Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

Targeting ferroptosis reveals a new strategy for breast cancer treatment: a bibliometric study

Authors: Junlin Liu, Rong Tang, Jie Zheng, Ke Luo

Published in: Discover Oncology | Issue 1/2024

Login to get access

Abstract

Background

Studies exploring the role of ferroptosis in the pathogenesis of breast cancer have proliferated over the past decade, especially in 2023, with a staggering 217 publications in related studies. However, there are still significant gaps in comprehensive scientometric analysis and mapping of scientific studies, especially in terms of temporal and study area tracking, principal investigators, and the emergence of new hotspots.

Objective

This study aims to summarize the role of ferroptosis in the development of breast cancer and the latest research results on the ferroptosis-targeted treatment of breast cancer and to use bibliometric methods to draw a visual map to explore future research trends.

Methods

On May 11, 2024, this study updated the research progress related to ferroptosis and breast cancer over the past 11 years by retrieving data from January 1, 2014, to May 1, 2024, from the Web of Science database. In this research, many scientific analysis software including VOSviewer, chorddiag R Language Pack, Scimago Graphica, Citespace 6.3.R1, Cluster Profiler, enrichplot, ggplot2 R Language Pack, Cytoscape, and STRING online platform are used to make in-depth scientific analysis and visualization of the measurement results.

Results

Statistical analysis of these data showed that China accounted for 74.43% of the total publications, highlighting China’s dominant role in research on the relationship between ferroptosis and breast cancer. Several research institutions, including Sun Yat-sen University, Zhejiang University, and Shanghai Jiao Tong University, have achieved impressive results. Efferth, Thomas is the most prominent author in this field and has the highest number of publications in the subfield of oncology. This study clearly shows that ferroptosis plays a crucial role in the development of triple-negative breast cancer, hepatocellular carcinoma, glioma, leukemia, mitochondrial disease, lymphoma, bladder tumors, lung adenocarcinoma, and esophageal tumors.

