Skip to main content
Top
Published in:

Open Access 01-12-2024 | Review

The advance of single cell transcriptome to study kidney immune cells in diabetic kidney disease

Authors: Mengjia Wang, Fang Yao, Ning Chen, Ting Wu, Jiaxin Yan, Linshan Du, Shijie Zeng, Chunyang Du

Published in: BMC Nephrology | Issue 1/2024

Login to get access

Abstract

Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes mellitus and a primary cause of end-stage renal disease (ESRD). Increasing studies suggest that immune cells are involved in regulating renal inflammation, which contributes to the progression of DKD. Compared with conventional methods, single-cell sequencing technology is more developed technique that has advantages in resolving cellular heterogeneity, parallel multi-omics studies, and discovering new cell types. ScRNA-seq helps researchers to analyze specifically gene expressions, signaling pathways, intercellular communication as well as their regulations in various immune cells of kidney biopsy and urine samples. It is still challenging to investigate the function of each cell type in the pathophysiology of kidney due to its complex and heterogeneous structure and function. Here, we discuss the application of single-cell transcriptomics in the field of DKD and highlight several recent studies that explore the important role of immune cells including macrophage, T cells, B cells etc. in DKD through scRNA-seq analyses. Through combing the researches of scRNA-seq on immune cells in DKD, this review provides novel perspectives on the pathogenesis and immune therapeutic strategy for DKD.
Literature
1.
2.
go back to reference Bojestig M, Arnqvist HJ, Hermansson G, Karlberg BE, Ludvigsson J. Declining incidence of Nephropathy in insulin-dependent diabetes Mellitus. N Engl J Med. 1994;330(1):15–8.PubMedCrossRef Bojestig M, Arnqvist HJ, Hermansson G, Karlberg BE, Ludvigsson J. Declining incidence of Nephropathy in insulin-dependent diabetes Mellitus. N Engl J Med. 1994;330(1):15–8.PubMedCrossRef
3.
go back to reference Hovind P, Tarnow L, Rossing K, Rossing P, Eising S, Larsen N, et al. Decreasing incidence of severe Diabetic Microangiopathy in Type 1 diabetes. Diabetes Care. 2003;26(4):1258–64.PubMedCrossRef Hovind P, Tarnow L, Rossing K, Rossing P, Eising S, Larsen N, et al. Decreasing incidence of severe Diabetic Microangiopathy in Type 1 diabetes. Diabetes Care. 2003;26(4):1258–64.PubMedCrossRef
4.
go back to reference Burrows NR, Li Y, Geiss LS. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care. 2010;33(1):73–7.PubMedPubMedCentralCrossRef Burrows NR, Li Y, Geiss LS. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care. 2010;33(1):73–7.PubMedPubMedCentralCrossRef
5.
go back to reference Zoccali C, Kramer A, Jager K. The databases: renal replacement therapy since 1989—The European Renal Association and European Dialysis and Transplant Association (ERA-EDTA). Clin J Am Soc Nephrol. 2009;4(1 Suppl):S18–22.PubMedCrossRef Zoccali C, Kramer A, Jager K. The databases: renal replacement therapy since 1989—The European Renal Association and European Dialysis and Transplant Association (ERA-EDTA). Clin J Am Soc Nephrol. 2009;4(1 Suppl):S18–22.PubMedCrossRef
6.
go back to reference Ogurtsova K, Da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.PubMedCrossRef Ogurtsova K, Da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.PubMedCrossRef
7.
8.
go back to reference Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of Diabetic kidney disease. N Engl J Med. 1989;320(18):1161–65.PubMedCrossRef Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of Diabetic kidney disease. N Engl J Med. 1989;320(18):1161–65.PubMedCrossRef
9.
go back to reference Borch-Johnsen K, Nørgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, et al. Is diabetic nephropathy an inherited complication? Kidney Int. 1992;41(4):719–22.PubMedCrossRef Borch-Johnsen K, Nørgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, et al. Is diabetic nephropathy an inherited complication? Kidney Int. 1992;41(4):719–22.PubMedCrossRef
10.
go back to reference Lee J, Tsogbadrakh B, Yang S, Ryu H, Kang E, Kang M, et al. Klotho ameliorates protection. Biochem Biophys Res Commun. 2021;534:1040–46.PubMedCrossRef Lee J, Tsogbadrakh B, Yang S, Ryu H, Kang E, Kang M, et al. Klotho ameliorates protection. Biochem Biophys Res Commun. 2021;534:1040–46.PubMedCrossRef
11.
go back to reference Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, Group ftUS. Risk factors for renal dysfunction in type 2 diabetes. Diabetes. 2006;55(6):1832–39.PubMedCrossRef Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, Group ftUS. Risk factors for renal dysfunction in type 2 diabetes. Diabetes. 2006;55(6):1832–39.PubMedCrossRef
12.
go back to reference Hasan I, Brifkani Z, Heilig C, Nahman N, Atta M, Heilig K et al. Diabetic Nephropathy on Renal Biopsy in the absence of clinical diabetes Mellitus. Am J Kidney Dis. 2020;75(4):583. Hasan I, Brifkani Z, Heilig C, Nahman N, Atta M, Heilig K et al. Diabetic Nephropathy on Renal Biopsy in the absence of clinical diabetes Mellitus. Am J Kidney Dis. 2020;75(4):583.
