI study. Pain 2007, 128: 20–30.PubMedCrossRef
47.
go back to reference Mazzola L, Isnard J, Peyron R, Guénot M, Mauguière F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009, 146: 99–104.PubMedCrossRef Mazzola L, Isnard J, Peyron R, Guénot M, Mauguière F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009, 146: 99–104.PubMedCrossRef
48.
go back to reference Hoskin R, Talmi D. Adaptive coding of pain prediction error in the anterior insula. Eur J Pain 2023, 27: 766–778.PubMedCrossRef Hoskin R, Talmi D. Adaptive coding of pain prediction error in the anterior insula. Eur J Pain 2023, 27: 766–778.PubMedCrossRef
49.
go back to reference Zhang MM, Geng AQ, Chen K, Wang J, Wang P, Qiu XT, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 2022, 110: 1993-2008.e6.PubMedCrossRef Zhang MM, Geng AQ, Chen K, Wang J, Wang P, Qiu XT, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 2022, 110: 1993-2008.e6.PubMedCrossRef
50.
go back to reference Gehrlach DA, Dolensek N, Klein AS, Roy Chowdhury R, Matthys A, Junghänel M, et al. Aversive state processing in the posterior insular cortex. Nat Neurosci 2019, 22: 1424–1437.PubMedCrossRef Gehrlach DA, Dolensek N, Klein AS, Roy Chowdhury R, Matthys A, Junghänel M, et al. Aversive state processing in the posterior insular cortex. Nat Neurosci 2019, 22: 1424–1437.PubMedCrossRef
51.
go back to reference Forkmann K, Wiech K, Schmidt K, Schmid-Köhler J, Bingel U. Neural underpinnings of preferential pain learning and the modulatory role of fear. Cereb Cortex 2023, 33: 9664–9676.PubMedCrossRef Forkmann K, Wiech K, Schmidt K, Schmid-Köhler J, Bingel U. Neural underpinnings of preferential pain learning and the modulatory role of fear. Cereb Cortex 2023, 33: 9664–9676.PubMedCrossRef
52.
go back to reference Yawata Y, Shikano Y, Ogasawara J, Makino K, Kashima T, Ihara K, et al. Mesolimbic dopamine release precedes actively sought aversive stimuli in mice. Nat Commun 2023, 14: 2433.PubMedPubMedCentralCrossRef Yawata Y, Shikano Y, Ogasawara J, Makino K, Kashima T, Ihara K, et al. Mesolimbic dopamine release precedes actively sought aversive stimuli in mice. Nat Commun 2023, 14: 2433.PubMedPubMedCentralCrossRef
53.
go back to reference Chouchou F, Mauguière F, Vallayer O, Catenoix H, Isnard J, Montavont A, et al. How the insula speaks to the heart: Cardiac responses to insular stimulation in humans. Hum Brain Mapp 2019, 40: 2611–2622.PubMedPubMedCentralCrossRef Chouchou F, Mauguière F, Vallayer O, Catenoix H, Isnard J, Montavont A, et al. How the insula speaks to the heart: Cardiac responses to insular stimulation in humans. Hum Brain Mapp 2019, 40: 2611–2622.PubMedPubMedCentralCrossRef
54.
go back to reference Penfield W, Faulk MEJR. The insula: Further observations on its function. Brain 1955, 78: 445–470.PubMedCrossRef Penfield W, Faulk MEJR. The insula: Further observations on its function. Brain 1955, 78: 445–470.PubMedCrossRef
55.
go back to reference Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci 2021, 44: 3–16.PubMedPubMedCentralCrossRef Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci 2021, 44: 3–16.PubMedPubMedCentralCrossRef
56.
go back to reference Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, et al. Estimation of current and future physiological states in insular cortex. Neuron 2020, 105: 1094-1111.e10.PubMedPubMedCentralCrossRef Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, et al. Estimation of current and future physiological states in insular cortex. Neuron 2020, 105: 1094-1111.e10.PubMedPubMedCentralCrossRef
58.
go back to reference Prilutski Y, Livneh Y. Physiological needs: Sensations and predictions in the insular cortex. Physiology 2023, 38: 0. Prilutski Y, Livneh Y. Physiological needs: Sensations and predictions in the insular cortex. Physiology 2023, 38: 0.