Conclusion

This study provides a comprehensive bibliometric evaluation that deepens our understanding of the role of ferroptosis in the pathogenesis of breast cancer and the current status of targeting ferroptosis for treating breast cancer. Thus, it helps researchers in related fields explore new research directions by comprehensively extracting important information and research hotspots.
Literature
1.
2.
go back to reference Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-molecule drug discovery in triple negative breast cancer: current situation and future directions. J Med Chem. 2021;64(5):2382–418.PubMedCrossRef Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-molecule drug discovery in triple negative breast cancer: current situation and future directions. J Med Chem. 2021;64(5):2382–418.PubMedCrossRef
3.
go back to reference Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med. 2024;28(1): e18044.PubMedCrossRef Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med. 2024;28(1): e18044.PubMedCrossRef
4.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
6.
go back to reference Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol. 2024;15:1421905.PubMedPubMedCentralCrossRef Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol. 2024;15:1421905.PubMedPubMedCentralCrossRef
7.
go back to reference Jiang C, Zhang S, Jiang L, Chen Z, Chen H, Huang J, Tang J, Luo X, Yang G, Liu J, Chi H. Precision unveiled: Synergistic genomic landscapes in breast cancer—Integrating single-cell analysis and decoding drug toxicity for elite prognostication and tailored therapeutics. Environ Toxicol. 2024;39(6):3448–72.PubMedCrossRef Jiang C, Zhang S, Jiang L, Chen Z, Chen H, Huang J, Tang J, Luo X, Yang G, Liu J, Chi H. Precision unveiled: Synergistic genomic landscapes in breast cancer—Integrating single-cell analysis and decoding drug toxicity for elite prognostication and tailored therapeutics. Environ Toxicol. 2024;39(6):3448–72.PubMedCrossRef
8.
go back to reference Yan Y, Su L, Huang S, He Q, Lu J, Luo H, Xu K, Yang G, Huang S, Chi H. Circadian rhythms and breast cancer: unraveling the biological clock’s role in tumor microenvironment and aging. Front Immunol. 2024;15:1444426.PubMedPubMedCentralCrossRef Yan Y, Su L, Huang S, He Q, Lu J, Luo H, Xu K, Yang G, Huang S, Chi H. Circadian rhythms and breast cancer: unraveling the biological clock’s role in tumor microenvironment and aging. Front Immunol. 2024;15:1444426.PubMedPubMedCentralCrossRef
9.
go back to reference Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.PubMedPubMedCentralCrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.PubMedPubMedCentralCrossRef
10.
go back to reference Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.PubMedCrossRef Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.PubMedCrossRef
11.
go back to reference Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37(1):127–36.PubMedCrossRef Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37(1):127–36.PubMedCrossRef
12.
go back to reference Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI, Hersch S, Fox JH. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS ONE. 2013;8(10): e77023.PubMedPubMedCentralCrossRef Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI, Hersch S, Fox JH. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS ONE. 2013;8(10): e77023.PubMedPubMedCentralCrossRef
13.
go back to reference FriedmannAngeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91.CrossRef FriedmannAngeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91.CrossRef
14.