13.
go back to reference Li Y, Pan Y, Cao S, Sasaki K, Wang Y, Niu A, et al. Podocyte EGFR inhibits Autophagy through Upregulation of Rubicon in type 2 Diabetic Nephropathy. Diabetes. 2021;70(2):562–76.PubMedCrossRef Li Y, Pan Y, Cao S, Sasaki K, Wang Y, Niu A, et al. Podocyte EGFR inhibits Autophagy through Upregulation of Rubicon in type 2 Diabetic Nephropathy. Diabetes. 2021;70(2):562–76.PubMedCrossRef
14.
go back to reference Ma J, Li C, Liu T, Zhang L, Wen X, Liu X, et al. Identification of markers for diagnosis and treatment of Diabetic kidney Disease based on the ferroptosis and Immune. Oxid Med Cell Longev. 2022;2022:1–21. Ma J, Li C, Liu T, Zhang L, Wen X, Liu X, et al. Identification of markers for diagnosis and treatment of Diabetic kidney Disease based on the ferroptosis and Immune. Oxid Med Cell Longev. 2022;2022:1–21.
15.
go back to reference Kurts C, Panzer U, Anders H-J, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013;13(10):738–53.PubMedCrossRef Kurts C, Panzer U, Anders H-J, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013;13(10):738–53.PubMedCrossRef
16.
go back to reference Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol. 2021;17(10):655–75.PubMedCrossRef Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol. 2021;17(10):655–75.PubMedCrossRef
17.
go back to reference Eberwine J, Sul J-Y, Bartfai T, Kim J. The promise of single-cell sequencing. Nat Methods. 2014;11(1):25–7.PubMedCrossRef Eberwine J, Sul J-Y, Bartfai T, Kim J. The promise of single-cell sequencing. Nat Methods. 2014;11(1):25–7.PubMedCrossRef
18.
19.
go back to reference Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.PubMedCrossRef Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.PubMedCrossRef
20.
go back to reference Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160–67.PubMedPubMedCentralCrossRef Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160–67.PubMedPubMedCentralCrossRef
21.
go back to reference Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82.PubMedPubMedCentralCrossRef Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82.PubMedPubMedCentralCrossRef
22.
go back to reference Macosko Evan Z, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161(5):1202–14.PubMedPubMedCentralCrossRef Macosko Evan Z, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161(5):1202–14.PubMedPubMedCentralCrossRef
23.
go back to reference Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395–98.PubMedPubMedCentralCrossRef Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395–98.PubMedPubMedCentralCrossRef
24.
go back to reference Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes—Next Generation Tools for tissue exploration. BioEssays. 2020;42(10):1900221.CrossRef Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes—Next Generation Tools for tissue exploration. BioEssays. 2020;42(10):1900221.CrossRef
25.
go back to reference Liu C, Li R, Li Y, Lin X, Zhao K, Liu Q, et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev Cell. 2022;57(10):1284–e985.PubMedCrossRef Liu C, Li R, Li Y, Lin X, Zhao K, Liu Q, et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev Cell. 2022;57(10):1284–e985.PubMedCrossRef
26.
go back to reference Wang Y, Chen Y, Gao J, Xie H, Guo Y, Yang J, et al. Mapping crossover events of mouse meiotic recombination by restriction fragment ligation-based Refresh-Seq. Cell Discov. 2024;10(1):26.PubMedPubMedCentralCrossRef Wang Y, Chen Y, Gao J, Xie H, Guo Y, Yang J, et al. Mapping crossover events of mouse meiotic recombination by restriction fragment ligation-based Refresh-Seq. Cell Discov. 2024;10(1):26.PubMedPubMedCentralCrossRef
27.
go back to reference Isnard P, D Humphreys B. Spatial transcriptomics: integrating morphology and molecular mechanisms of kidney diseases. Am J Pathol. 2024. S0002-9440(24)00276-1. Isnard P, D Humphreys B. Spatial transcriptomics: integrating morphology and molecular mechanisms of kidney diseases. Am J Pathol. 2024. S0002-9440(24)00276-1.
28.
go back to reference Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12(1):2190.PubMedPubMedCentralCrossRef Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12(1):2190.PubMedPubMedCentralCrossRef
29.
go back to reference Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391–99.PubMedPubMedCentralCrossRef Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391–99.PubMedPubMedCentralCrossRef
30.
go back to reference Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–e434.PubMedCrossRef Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–e434.PubMedCrossRef
31.
go back to reference Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12(1):44–73.PubMedCrossRef Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12(1):44–73.PubMedCrossRef
32.
go back to reference Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6(6):1186–99.PubMedCrossRef Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6(6):1186–99.PubMedCrossRef
33.
go back to reference Aad G, Abbott B, Abbott DC, Abud AA, Abeling K, Abhayasinghe DK, et al. Measurements of jet observables sensitive to b-quark fragmentation in tt¯ events at the LHC with the ATLAS detector. Phys Rev D. 2022;106(3):032008.CrossRef Aad G, Abbott B, Abbott DC, Abud AA, Abeling K, Abhayasinghe DK, et al. Measurements of jet observables sensitive to b-quark fragmentation in tt¯ events at the LHC with the ATLAS detector. Phys Rev D. 2022;106(3):032008.CrossRef
34.
go back to reference Spadaccini R, Crescenzi O, Tancredi T, De Casamassimi N, Saviano G, Scognamiglio R, et al. Solution structure of a sweet protein: NMR study of MNEI, a single chain monellin. J Mol Biol. 2001;305(3):505–14.PubMedCrossRef Spadaccini R, Crescenzi O, Tancredi T, De Casamassimi N, Saviano G, Scognamiglio R, et al. Solution structure of a sweet protein: NMR study of MNEI, a single chain monellin. J Mol Biol. 2001;305(3):505–14.PubMedCrossRef
35.
go back to reference Yilmaz S, Allgaier M, Hugenholtz P. Multiple displacement amplification compromises quantitative analysis of metagenomes. Nat Methods. 2010;7(12):943–44.PubMedCrossRef Yilmaz S, Allgaier M, Hugenholtz P. Multiple displacement amplification compromises quantitative analysis of metagenomes. Nat Methods. 2010;7(12):943–44.PubMedCrossRef
36.