59.
go back to reference Livneh Y, Ramesh RN, Burgess CR, Levandowski KM, Madara JC, Fenselau H, et al. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 2017, 546: 611–616.PubMedPubMedCentralCrossRef Livneh Y, Ramesh RN, Burgess CR, Levandowski KM, Madara JC, Fenselau H, et al. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 2017, 546: 611–616.PubMedPubMedCentralCrossRef
60.
go back to reference Nunn K, Frampton I, Fuglset TS, Törzsök-Sonnevend M, Lask B. Anorexia nervosa and the insula. Med Hypotheses 2011, 76: 353–357.PubMedCrossRef Nunn K, Frampton I, Fuglset TS, Törzsök-Sonnevend M, Lask B. Anorexia nervosa and the insula. Med Hypotheses 2011, 76: 353–357.PubMedCrossRef
61.
go back to reference Nunn K, Frampton I, Gordon I, Lask B. The fault is not in her parents but in her insula—a neurobiological hypothesis of anorexia nervosa. Eur Eat Disord Rev 2008, 16: 355–360.PubMedCrossRef Nunn K, Frampton I, Gordon I, Lask B. The fault is not in her parents but in her insula—a neurobiological hypothesis of anorexia nervosa. Eur Eat Disord Rev 2008, 16: 355–360.PubMedCrossRef
62.
go back to reference Dolensek N, Gehrlach DA, Klein AS, Gogolla N. Facial expressions of emotion states and their neuronal correlates in mice. Science 2020, 368: 89–94.PubMedCrossRef Dolensek N, Gehrlach DA, Klein AS, Gogolla N. Facial expressions of emotion states and their neuronal correlates in mice. Science 2020, 368: 89–94.PubMedCrossRef
63.
go back to reference Pang J, Tang X, Li H, Hu Q, Cui H, Zhang L, et al. Altered interoceptive processing in generalized anxiety disorder-a heartbeat-evoked potential research. Front Psychiatry 2019, 10: 616.PubMedPubMedCentralCrossRef Pang J, Tang X, Li H, Hu Q, Cui H, Zhang L, et al. Altered interoceptive processing in generalized anxiety disorder-a heartbeat-evoked potential research. Front Psychiatry 2019, 10: 616.PubMedPubMedCentralCrossRef
66.
go back to reference Klein AS, Dolensek N, Weiand C, Gogolla N. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 2021, 374: 1010–1015.PubMedCrossRef Klein AS, Dolensek N, Weiand C, Gogolla N. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 2021, 374: 1010–1015.PubMedCrossRef
69.
go back to reference Suvilehto JT, Renvall V, Nummenmaa L. Relationship-specific encoding of social touch in somatosensory and insular cortices. Neuroscience 2021, 464: 105–116.PubMedCrossRef Suvilehto JT, Renvall V, Nummenmaa L. Relationship-specific encoding of social touch in somatosensory and insular cortices. Neuroscience 2021, 464: 105–116.PubMedCrossRef
70.
go back to reference Harshaw C. Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol Bull 2015, 141: 311–363.PubMedCrossRef Harshaw C. Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol Bull 2015, 141: 311–363.PubMedCrossRef
71.
go back to reference Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: A critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci 2014, 1316: 53–70.PubMedPubMedCentralCrossRef Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: A critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci 2014, 1316: 53–70.PubMedPubMedCentralCrossRef
73.
go back to reference Manes F, Paradiso S, Robinson RG. Neuropsychiatric effects of insular stroke. J Nerv Ment Dis 1999, 187: 707–712.PubMedCrossRef Manes F, Paradiso S, Robinson RG. Neuropsychiatric effects of insular stroke. J Nerv Ment Dis 1999, 187: 707–712.PubMedCrossRef
76.
go back to reference Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci 2011, 1225: 72–82.PubMedCrossRef Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci 2011, 1225: 72–82.PubMedCrossRef
77.
go back to reference Blomqvist A, Evrard HC, Dostrovsky JO, Strigo IA, Jänig W. A. D. (bud) craig, jr. (1951–2023). Nat Neurosci 2023, 26: 1835–1836. Blomqvist A, Evrard HC, Dostrovsky JO, Strigo IA, Jänig W. A. D. (bud) craig, jr. (1951–2023). Nat Neurosci 2023, 26: 1835–1836.