go back to reference Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2(5):517–32.PubMedPubMedCentralCrossRef Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2(5):517–32.PubMedPubMedCentralCrossRef
15.
go back to reference Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, Francois C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015;356(2 Pt B):971–7.PubMedCrossRef Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, Francois C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015;356(2 Pt B):971–7.PubMedCrossRef
16.
go back to reference Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, Liao W, Shi M. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia. 2017;19(12):1022–32.PubMedPubMedCentralCrossRef Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, Liao W, Shi M. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia. 2017;19(12):1022–32.PubMedPubMedCentralCrossRef
17.
go back to reference Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016;7(7): e2307.PubMedPubMedCentralCrossRef Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016;7(7): e2307.PubMedPubMedCentralCrossRef
18.
go back to reference Cui Y, Li Y, Xu Y, Liu X, Kang X, Zhu J, Long S, Han Y, Xue C, Sun Z, Du Y, Hu J, Pan L, Zhou F, Xu X, Li X. SLC7A11 protects luminal A breast cancer cells against ferroptosis induced by CDK4/6 inhibitors. Redox Biol. 2024;76: 103304.PubMedPubMedCentralCrossRef Cui Y, Li Y, Xu Y, Liu X, Kang X, Zhu J, Long S, Han Y, Xue C, Sun Z, Du Y, Hu J, Pan L, Zhou F, Xu X, Li X. SLC7A11 protects luminal A breast cancer cells against ferroptosis induced by CDK4/6 inhibitors. Redox Biol. 2024;76: 103304.PubMedPubMedCentralCrossRef
19.
go back to reference Ye S, Hu X, Sun S, Su B, Cai J, Jiang J. Oridonin promotes RSL3-induced ferroptosis in breast cancer cells by regulating the oxidative stress signaling pathway JNK/Nrf2/HO-1. Eur J Pharmacol. 2024;974: 176620.PubMedCrossRef Ye S, Hu X, Sun S, Su B, Cai J, Jiang J. Oridonin promotes RSL3-induced ferroptosis in breast cancer cells by regulating the oxidative stress signaling pathway JNK/Nrf2/HO-1. Eur J Pharmacol. 2024;974: 176620.PubMedCrossRef
20.
go back to reference Dibra D, Xiong S, Moyer SM, El-Naggar AK, Qi Y, Su X, Kong EK, Korkut A, Lozano G. Mutant p53 protects triple-negative breast adenocarcinomas from ferroptosis in vivo. Sci Adv. 2024;10(7):eadk1835.PubMedPubMedCentralCrossRef Dibra D, Xiong S, Moyer SM, El-Naggar AK, Qi Y, Su X, Kong EK, Korkut A, Lozano G. Mutant p53 protects triple-negative breast adenocarcinomas from ferroptosis in vivo. Sci Adv. 2024;10(7):eadk1835.PubMedPubMedCentralCrossRef
21.
go back to reference Shahid W, Iqbal A, Iqbal I, Mehmood A, Jia H. Application of ferroptosis strategy to overcome tumor therapy resistance in breast and different cancer cells. Iran J Basic Med Sci. 2024;27(9):1085–95.PubMedPubMedCentral Shahid W, Iqbal A, Iqbal I, Mehmood A, Jia H. Application of ferroptosis strategy to overcome tumor therapy resistance in breast and different cancer cells. Iran J Basic Med Sci. 2024;27(9):1085–95.PubMedPubMedCentral
22.
go back to reference Zhang C, Zhou Y, Chen T, Bhushan S, Sun S, Zhang P, Yang Y. Isocitrate dehydrogenase 2 regulates the proliferation of triple-negative breast cancer through the ferroptosis pathway. Sci Rep. 2024;14(1):4732.PubMedPubMedCentralCrossRef Zhang C, Zhou Y, Chen T, Bhushan S, Sun S, Zhang P, Yang Y. Isocitrate dehydrogenase 2 regulates the proliferation of triple-negative breast cancer through the ferroptosis pathway. Sci Rep. 2024;14(1):4732.PubMedPubMedCentralCrossRef
23.