go back to reference Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–98.PubMedCrossRef Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–98.PubMedCrossRef
37.
go back to reference Mao ZH, Gao ZX, Liu Y, Liu DW, Liu ZS, Wu P. Single-cell transcriptomics: a new tool for studying diabetic kidney disease. Front Physiol. 2023;13:1053850.PubMedPubMedCentralCrossRef Mao ZH, Gao ZX, Liu Y, Liu DW, Liu ZS, Wu P. Single-cell transcriptomics: a new tool for studying diabetic kidney disease. Front Physiol. 2023;13:1053850.PubMedPubMedCentralCrossRef
38.
go back to reference Ong E, Wang LL, Schaub J, O’Toole JF, Steck B, Rosenberg AZ, et al. Modelling kidney disease using ontology: insights from the kidney Precision Medicine Project. Nat Rev Nephrol. 2020;16(11):686–96.PubMedPubMedCentralCrossRef Ong E, Wang LL, Schaub J, O’Toole JF, Steck B, Rosenberg AZ, et al. Modelling kidney disease using ontology: insights from the kidney Precision Medicine Project. Nat Rev Nephrol. 2020;16(11):686–96.PubMedPubMedCentralCrossRef
39.
go back to reference Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol. 2019;37(12):1452–57.PubMedPubMedCentralCrossRef Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol. 2019;37(12):1452–57.PubMedPubMedCentralCrossRef
40.
go back to reference Pijuan-Sala B, Wilson NK, Xia J, Hou X, Hannah RL, Kinston S, et al. Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nat Cell Biol. 2020;22(4):487–97.PubMedPubMedCentralCrossRef Pijuan-Sala B, Wilson NK, Xia J, Hou X, Hannah RL, Kinston S, et al. Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nat Cell Biol. 2020;22(4):487–97.PubMedPubMedCentralCrossRef
41.
go back to reference Wu H, Kirita Y, Donnelly EL, Humphreys BD. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and Novel Cell States revealed in fibrosis. J Am Soc Nephrol. 2019;30(1):23–32.PubMedCrossRef Wu H, Kirita Y, Donnelly EL, Humphreys BD. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and Novel Cell States revealed in fibrosis. J Am Soc Nephrol. 2019;30(1):23–32.PubMedCrossRef
42.
go back to reference Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, et al. Chromatin and single-cell RNA-Seq profiling reveal Dynamic Signaling and metabolic transitions during human spermatogonial stem Cell Development. Cell Stem Cell. 2017;21(4):533–e466.PubMedPubMedCentralCrossRef Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, et al. Chromatin and single-cell RNA-Seq profiling reveal Dynamic Signaling and metabolic transitions during human spermatogonial stem Cell Development. Cell Stem Cell. 2017;21(4):533–e466.PubMedPubMedCentralCrossRef
43.
go back to reference Wang Q, Zhang Y, Zhang B, Fu Y, Zhao X, Zhang J, et al. Single-cell chromatin accessibility landscape in kidney identifies additional cell-of-origin in heterogenous papillary renal cell carcinoma. Nat Commun. 2022;13(1):31.PubMedPubMedCentralCrossRef Wang Q, Zhang Y, Zhang B, Fu Y, Zhao X, Zhang J, et al. Single-cell chromatin accessibility landscape in kidney identifies additional cell-of-origin in heterogenous papillary renal cell carcinoma. Nat Commun. 2022;13(1):31.PubMedPubMedCentralCrossRef
44.
go back to reference Gisch DL, Brennan M, Lake BB, Basta J, Keller MS, Ferreiraet RM, et al. The chromatin landscape of healthy and injured cell types in the human kidney. Nat Commun. 2024;15(1):433.PubMedPubMedCentralCrossRef Gisch DL, Brennan M, Lake BB, Basta J, Keller MS, Ferreiraet RM, et al. The chromatin landscape of healthy and injured cell types in the human kidney. Nat Commun. 2024;15(1):433.PubMedPubMedCentralCrossRef
45.
go back to reference Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758–63.PubMedPubMedCentralCrossRef Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758–63.PubMedPubMedCentralCrossRef
46.
go back to reference Fu J, Akat KM, Sun Z, Zhang W, Schlondorff D, Liu Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in Experimental Diabetic kidney disease. J Am Soc Nephrol. 2019;30(4):533–45.PubMedPubMedCentralCrossRef Fu J, Akat KM, Sun Z, Zhang W, Schlondorff D, Liu Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in Experimental Diabetic kidney disease. J Am Soc Nephrol. 2019;30(4):533–45.PubMedPubMedCentralCrossRef
47.
go back to reference Dumas SJ, Meta E, Borri M, Goveia J, Rohlenova K, Conchinha NV, et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to Water Deprivation. J Am Soc Nephrol. 2020;31(1):118–38.PubMedCrossRef Dumas SJ, Meta E, Borri M, Goveia J, Rohlenova K, Conchinha NV, et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to Water Deprivation. J Am Soc Nephrol. 2020;31(1):118–38.PubMedCrossRef
48.
go back to reference Chung J-J, Goldstein L, Chen Y-JJ, Lee J, Webster JD, Roose-Girma M, et al. Single-cell transcriptome profiling of the kidney Glomerulus identifies key cell types and reactions to Injury. J Am Soc Nephrol. 2020;31(10):2341–54.PubMedPubMedCentralCrossRef Chung J-J, Goldstein L, Chen Y-JJ, Lee J, Webster JD, Roose-Girma M, et al. Single-cell transcriptome profiling of the kidney Glomerulus identifies key cell types and reactions to Injury. J Am Soc Nephrol. 2020;31(10):2341–54.PubMedPubMedCentralCrossRef
49.