78.
go back to reference Craig AD. Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 2009, 364: 1933–1942.PubMedPubMedCentralCrossRef Craig AD. Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 2009, 364: 1933–1942.PubMedPubMedCentralCrossRef
79.
go back to reference Vicario CM, Kuran KA, Urgesi C. Does hunger sharpen senses? A psychophysics investigation on the effects of appetite in the timing of reinforcement-oriented actions. Psychol Res 2019, 83: 395–405.PubMedCrossRef Vicario CM, Kuran KA, Urgesi C. Does hunger sharpen senses? A psychophysics investigation on the effects of appetite in the timing of reinforcement-oriented actions. Psychol Res 2019, 83: 395–405.PubMedCrossRef
80.
go back to reference Kosillo P, Smith AT. The role of the human anterior insular cortex in time processing. Brain Struct Funct 2010, 214: 623–628.PubMedCrossRef Kosillo P, Smith AT. The role of the human anterior insular cortex in time processing. Brain Struct Funct 2010, 214: 623–628.PubMedCrossRef
81.
go back to reference Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49: 1728–1740.PubMedCrossRef Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49: 1728–1740.PubMedCrossRef
82.
go back to reference Wittmann M, Simmons AN, Aron JL, Paulus MP. Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia 2010, 48: 3110–3120.PubMedPubMedCentralCrossRef Wittmann M, Simmons AN, Aron JL, Paulus MP. Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia 2010, 48: 3110–3120.PubMedPubMedCentralCrossRef
83.
go back to reference Mondok C, Wiener M. Selectivity of timing: A meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front Hum Neurosci 2022, 16: 1000995.PubMedCrossRef Mondok C, Wiener M. Selectivity of timing: A meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front Hum Neurosci 2022, 16: 1000995.PubMedCrossRef
84.
go back to reference Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, et al. Embodying time in the brain: A multi-dimensional neuroimaging meta-analysis of 95 duration processing studies. Neuropsychol Rev 2024, 34: 277–298.PubMedCrossRef Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, et al. Embodying time in the brain: A multi-dimensional neuroimaging meta-analysis of 95 duration processing studies. Neuropsychol Rev 2024, 34: 277–298.PubMedCrossRef
85.
go back to reference Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 1996, 351: 1413–1420.PubMedCrossRef Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 1996, 351: 1413–1420.PubMedCrossRef
86.
go back to reference Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 2000, 3: 1049–1056.PubMedCrossRef Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 2000, 3: 1049–1056.PubMedCrossRef
87.
go back to reference Loued-Khenissi L, Pfeuffer A, Einhäuser W, Preuschoff K. Anterior insula reflects surprise in value-based decision-making and perception. NeuroImage 2020, 210: 116549.PubMedCrossRef Loued-Khenissi L, Pfeuffer A, Einhäuser W, Preuschoff K. Anterior insula reflects surprise in value-based decision-making and perception. NeuroImage 2020, 210: 116549.PubMedCrossRef
88.
go back to reference Paulus MP, Feinstein JS, Leland D, Simmons AN. Superior temporal gyrus and insula provide response and outcome-dependent information during assessment and action selection in a decision-making situation. NeuroImage 2005, 25: 607–615.PubMedCrossRef Paulus MP, Feinstein JS, Leland D, Simmons AN. Superior temporal gyrus and insula provide response and outcome-dependent information during assessment and action selection in a decision-making situation. NeuroImage 2005, 25: 607–615.PubMedCrossRef
89.