go back to reference Fan C, Wu H, Du X, Li C, Zeng W, Qu L, Cang C. Inhibition of lysosomal TRPML1 channel eliminates breast cancer stem cells by triggering ferroptosis. Cell Death Discov. 2024;10(1):256.PubMedPubMedCentralCrossRef Fan C, Wu H, Du X, Li C, Zeng W, Qu L, Cang C. Inhibition of lysosomal TRPML1 channel eliminates breast cancer stem cells by triggering ferroptosis. Cell Death Discov. 2024;10(1):256.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Yin C, Zhang MM, Wang GL, Deng XY, Tu Z, Jiang SS, Gao ZD, Hao M, Chen Y, Li Y, Yang SY. Loss of ADAR1 induces ferroptosis of breast cancer cells. Cell Signal. 2024;121: 111258.PubMedCrossRef Yin C, Zhang MM, Wang GL, Deng XY, Tu Z, Jiang SS, Gao ZD, Hao M, Chen Y, Li Y, Yang SY. Loss of ADAR1 induces ferroptosis of breast cancer cells. Cell Signal. 2024;121: 111258.PubMedCrossRef
26.
go back to reference Shi W, Wang J, Chen J, Jin X, Wang Y, Yang L. Abrogating PDK4 activates autophagy-dependent ferroptosis in breast cancer via ASK1/JNK pathway. J Cancer Res Clin Oncol. 2024;150(4):218.PubMedPubMedCentralCrossRef Shi W, Wang J, Chen J, Jin X, Wang Y, Yang L. Abrogating PDK4 activates autophagy-dependent ferroptosis in breast cancer via ASK1/JNK pathway. J Cancer Res Clin Oncol. 2024;150(4):218.PubMedPubMedCentralCrossRef
27.
go back to reference Andrijauskaite K, Wargovich MJ. Role of natural products in breast cancer related symptomology: targeting chronic inflammation. Semin Cancer Biol. 2022;80:370–8.PubMedCrossRef Andrijauskaite K, Wargovich MJ. Role of natural products in breast cancer related symptomology: targeting chronic inflammation. Semin Cancer Biol. 2022;80:370–8.PubMedCrossRef
28.
go back to reference Yuan L, Cai Y, Zhang L, Liu S, Li P, Li X. Promoting apoptosis, a promising way to treat breast cancer with natural products: a comprehensive review. Front Pharmacol. 2021;12: 801662.PubMedCrossRef Yuan L, Cai Y, Zhang L, Liu S, Li P, Li X. Promoting apoptosis, a promising way to treat breast cancer with natural products: a comprehensive review. Front Pharmacol. 2021;12: 801662.PubMedCrossRef
30.
go back to reference Xie D, Jiang Y, Wang H, Zhu L, Huang S, Liu S, Zhang W, Li T. Formononetin triggers ferroptosis in triple-negative breast cancer cells by regulating the mTORC1/SREBP1/SCD1 pathway. Front Pharmacol. 2024;15:1441105.PubMedPubMedCentralCrossRef Xie D, Jiang Y, Wang H, Zhu L, Huang S, Liu S, Zhang W, Li T. Formononetin triggers ferroptosis in triple-negative breast cancer cells by regulating the mTORC1/SREBP1/SCD1 pathway. Front Pharmacol. 2024;15:1441105.PubMedPubMedCentralCrossRef
32.
go back to reference Yang X, Liang B, Zhang L, Zhang M, Ma M, Qing L, Yang H, Huang G, Zhao J. Ursolic acid inhibits the proliferation of triple-negative breast cancer stem-like cells through NRF2-mediated ferroptosis. Oncol Rep. 2024;52(1):1–13.CrossRef Yang X, Liang B, Zhang L, Zhang M, Ma M, Qing L, Yang H, Huang G, Zhao J. Ursolic acid inhibits the proliferation of triple-negative breast cancer stem-like cells through NRF2-mediated ferroptosis. Oncol Rep. 2024;52(1):1–13.CrossRef
33.
go back to reference Shang Y, Zhao M, Chen S, Chen Y, Liu X, Zhou F, Li Y, Long M, Xu K, Ding Z, Wang L. Tetrastigma hemsleyanum polysaccharide combined with doxorubicin promote ferroptosis and immune function in triple-negative breast cancer. Int J Biol Macromol. 2024;275(Pt 1): 133424.PubMedCrossRef Shang Y, Zhao M, Chen S, Chen Y, Liu X, Zhou F, Li Y, Long M, Xu K, Ding Z, Wang L. Tetrastigma hemsleyanum polysaccharide combined with doxorubicin promote ferroptosis and immune function in triple-negative breast cancer. Int J Biol Macromol. 2024;275(Pt 1): 133424.PubMedCrossRef
34.