go back to reference Braun DA, Street K, Burke KP, Cookmeyer DL, Denize T, Pedersen CB, et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell. 2021;39(5):632–e488.PubMedPubMedCentralCrossRef Braun DA, Street K, Burke KP, Cookmeyer DL, Denize T, Pedersen CB, et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell. 2021;39(5):632–e488.PubMedPubMedCentralCrossRef
50.
go back to reference Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell. 2021;39(5):662–e776.PubMedPubMedCentralCrossRef Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell. 2021;39(5):662–e776.PubMedPubMedCentralCrossRef
51.
go back to reference Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell. 2021;184(11):2988–e300516.PubMedPubMedCentralCrossRef Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell. 2021;184(11):2988–e300516.PubMedPubMedCentralCrossRef
52.
go back to reference He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller-Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12(1):2141.PubMedPubMedCentralCrossRef He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller-Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12(1):2141.PubMedPubMedCentralCrossRef
53.
go back to reference Pickering H, Sen S, Arakawa-Hoyt J, Ishiyama K, Sun Y, Parmar R, et al. NK and CD8 + T cell phenotypes predict onset and control of CMV viremia after kidney transplant. JCI Insight. 2021;6(21):e153175.PubMedPubMedCentralCrossRef Pickering H, Sen S, Arakawa-Hoyt J, Ishiyama K, Sun Y, Parmar R, et al. NK and CD8 + T cell phenotypes predict onset and control of CMV viremia after kidney transplant. JCI Insight. 2021;6(21):e153175.PubMedPubMedCentralCrossRef
54.
go back to reference Sheng X, Guan Y, Ma Z, Wu J, Liu H, Qiu C, et al. Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. Nat Genet. 2021;53(9):1322–33.PubMedPubMedCentralCrossRef Sheng X, Guan Y, Ma Z, Wu J, Liu H, Qiu C, et al. Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. Nat Genet. 2021;53(9):1322–33.PubMedPubMedCentralCrossRef
55.
go back to reference Li H, Dixon EE, Wu H, Humphreys BD. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 2022;34(12):1977–e989.PubMedPubMedCentralCrossRef Li H, Dixon EE, Wu H, Humphreys BD. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 2022;34(12):1977–e989.PubMedPubMedCentralCrossRef
56.
go back to reference Wu H, Gonzalez Villalobos R, Yao X, Reilly D, Chen T, Rankin M, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022;34(7):1064–e786.PubMedPubMedCentralCrossRef Wu H, Gonzalez Villalobos R, Yao X, Reilly D, Chen T, Rankin M, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022;34(7):1064–e786.PubMedPubMedCentralCrossRef
57.
go back to reference Lu X, Li L, Suo L, Huang P, Wang H, Han S, et al. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the Progression of Diabetic Nephropathy. Front Cell Dev Biol. 2022;10:798316. Lu X, Li L, Suo L, Huang P, Wang H, Han S, et al. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the Progression of Diabetic Nephropathy. Front Cell Dev Biol. 2022;10:798316.
58.
go back to reference Li R, Ferdinand JR, Loudon KW, Bowyer GS, Laidlaw S, Muyas F, et al. Mapping single-cell transcriptomes in the intra-tumoral and associated territories of kidney cancer. Cancer Cell. 2022;40(12):1583–e9910.PubMedPubMedCentralCrossRef Li R, Ferdinand JR, Loudon KW, Bowyer GS, Laidlaw S, Muyas F, et al. Mapping single-cell transcriptomes in the intra-tumoral and associated territories of kidney cancer. Cancer Cell. 2022;40(12):1583–e9910.PubMedPubMedCentralCrossRef
59.
go back to reference Kong F, Ye S, Zhong Z, Zhou X, Zhou W, Liu Z, et al. Single-cell transcriptome analysis of chronic antibody-mediated rejection after renal transplantation. Front Immunol. 2022;12:767618.PubMedPubMedCentralCrossRef Kong F, Ye S, Zhong Z, Zhou X, Zhou W, Liu Z, et al. Single-cell transcriptome analysis of chronic antibody-mediated rejection after renal transplantation. Front Immunol. 2022;12:767618.PubMedPubMedCentralCrossRef
60.
go back to reference Rashmi P, Sur S, Sigdel TK, Boada P, Schroeder AW, Damm I, et al. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am J Transpl. 2022;22(3):876–85.CrossRef Rashmi P, Sur S, Sigdel TK, Boada P, Schroeder AW, Damm I, et al. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am J Transpl. 2022;22(3):876–85.CrossRef
61.
go back to reference Lake BB, Menon R, Winfree S, Hu Q, Ferreira RM, Kalhor K, et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature. 2023;619(7970):585–94.PubMedPubMedCentralCrossRef Lake BB, Menon R, Winfree S, Hu Q, Ferreira RM, Kalhor K, et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature. 2023;619(7970):585–94.PubMedPubMedCentralCrossRef
62.
go back to reference McDaniels JM, Shetty AC, Kuscu C, Kuscu C, Bardhi E, Rousselle T, et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 2023;103(6):1077–92.PubMedPubMedCentralCrossRef McDaniels JM, Shetty AC, Kuscu C, Kuscu C, Bardhi E, Rousselle T, et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 2023;103(6):1077–92.PubMedPubMedCentralCrossRef
63.
go back to reference Wen N, Wu J, Li H, Liao J, Lan L, Yang X, et al. Immune landscape in rejection of renal transplantation revealed by high-throughput single-cell RNA sequencing. Front Cell Dev Biol. 2023;11:1208566.PubMedPubMedCentralCrossRef Wen N, Wu J, Li H, Liao J, Lan L, Yang X, et al. Immune landscape in rejection of renal transplantation revealed by high-throughput single-cell RNA sequencing. Front Cell Dev Biol. 2023;11:1208566.PubMedPubMedCentralCrossRef
64.