go back to reference Schiff HC, Bouhuis AL, Yu K, Penzo MA, Li H, He M, et al. An Insula-central amygdala circuit for guiding tastant-reinforced choice behavior. J Neurosci 2018, 38: 1418–1429.PubMedPubMedCentralCrossRef Schiff HC, Bouhuis AL, Yu K, Penzo MA, Li H, He M, et al. An Insula-central amygdala circuit for guiding tastant-reinforced choice behavior. J Neurosci 2018, 38: 1418–1429.PubMedPubMedCentralCrossRef
90.
go back to reference Vincis R, Chen K, Czarnecki L, Chen J, Fontanini A. Dynamic representation of taste-related decisions in the gustatory insular cortex of mice. Curr Biol 2020, 30: 1834-1844.e5.PubMedPubMedCentralCrossRef Vincis R, Chen K, Czarnecki L, Chen J, Fontanini A. Dynamic representation of taste-related decisions in the gustatory insular cortex of mice. Curr Biol 2020, 30: 1834-1844.e5.PubMedPubMedCentralCrossRef
91.
go back to reference Korucuoglu O, Harms MP, Kennedy JT, Golosheykin S, Astafiev SV, Barch DM, et al. Adolescent decision-making under risk: Neural correlates and sex differences. Cereb Cortex 2020, 30: 2690–2706.PubMedCrossRef Korucuoglu O, Harms MP, Kennedy JT, Golosheykin S, Astafiev SV, Barch DM, et al. Adolescent decision-making under risk: Neural correlates and sex differences. Cereb Cortex 2020, 30: 2690–2706.PubMedCrossRef
93.
go back to reference Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD. The neural basis of economic decision-making in the Ultimatum Game. Science 2003, 300: 1755–1758.PubMedCrossRef Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD. The neural basis of economic decision-making in the Ultimatum Game. Science 2003, 300: 1755–1758.PubMedCrossRef
94.
go back to reference Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, et al. The functional and structural neural basis of individual differences in loss aversion. J Neurosci 2013, 33: 14307–14317.PubMedPubMedCentralCrossRef Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, et al. The functional and structural neural basis of individual differences in loss aversion. J Neurosci 2013, 33: 14307–14317.PubMedPubMedCentralCrossRef
95.
go back to reference Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 2008, 131: 1311–1322.PubMedPubMedCentralCrossRef Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 2008, 131: 1311–1322.PubMedPubMedCentralCrossRef
96.
go back to reference Weller JA, Levin IP, Shiv B, Bechara A. The effects of insula damage on decision-making for risky gains and losses. Soc Neurosci 2009, 4: 347–358.PubMedCrossRef Weller JA, Levin IP, Shiv B, Bechara A. The effects of insula damage on decision-making for risky gains and losses. Soc Neurosci 2009, 4: 347–358.PubMedCrossRef
97.
go back to reference Lamm C, Singer T. The role of anterior insular cortex in social emotions. Brain Struct Funct 2010, 214: 579–591.PubMedCrossRef Lamm C, Singer T. The role of anterior insular cortex in social emotions. Brain Struct Funct 2010, 214: 579–591.PubMedCrossRef
99.
go back to reference Singer T, Steinbeis N. Differential roles of fairness- and compassion-based motivations for cooperation, defection, and punishment. Ann N Y Acad Sci 2009, 1167: 41–50.PubMedCrossRef Singer T, Steinbeis N. Differential roles of fairness- and compassion-based motivations for cooperation, defection, and punishment. Ann N Y Acad Sci 2009, 1167: 41–50.PubMedCrossRef
100.
go back to reference Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol 2011, 62: 23–48.PubMedCrossRef Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol 2011, 62: 23–48.PubMedCrossRef
101.
Metadata
Title
The Insular Cortex: An Interface Between Sensation, Emotion and Cognition
Authors
Ruohan Zhang
Hanfei Deng
Xiong Xiao
Publication date
09-05-2024
Publisher
Springer Nature Singapore
Published in
Neuroscience Bulletin
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-024-01211-4