go back to reference Liu Y, Xu Y, Cheng X, Lin Y, Jiang S, Yu H, Zhang Z, Lu L, Zhang X. Research trends and most influential clinical studies on anti-pd1/pdl1 immunotherapy for cancers: a bibliometric analysis. Front Immunol. 2022;13: 862084.PubMedPubMedCentralCrossRef Liu Y, Xu Y, Cheng X, Lin Y, Jiang S, Yu H, Zhang Z, Lu L, Zhang X. Research trends and most influential clinical studies on anti-pd1/pdl1 immunotherapy for cancers: a bibliometric analysis. Front Immunol. 2022;13: 862084.PubMedPubMedCentralCrossRef
35.
go back to reference Kumar R, Rani S, Awadh MA. Exploring the application sphere of the internet of things in industry 4.0: a review, bibliometric and content analysis. Sensors (Basel). 2022;22(11):4276.PubMedCrossRef Kumar R, Rani S, Awadh MA. Exploring the application sphere of the internet of things in industry 4.0: a review, bibliometric and content analysis. Sensors (Basel). 2022;22(11):4276.PubMedCrossRef
36.
go back to reference Zimmerman J, Field J, Leusch F, Lowry GV, Wang P, Westerhoff P. Impact beyond impact factor. Environ Sci Technol. 2022;56(17):11909.PubMedCrossRef Zimmerman J, Field J, Leusch F, Lowry GV, Wang P, Westerhoff P. Impact beyond impact factor. Environ Sci Technol. 2022;56(17):11909.PubMedCrossRef
37.
go back to reference Atallah AN, Puga M, Amaral J. Web of Science Journal Citation Report 2020: the Brazilian contribution to the “Medicine, General & Internal” category of the journal impact factor (JIF) ranking (SCI 2019). Sao Paulo Med J. 2020;138(4):271–4.PubMedPubMedCentralCrossRef Atallah AN, Puga M, Amaral J. Web of Science Journal Citation Report 2020: the Brazilian contribution to the “Medicine, General & Internal” category of the journal impact factor (JIF) ranking (SCI 2019). Sao Paulo Med J. 2020;138(4):271–4.PubMedPubMedCentralCrossRef
38.
go back to reference Ye J, Zhang R, Wu F, Zhai L, Wang K, Xiao M, Xie T, Sui X. Nonapoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett. 2018;420:210–27.PubMedCrossRef Ye J, Zhang R, Wu F, Zhai L, Wang K, Xiao M, Xie T, Sui X. Nonapoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett. 2018;420:210–27.PubMedCrossRef
39.
go back to reference Woo SM, Seo SU, Min KJ, Im SS, Nam JO, Chang JS, Kim S, Park JW, Kwon TK. Corosolic acid induces nonapoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma caki cells. Int J Mol Sci. 2018;19(5):1309.PubMedPubMedCentralCrossRef Woo SM, Seo SU, Min KJ, Im SS, Nam JO, Chang JS, Kim S, Park JW, Kwon TK. Corosolic acid induces nonapoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma caki cells. Int J Mol Sci. 2018;19(5):1309.PubMedPubMedCentralCrossRef
40.
go back to reference Stockwell BR, FriedmannAngeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.PubMedPubMedCentralCrossRef Stockwell BR, FriedmannAngeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.PubMedPubMedCentralCrossRef
41.
42.
go back to reference Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W. CD8(+) T cells regulate tumor ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.PubMedPubMedCentralCrossRef Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W. CD8(+) T cells regulate tumor ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.PubMedPubMedCentralCrossRef
43.
go back to reference Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef
44.
go back to reference Ye F, Wu J, Zhang F. METTL16 epigenetically enhances GPX4 expression via m6A modification to promote breast cancer progression by inhibiting ferroptosis. Biochem Biophys Res Commun. 2023;63:81–6. Ye F, Wu J, Zhang F. METTL16 epigenetically enhances GPX4 expression via m6A modification to promote breast cancer progression by inhibiting ferroptosis. Biochem Biophys Res Commun. 2023;63:81–6.
45.