go back to reference Leckie-Harre A, Silverman I, Wu H, Humphreys BD, Malone AF. Sequencing of physically interacting cells in human kidney allograft rejection to Infer Contact-dependent Immune cell transcription. Transplantation. 2024;108(2):421–29.PubMedPubMedCentral Leckie-Harre A, Silverman I, Wu H, Humphreys BD, Malone AF. Sequencing of physically interacting cells in human kidney allograft rejection to Infer Contact-dependent Immune cell transcription. Transplantation. 2024;108(2):421–29.PubMedPubMedCentral
65.
go back to reference Lu J, Chen Y, Zhou K, Ling Y, Qin Q, Lu W, et al. Immune characteristics of kidney transplant recipients with acute respiratory distress syndrome induced by COVID-19 at single-cell resolution. Respir Res. 2024;25(1):34.PubMedPubMedCentralCrossRef Lu J, Chen Y, Zhou K, Ling Y, Qin Q, Lu W, et al. Immune characteristics of kidney transplant recipients with acute respiratory distress syndrome induced by COVID-19 at single-cell resolution. Respir Res. 2024;25(1):34.PubMedPubMedCentralCrossRef
66.
go back to reference Fu J, Sun Z, Wang X, Zhang T, Yuan W, Salem F, et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int. 2022;102(6):1291–304.PubMedPubMedCentralCrossRef Fu J, Sun Z, Wang X, Zhang T, Yuan W, Salem F, et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int. 2022;102(6):1291–304.PubMedPubMedCentralCrossRef
67.
go back to reference Liu S, Zhao Y, Lu S, Zhang T, Lindenmeyer MT, Nair V, et al. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med. 2023;15(1):2.PubMedPubMedCentralCrossRef Liu S, Zhao Y, Lu S, Zhang T, Lindenmeyer MT, Nair V, et al. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med. 2023;15(1):2.PubMedPubMedCentralCrossRef
68.
go back to reference Li Y, Lin H, Shu S, Sun Y, Lai W, Chen W, et al. Integrative transcriptome analysis reveals TEKT2 and PIAS2 involvement in diabetic nephropathy. FASEB J. 2022;36(11):e22592.PubMedCrossRef Li Y, Lin H, Shu S, Sun Y, Lai W, Chen W, et al. Integrative transcriptome analysis reveals TEKT2 and PIAS2 involvement in diabetic nephropathy. FASEB J. 2022;36(11):e22592.PubMedCrossRef
69.
go back to reference Tsai Y-C, Kuo M-C, Huang J-C, Chang W-A, Wu L-Y, Huang Y-C, et al. Single-cell transcriptomic profiles in the pathophysiology within the microenvironment of early diabetic kidney disease. Cell Death Dis. 2023;14(7):442.PubMedPubMedCentralCrossRef Tsai Y-C, Kuo M-C, Huang J-C, Chang W-A, Wu L-Y, Huang Y-C, et al. Single-cell transcriptomic profiles in the pathophysiology within the microenvironment of early diabetic kidney disease. Cell Death Dis. 2023;14(7):442.PubMedPubMedCentralCrossRef
70.
go back to reference Balzer MS, Pavkovic M, Frederick J, Abedini A, Freyberger A, Vienenkötter J, et al. Treatment effects of soluble guanylate cyclase modulation on diabetic kidney disease at single-cell resolution. Cell Rep Med. 2023;4(4):100992.PubMedPubMedCentralCrossRef Balzer MS, Pavkovic M, Frederick J, Abedini A, Freyberger A, Vienenkötter J, et al. Treatment effects of soluble guanylate cyclase modulation on diabetic kidney disease at single-cell resolution. Cell Rep Med. 2023;4(4):100992.PubMedPubMedCentralCrossRef
71.
go back to reference Menon R, Otto EA, Sealfon R, Nair V, Wong AK, Theesfeld CL, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney Int. 2020;98(6):1502–18.PubMedPubMedCentralCrossRef Menon R, Otto EA, Sealfon R, Nair V, Wong AK, Theesfeld CL, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney Int. 2020;98(6):1502–18.PubMedPubMedCentralCrossRef
72.
go back to reference Barwinska D, El-Achkar TM, Melo Ferreira R, Syed F, Cheng Y-H, Winfree S, et al. Molecular characterization of the human kidney interstitium in health and disease. Sci Adv. 2021;7(7):eabd3359.PubMedPubMedCentralCrossRef Barwinska D, El-Achkar TM, Melo Ferreira R, Syed F, Cheng Y-H, Winfree S, et al. Molecular characterization of the human kidney interstitium in health and disease. Sci Adv. 2021;7(7):eabd3359.PubMedPubMedCentralCrossRef
73.
go back to reference Stefansson VTN, Nair V, Melsom T, Looker HC, Mariani LH, Fermin D, et al. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease. Kidney Int. 2022;102(6):1345–58.PubMedPubMedCentralCrossRef Stefansson VTN, Nair V, Melsom T, Looker HC, Mariani LH, Fermin D, et al. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease. Kidney Int. 2022;102(6):1345–58.PubMedPubMedCentralCrossRef
74.
go back to reference Wilson PC, Muto Y, Wu H, Karihaloo A, Waikar SS, Humphreys BD. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nat Commun. 2022;13(1):5253.PubMedPubMedCentralCrossRef Wilson PC, Muto Y, Wu H, Karihaloo A, Waikar SS, Humphreys BD. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nat Commun. 2022;13(1):5253.PubMedPubMedCentralCrossRef
75.
go back to reference Hirohama D, Abedini A, Moon S, Surapaneni A, Dillon ST, Vassalotti A, et al. Unbiased human kidney tissue Proteomics identifies Matrix Metalloproteinase 7 as a kidney Disease Biomarker. J Am Soc Nephrol. 2023;34(7):1279–91.PubMedPubMedCentralCrossRef Hirohama D, Abedini A, Moon S, Surapaneni A, Dillon ST, Vassalotti A, et al. Unbiased human kidney tissue Proteomics identifies Matrix Metalloproteinase 7 as a kidney Disease Biomarker. J Am Soc Nephrol. 2023;34(7):1279–91.PubMedPubMedCentralCrossRef
76.
go back to reference Schaub JA, AlAkwaa FM, McCown PJ, Naik AS, Nair V, Eddy S, et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J Clin Invest. 2023;133(5):e164486.PubMedPubMedCentralCrossRef Schaub JA, AlAkwaa FM, McCown PJ, Naik AS, Nair V, Eddy S, et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J Clin Invest. 2023;133(5):e164486.PubMedPubMedCentralCrossRef
77.
go back to reference Wu J, Sun Z, Yang S, Fu J, Fan Y, Wang N, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice. Mol Ther. 2022;30(4):1741–53.PubMedCrossRef Wu J, Sun Z, Yang S, Fu J, Fan Y, Wang N, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice. Mol Ther. 2022;30(4):1741–53.PubMedCrossRef
78.
go back to reference Sembach FE, Østergaard MV, Vrang N, et al. Rodent models of diabetic kidney disease: human translatability and preclinical validity. Drug Discov Today. 2021;26(1):200–17.PubMedCrossRef Sembach FE, Østergaard MV, Vrang N, et al. Rodent models of diabetic kidney disease: human translatability and preclinical validity. Drug Discov Today. 2021;26(1):200–17.PubMedCrossRef
79.
go back to reference Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, et al. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Ren Physiol. 2013;305(9):F1288–97.CrossRef Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, et al. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Ren Physiol. 2013;305(9):F1288–97.CrossRef
80.
go back to reference Zeeuw Dd, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diab Endocrinol. 2015;3(9):687–96. Zeeuw Dd, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diab Endocrinol. 2015;3(9):687–96.
81.
go back to reference Zeng H, Yang X, Luo S, Zhou Y. The advances of single-cell RNA-Seq in kidney immunology. Front Physiol. 2021;12:752679 Zeng H, Yang X, Luo S, Zhou Y. The advances of single-cell RNA-Seq in kidney immunology. Front Physiol. 2021;12:752679
82.
go back to reference Stewart BJ, Ferdinand JR, Young MD, Mitchell TJ, Loudon KW, Riding AM, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365(6460):1461–66.PubMedPubMedCentralCrossRef Stewart BJ, Ferdinand JR, Young MD, Mitchell TJ, Loudon KW, Riding AM, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365(6460):1461–66.PubMedPubMedCentralCrossRef
83.
go back to reference Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC. Macrophage Biology, classification, and phenotype in Cardiovascular Disease. J Am Coll Cardiol. 2018;72(18):2166–80.PubMedPubMedCentralCrossRef Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC. Macrophage Biology, classification, and phenotype in Cardiovascular Disease. J Am Coll Cardiol. 2018;72(18):2166–80.PubMedPubMedCentralCrossRef
84.
go back to reference You H, Gao T, Cooper TK, Brian Reeves W, Awad AS. Macrophages directly mediate diabetic renal injury. Am J Physiol Ren Physiol. 2013;305(12):F1719–27.CrossRef You H, Gao T, Cooper TK, Brian Reeves W, Awad AS. Macrophages directly mediate diabetic renal injury. Am J Physiol Ren Physiol. 2013;305(12):F1719–27.CrossRef
85.
go back to reference Tang PM-K, Nikolic-Paterson DJ, Lan H-Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–58.PubMedCrossRef Tang PM-K, Nikolic-Paterson DJ, Lan H-Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–58.PubMedCrossRef
86.
go back to reference Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019;116(39):19619–25.PubMedPubMedCentralCrossRef Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019;116(39):19619–25.PubMedPubMedCentralCrossRef
87.
go back to reference Wu H, Dixon EE, Xuanyuan Q, Guo J, Yoshimura Y, Debashish C, et al. High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing. Nat Commun. 2024;15(1):1396.PubMedPubMedCentralCrossRef Wu H, Dixon EE, Xuanyuan Q, Guo J, Yoshimura Y, Debashish C, et al. High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing. Nat Commun. 2024;15(1):1396.PubMedPubMedCentralCrossRef
88.
go back to reference Zhang C, Li H, Wang S. Common gene signatures and molecular mechanisms of diabetic nephropathy and metabolic syndrome. Front Public Health. 2023;11:1150122.PubMedPubMedCentralCrossRef Zhang C, Li H, Wang S. Common gene signatures and molecular mechanisms of diabetic nephropathy and metabolic syndrome. Front Public Health. 2023;11:1150122.PubMedPubMedCentralCrossRef
89.
go back to reference Klessens CQF, Zandbergen M, Wolterbeek R, Bruijn JA, Rabelink TJ, Bajema IM, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transpl. 2016;32(8):1322–29. Klessens CQF, Zandbergen M, Wolterbeek R, Bruijn JA, Rabelink TJ, Bajema IM, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transpl. 2016;32(8):1322–29.