go back to reference Huang X, Wu J, Wang Y, Xian Z, Li J, Qiu N, Li H. FOXQ1 inhibits breast cancer ferroptosis and progression via the circ_0000643/miR-153/SLC7A11 axis. Exp Cell Res. 2023;431(1): 113737.PubMedCrossRef Huang X, Wu J, Wang Y, Xian Z, Li J, Qiu N, Li H. FOXQ1 inhibits breast cancer ferroptosis and progression via the circ_0000643/miR-153/SLC7A11 axis. Exp Cell Res. 2023;431(1): 113737.PubMedCrossRef
46.
go back to reference Yi C, Wu S, Duan Q, Liu L, Li L, Luo Y, Wang A. Ferroptosis-dependent breast cancer cell-derived exosomes inhibit migration and invasion of breast cancer cells by suppressing M2 macrophage polarization. PeerJ. 2023;11: e15060.PubMedPubMedCentralCrossRef Yi C, Wu S, Duan Q, Liu L, Li L, Luo Y, Wang A. Ferroptosis-dependent breast cancer cell-derived exosomes inhibit migration and invasion of breast cancer cells by suppressing M2 macrophage polarization. PeerJ. 2023;11: e15060.PubMedPubMedCentralCrossRef
47.
go back to reference Wang Y, Pang X, Liu Y, Mu G, Wang Q. SOCS1 acts as a ferroptosis driver to inhibit the progression and chemotherapy resistance of triple-negative breast cancer. Carcinogenesis. 2023;44(8–9):708–15.PubMedCrossRef Wang Y, Pang X, Liu Y, Mu G, Wang Q. SOCS1 acts as a ferroptosis driver to inhibit the progression and chemotherapy resistance of triple-negative breast cancer. Carcinogenesis. 2023;44(8–9):708–15.PubMedCrossRef
48.
go back to reference Liang S, Bai YM, Zhou B. Identification of key ferroptosis genes and mechanisms associated with breast cancer using bioinformatics, machine learning, and experimental validation. Aging (Albany NY). 2024;16(2):1781–95.PubMedCrossRef Liang S, Bai YM, Zhou B. Identification of key ferroptosis genes and mechanisms associated with breast cancer using bioinformatics, machine learning, and experimental validation. Aging (Albany NY). 2024;16(2):1781–95.PubMedCrossRef
49.
go back to reference Li J, Li PT, Wu W, Ding BN, Wen YG, Cai HL, Liu SX, Hong T, Zhang JF, Zhou JD, Qian LY, Du J. POU2F2-mediated upregulation of lncRNA PTPRG-AS1 inhibits ferroptosis in breast cancer via miR-376c-3p/SLC7A11 axis. Epigenomics. 2024;16(4):215–31.PubMedCrossRef Li J, Li PT, Wu W, Ding BN, Wen YG, Cai HL, Liu SX, Hong T, Zhang JF, Zhou JD, Qian LY, Du J. POU2F2-mediated upregulation of lncRNA PTPRG-AS1 inhibits ferroptosis in breast cancer via miR-376c-3p/SLC7A11 axis. Epigenomics. 2024;16(4):215–31.PubMedCrossRef
50.
go back to reference Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, Su X, Tan M, Yan Q, Peng J, Shao J, Xiong Y, Lin A. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. Sci China Life Sci. 2024;67(3):488–503.PubMedCrossRef Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, Su X, Tan M, Yan Q, Peng J, Shao J, Xiong Y, Lin A. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. Sci China Life Sci. 2024;67(3):488–503.PubMedCrossRef
51.
go back to reference Wang S, Zhang Y, Zhang D, Meng J, Che N, Zhao X, Liu T. PTGER3 knockdown inhibits the vulnerability of triple-negative breast cancer to ferroptosis. Cancer Sci. 2024;115(6):2067–81.PubMedPubMedCentralCrossRef Wang S, Zhang Y, Zhang D, Meng J, Che N, Zhao X, Liu T. PTGER3 knockdown inhibits the vulnerability of triple-negative breast cancer to ferroptosis. Cancer Sci. 2024;115(6):2067–81.PubMedPubMedCentralCrossRef
52.
go back to reference Song X, Wang X, Chen X, Yu Z, Zhou Y. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis. J Proteomics. 2024;292: 105055.PubMedCrossRef Song X, Wang X, Chen X, Yu Z, Zhou Y. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis. J Proteomics. 2024;292: 105055.PubMedCrossRef
53.