90.
go back to reference Wu H, Humphreys BD. Immune cell heterogeneity in a mouse model of diabetic kidney disease. Kidney Int. 2022;102(6):1215–16.PubMedCrossRef Wu H, Humphreys BD. Immune cell heterogeneity in a mouse model of diabetic kidney disease. Kidney Int. 2022;102(6):1215–16.PubMedCrossRef
91.
go back to reference Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, et al. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol. 2023;14:1030198.PubMedPubMedCentralCrossRef Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, et al. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol. 2023;14:1030198.PubMedPubMedCentralCrossRef
92.
go back to reference Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular endothelial cells are the coordinator in the Development of Diabetic Nephropathy. Front Med (Lausanne). 2021;8:655639.PubMedCrossRef Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular endothelial cells are the coordinator in the Development of Diabetic Nephropathy. Front Med (Lausanne). 2021;8:655639.PubMedCrossRef
93.
go back to reference Zheng Z, Zheng F. A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Mol Immunol. 2019;105:16–31.PubMedCrossRef Zheng Z, Zheng F. A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Mol Immunol. 2019;105:16–31.PubMedCrossRef
94.
go back to reference Yen H-R, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol. 2009;183(11):7161–68.PubMedCrossRef Yen H-R, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol. 2009;183(11):7161–68.PubMedCrossRef
95.
go back to reference Ciric B, El-behi M, Cabrera R, Zhang G-X, Rostami A. IL-23 drives pathogenic IL-17-Producing CD8 + T cells. J Immunol. 2009;182(9):5296–305.PubMedCrossRef Ciric B, El-behi M, Cabrera R, Zhang G-X, Rostami A. IL-23 drives pathogenic IL-17-Producing CD8 + T cells. J Immunol. 2009;182(9):5296–305.PubMedCrossRef
96.
go back to reference Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q, et al. Cutting Edge: increased IL-17–Secreting T cells in children with New-Onset type 1 diabetes. J Immunol. 2010;185(7):3814–18.PubMedCrossRef Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q, et al. Cutting Edge: increased IL-17–Secreting T cells in children with New-Onset type 1 diabetes. J Immunol. 2010;185(7):3814–18.PubMedCrossRef
97.
go back to reference Chan AJ, Alikhan MA, Odobasic D, Gan PY, Khouri MB, Steinmetz OM, et al. Innate IL-17A–Producing leukocytes promote acute kidney Injury via Inflammasome and Toll-Like receptor activation. Am J Pathol. 2014;184(5):1411–18.PubMedCrossRef Chan AJ, Alikhan MA, Odobasic D, Gan PY, Khouri MB, Steinmetz OM, et al. Innate IL-17A–Producing leukocytes promote acute kidney Injury via Inflammasome and Toll-Like receptor activation. Am J Pathol. 2014;184(5):1411–18.PubMedCrossRef
98.
go back to reference Krohn S, Nies JF, Kapffer S, Schmidt T, Riedel J-H, Kaffke A, et al. IL-17 C/IL-17 receptor E signaling in CD4 + T cells promotes TH17 cell-driven glomerular inflammation. J Am Soc Nephrol. 2018;29(4):1210–22.PubMedPubMedCentralCrossRef Krohn S, Nies JF, Kapffer S, Schmidt T, Riedel J-H, Kaffke A, et al. IL-17 C/IL-17 receptor E signaling in CD4 + T cells promotes TH17 cell-driven glomerular inflammation. J Am Soc Nephrol. 2018;29(4):1210–22.PubMedPubMedCentralCrossRef
99.
go back to reference Koga T, Ichinose K, Tsokos GC. T cells and IL-17 in lupus nephritis. Clin Immunol. 2017;185:95–9.PubMedCrossRef Koga T, Ichinose K, Tsokos GC. T cells and IL-17 in lupus nephritis. Clin Immunol. 2017;185:95–9.PubMedCrossRef
100.
go back to reference Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J. IL-17A produced by both γδ T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J Pathol. 2015;235(1):79–89.PubMedCrossRef Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J. IL-17A produced by both γδ T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J Pathol. 2015;235(1):79–89.PubMedCrossRef
101.
go back to reference Chen D, Shao M, Song Y, Ren G, Guo F, Fan X, et al. Single-cell RNA-seq with spatial transcriptomics to create an atlas of human diabetic kidney disease. FASEB J. 2023;37(6):e22938.PubMedCrossRef Chen D, Shao M, Song Y, Ren G, Guo F, Fan X, et al. Single-cell RNA-seq with spatial transcriptomics to create an atlas of human diabetic kidney disease. FASEB J. 2023;37(6):e22938.PubMedCrossRef
102.
go back to reference Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.
103.
go back to reference Gregersen JW, Jayne DRW. B-cell depletion in the treatment of lupus nephritis. Nat Rev Nephrol. 2012;8(9):505–14.PubMedCrossRef Gregersen JW, Jayne DRW. B-cell depletion in the treatment of lupus nephritis. Nat Rev Nephrol. 2012;8(9):505–14.PubMedCrossRef
104.
go back to reference Fervenza FC, Appel GB, Barbour SJ, Rovin BH, Lafayette RA, Aslam N, et al. Rituximab or Cyclosporine in the treatment of Membranous Nephropathy. N Engl J Med. 2019;381(1):36–46.PubMedCrossRef Fervenza FC, Appel GB, Barbour SJ, Rovin BH, Lafayette RA, Aslam N, et al. Rituximab or Cyclosporine in the treatment of Membranous Nephropathy. N Engl J Med. 2019;381(1):36–46.PubMedCrossRef
105.
106.
go back to reference Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15(7):441–51.PubMedCrossRef Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15(7):441–51.PubMedCrossRef
107.
go back to reference Wei Y, Gao X, Li A, Liang M, Jiang Z. Single-nucleus transcriptomic analysis reveals important cell cross-talk in Diabetic kidney disease. Front Med (Lausanne). 2021;8:657956.PubMedCrossRef Wei Y, Gao X, Li A, Liang M, Jiang Z. Single-nucleus transcriptomic analysis reveals important cell cross-talk in Diabetic kidney disease. Front Med (Lausanne). 2021;8:657956.PubMedCrossRef
108.
go back to reference Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–22.PubMedCrossRef Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–22.PubMedCrossRef
109.
go back to reference Xu M, Zhou H, Hu P, Pan Y, Wang S, Liu L, et al. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning. Front Immunol. 2023;14:1084531.PubMedPubMedCentralCrossRef Xu M, Zhou H, Hu P, Pan Y, Wang S, Liu L, et al. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning. Front Immunol. 2023;14:1084531.PubMedPubMedCentralCrossRef
110.
go back to reference Zhang H, Hu J, Zhu J, Li Q, Fang L. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Front Endocrinol (Lausanne). 2022;13:1026938.PubMedCrossRef Zhang H, Hu J, Zhu J, Li Q, Fang L. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Front Endocrinol (Lausanne). 2022;13:1026938.PubMedCrossRef
111.
go back to reference Lu K, Wang L, Fu Y, Li G, Zhang X, Cao M. Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Front Endocrinol (Lausanne). 2022;13:1048139.PubMedCrossRef Lu K, Wang L, Fu Y, Li G, Zhang X, Cao M. Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Front Endocrinol (Lausanne). 2022;13:1048139.PubMedCrossRef
112.
go back to reference Kong L, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic-Paterson DJ, Torkamani N, et al. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig. 2022;13(2):213–26.PubMedCrossRef Kong L, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic-Paterson DJ, Torkamani N, et al. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig. 2022;13(2):213–26.PubMedCrossRef
113.
go back to reference Gupta A, Singh K, Fatima S, Ambreen S, Zimmermann S, Younis R, et al. Neutrophil Extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in Diabetic kidney disease. Nutrients. 2022;14(14):2965.PubMedPubMedCentralCrossRef Gupta A, Singh K, Fatima S, Ambreen S, Zimmermann S, Younis R, et al. Neutrophil Extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in Diabetic kidney disease. Nutrients. 2022;14(14):2965.PubMedPubMedCentralCrossRef
114.
go back to reference Guo W, Song Y, Sun Y, Du H, Cai Y, You Q, et al. Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: evidence from NHANES 2011–2018. Front Endocrinol (Lausanne). 2022;13:1071465.PubMedCrossRef Guo W, Song Y, Sun Y, Du H, Cai Y, You Q, et al. Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: evidence from NHANES 2011–2018. Front Endocrinol (Lausanne). 2022;13:1071465.PubMedCrossRef
115.
go back to reference Zhang N, Zheng Q, Wang Y, Lin J, Wang H, Liu R, et al. Renoprotective Effect of the recombinant Anti-IL-6R Fusion proteins by inhibiting JAK2/STAT3 signaling pathway in Diabetic Nephropathy. Front Pharmacol. 2021;12:681424.PubMedPubMedCentralCrossRef Zhang N, Zheng Q, Wang Y, Lin J, Wang H, Liu R, et al. Renoprotective Effect of the recombinant Anti-IL-6R Fusion proteins by inhibiting JAK2/STAT3 signaling pathway in Diabetic Nephropathy. Front Pharmacol. 2021;12:681424.PubMedPubMedCentralCrossRef
116.
go back to reference Zhang F, Wang C, Wen X, Chen Y, Mao R, Cui D, et al. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103 + DCs-mediated CD8 + T cell responses. J Cell Mol Med. 2020;24(10):5817–31.PubMedPubMedCentralCrossRef Zhang F, Wang C, Wen X, Chen Y, Mao R, Cui D, et al. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103 + DCs-mediated CD8 + T cell responses. J Cell Mol Med. 2020;24(10):5817–31.PubMedPubMedCentralCrossRef
117.
go back to reference Yuan Y, Li L, Zhu L, Liu F, Tang X, Liao G, et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells. 2020;38(5):639–52.PubMedCrossRef Yuan Y, Li L, Zhu L, Liu F, Tang X, Liao G, et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells. 2020;38(5):639–52.PubMedCrossRef
118.
go back to reference Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020;38(6):737–46.PubMedPubMedCentralCrossRef Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020;38(6):737–46.PubMedPubMedCentralCrossRef
119.
go back to reference Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J, Larsson AJM, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol. 2020;38(6):708–14.PubMedCrossRef Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J, Larsson AJM, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol. 2020;38(6):708–14.PubMedCrossRef
120.
go back to reference Kharchenko PV. The triumphs and limitations of computational methods for scRNA-seq. Nat Methods. 2021;18(7):723–32.PubMedCrossRef Kharchenko PV. The triumphs and limitations of computational methods for scRNA-seq. Nat Methods. 2021;18(7):723–32.PubMedCrossRef
121.
go back to reference Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512–16.PubMedPubMedCentralCrossRef Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512–16.PubMedPubMedCentralCrossRef
123.
go back to reference Adam M, Potter AS, Potter SS. Psychrophilic proteases dramatically reduce single cell RNA-seq artifacts: a molecular atlas of kidney development. Development. 2017;144(19):3625–32.PubMedPubMedCentral Adam M, Potter AS, Potter SS. Psychrophilic proteases dramatically reduce single cell RNA-seq artifacts: a molecular atlas of kidney development. Development. 2017;144(19):3625–32.PubMedPubMedCentral
Metadata
Title
The advance of single cell transcriptome to study kidney immune cells in diabetic kidney disease
Authors
Mengjia Wang
Fang Yao
Ning Chen
Ting Wu
Jiaxin Yan
Linshan Du
Shijie Zeng
Chunyang Du
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2024
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-024-03853-y

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more