go back to reference Chen X, Zhu J, Li X, Chen J, Zhou Z, Fan X, Liang R, Liu H, Zhu D. ARHGAP6 suppresses breast cancer tumor growth by promoting ferroptosis via RhoA-ROCK1-p38 MAPK signaling. Front Biosci (Landmark Ed). 2024;29(1):6.PubMedCrossRef Chen X, Zhu J, Li X, Chen J, Zhou Z, Fan X, Liang R, Liu H, Zhu D. ARHGAP6 suppresses breast cancer tumor growth by promoting ferroptosis via RhoA-ROCK1-p38 MAPK signaling. Front Biosci (Landmark Ed). 2024;29(1):6.PubMedCrossRef
54.
go back to reference Xu S, Tuo QZ, Meng J, Wu XL, Li CL, Lei P. Thrombin induces ferroptosis in triple-negative breast cancer through the cPLA2alpha/ACSL4 signaling pathway. Transl Oncol. 2024;39: 101817.PubMedCrossRef Xu S, Tuo QZ, Meng J, Wu XL, Li CL, Lei P. Thrombin induces ferroptosis in triple-negative breast cancer through the cPLA2alpha/ACSL4 signaling pathway. Transl Oncol. 2024;39: 101817.PubMedCrossRef
55.
go back to reference Xue W, Yu Y, Yao Y, Zhou L, Huang Y, Wang Y, Chen Z, Wang L, Li X, Wang X, Du R, Shen Y, Xu Q. Breast cancer cells have an increased ferroptosis risk induced by system x(c)(-) blockade after deliberately downregulating CYTL1 to mediate malignancy. Redox Biol. 2024;70: 103034.PubMedPubMedCentralCrossRef Xue W, Yu Y, Yao Y, Zhou L, Huang Y, Wang Y, Chen Z, Wang L, Li X, Wang X, Du R, Shen Y, Xu Q. Breast cancer cells have an increased ferroptosis risk induced by system x(c)(-) blockade after deliberately downregulating CYTL1 to mediate malignancy. Redox Biol. 2024;70: 103034.PubMedPubMedCentralCrossRef
56.
go back to reference Xiong H, Zhai Y, Meng Y, Wu Z, Qiu A, Cai Y, Wang G, Yang L. Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization. Cancer Lett. 2024;587: 216732.PubMedCrossRef Xiong H, Zhai Y, Meng Y, Wu Z, Qiu A, Cai Y, Wang G, Yang L. Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization. Cancer Lett. 2024;587: 216732.PubMedCrossRef
57.
go back to reference Tang WJ, Xu D, Liang MX, Wo GQ, Chen WQ, Tang JH, Zhang W. Pitavastatin induces autophagy-dependent ferroptosis in MDA-MB-231 cells via the mevalonate pathway. Heliyon. 2024;10(5): e27084.PubMedPubMedCentralCrossRef Tang WJ, Xu D, Liang MX, Wo GQ, Chen WQ, Tang JH, Zhang W. Pitavastatin induces autophagy-dependent ferroptosis in MDA-MB-231 cells via the mevalonate pathway. Heliyon. 2024;10(5): e27084.PubMedPubMedCentralCrossRef
58.
go back to reference He G, Zhang Y, Feng Y, Chen T, Liu M, Zeng Y, Yin X, Qu S, Huang L, Ke Y, Liang L, Yan J, Liu W. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation. J Cell Mol Med. 2024;28(7): e18212.PubMedPubMedCentralCrossRef He G, Zhang Y, Feng Y, Chen T, Liu M, Zeng Y, Yin X, Qu S, Huang L, Ke Y, Liang L, Yan J, Liu W. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation. J Cell Mol Med. 2024;28(7): e18212.PubMedPubMedCentralCrossRef
59.
go back to reference Bakar-Ates F, Ozkan E. Cucurbitacin B and erastin co-treatment synergistically induced ferroptosis in breast cancer cells via altered iron-regulating proteins and lipid peroxidation. Toxicol In Vitro. 2024;94: 105732.PubMedCrossRef Bakar-Ates F, Ozkan E. Cucurbitacin B and erastin co-treatment synergistically induced ferroptosis in breast cancer cells via altered iron-regulating proteins and lipid peroxidation. Toxicol In Vitro. 2024;94: 105732.PubMedCrossRef
60.
go back to reference Li Z, Li J, Liu X, Liu Y, Chen H, Sun X. beta-eudesmol inhibits cell proliferation and induces ferroptosis via regulating MAPK signaling pathway in breast cancer. Toxicon. 2024;237: 107529.PubMedCrossRef Li Z, Li J, Liu X, Liu Y, Chen H, Sun X. beta-eudesmol inhibits cell proliferation and induces ferroptosis via regulating MAPK signaling pathway in breast cancer. Toxicon. 2024;237: 107529.PubMedCrossRef
61.
go back to reference Yi N, Wang L, Jiang Z, Xu G, Li L, Zhang Y, Tan Y. Peiminine triggers ferroptosis to inhibit breast cancer growth through triggering Nrf2 signaling. Tissue Cell. 2024;87: 102323.PubMedCrossRef Yi N, Wang L, Jiang Z, Xu G, Li L, Zhang Y, Tan Y. Peiminine triggers ferroptosis to inhibit breast cancer growth through triggering Nrf2 signaling. Tissue Cell. 2024;87: 102323.PubMedCrossRef
62.
go back to reference Wei R, Fu G, Li Z, Liu Y, Xue M. Engineering iron-based nanomaterials for breast cancer therapy associated with ferroptosis. Nanomedicine (Lond). 2024;19(6):537–55.PubMedCrossRef Wei R, Fu G, Li Z, Liu Y, Xue M. Engineering iron-based nanomaterials for breast cancer therapy associated with ferroptosis. Nanomedicine (Lond). 2024;19(6):537–55.PubMedCrossRef
63.
go back to reference Wei X, Li Y, Chen H, Gao R, Ning P, Wang Y, Huang W, Chen E, Fang L, Guo X, Lv C, Cheng Y. A lysosome-targeted magnetic nanotorquer mechanically triggers ferroptosis for breast cancer treatment. Adv Sci (Weinh). 2024;11(9): e2302093.PubMedCrossRef Wei X, Li Y, Chen H, Gao R, Ning P, Wang Y, Huang W, Chen E, Fang L, Guo X, Lv C, Cheng Y. A lysosome-targeted magnetic nanotorquer mechanically triggers ferroptosis for breast cancer treatment. Adv Sci (Weinh). 2024;11(9): e2302093.PubMedCrossRef
64.
go back to reference Chai J, Hu J, Wang T, Bao X, Luan J, Wang Y. A multifunctional liposome for synergistic chemotherapy with ferroptosis activation of triple-negative breast cancer. Mol Pharm. 2024;21(2):781–90.PubMedCrossRef Chai J, Hu J, Wang T, Bao X, Luan J, Wang Y. A multifunctional liposome for synergistic chemotherapy with ferroptosis activation of triple-negative breast cancer. Mol Pharm. 2024;21(2):781–90.PubMedCrossRef
65.
go back to reference Zhou TJ, Zhang MM, Liu DM, Huang LL, Yu HQ, Wang Y, Xing L, Jiang HL. Glutathione depletion and dihydroorotate dehydrogenase inhibition actuated ferroptosis-augment to surmount triple-negative breast cancer. Biomaterials. 2024;305: 122447.PubMedCrossRef Zhou TJ, Zhang MM, Liu DM, Huang LL, Yu HQ, Wang Y, Xing L, Jiang HL. Glutathione depletion and dihydroorotate dehydrogenase inhibition actuated ferroptosis-augment to surmount triple-negative breast cancer. Biomaterials. 2024;305: 122447.PubMedCrossRef
66.
go back to reference FriedmannAngeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.CrossRef FriedmannAngeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.CrossRef
67.
go back to reference Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med. 2023;17(2):173–206.PubMedCrossRef Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med. 2023;17(2):173–206.PubMedCrossRef
68.
go back to reference Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8(1):372.PubMedPubMedCentralCrossRef Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8(1):372.PubMedPubMedCentralCrossRef
69.
go back to reference Cao S, Wei Y, Yue Y, Chen Y, Liao S, Li A, Liu P, Xiong A, Zeng H. Targeting ferroptosis unveils a new era for traditional Chinese medicine: a scientific metrology study. Front Pharmacol. 2024;151: 366852. Cao S, Wei Y, Yue Y, Chen Y, Liao S, Li A, Liu P, Xiong A, Zeng H. Targeting ferroptosis unveils a new era for traditional Chinese medicine: a scientific metrology study. Front Pharmacol. 2024;151: 366852.
Metadata
Title
Targeting ferroptosis reveals a new strategy for breast cancer treatment: a bibliometric study
Authors
Junlin Liu
Rong Tang
Jie Zheng
Ke Luo
Publication date
01-12-2024
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2024
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-024-01569-x

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more