Skip to main content
Top
Published in:

Open Access 01-12-2017 | Perspective

Systems and precision medicine approaches to diabetes heterogeneity: a Big Data perspective

Author: Enrico Capobianco

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Big Data, and in particular Electronic Health Records, provide the medical community with a great opportunity to analyze multiple pathological conditions at an unprecedented depth for many complex diseases, including diabetes. How can we infer on diabetes from large heterogeneous datasets? A possible solution is provided by invoking next-generation computational methods and data analytics tools within systems medicine approaches. By deciphering the multi-faceted complexity of biological systems, the potential of emerging diagnostic tools and therapeutic functions can be ultimately revealed. In diabetes, a multidimensional approach to data analysis is needed to better understand the disease conditions, trajectories and the associated comorbidities. Elucidation of multidimensionality comes from the analysis of factors such as disease phenotypes, marker types, and biological motifs while seeking to make use of multiple levels of information including genetics, omics, clinical data, and environmental and lifestyle factors. Examining the synergy between multiple dimensions represents a challenge. In such regard, the role of Big Data fuels the rise of Precision Medicine by allowing an increasing number of descriptions to be captured from individuals. Thus, data curations and analyses should be designed to deliver highly accurate predicted risk profiles and treatment recommendations. It is important to establish linkages between systems and precision medicine in order to translate their principles into clinical practice. Equivalently, to realize their full potential, the involved multiple dimensions must be able to process information ensuring inter-exchange, reducing ambiguities and redundancies, and ultimately improving health care solutions by introducing clinical decision support systems focused on reclassified phenotypes (or digital biomarkers) and community-driven patient stratifications.
Literature
1.
go back to reference Arnett DK, Claas SA (2016) Precision medicine, genomics, and public health. Diabetes Care 39(11):1870–1873CrossRefPubMed Arnett DK, Claas SA (2016) Precision medicine, genomics, and public health. Diabetes Care 39(11):1870–1873CrossRefPubMed
2.
go back to reference Floyd JS, Psaty BM (2016) The Application of genomics in diabetes: barriers to discovery and implementation. Diabetes Care 39(11):1858–1869CrossRefPubMed Floyd JS, Psaty BM (2016) The Application of genomics in diabetes: barriers to discovery and implementation. Diabetes Care 39(11):1858–1869CrossRefPubMed
3.
go back to reference Fodor A, Cozma A, Kamieli E (2015) Personalized epigenetic management of diabetes. Person Med 12(5):497CrossRef Fodor A, Cozma A, Kamieli E (2015) Personalized epigenetic management of diabetes. Person Med 12(5):497CrossRef
4.
go back to reference Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300CrossRefPubMedPubMedCentral Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300CrossRefPubMedPubMedCentral
6.
go back to reference Wei S, Du M, Jiang Z et al (2016) Long noncoding RNAs in regulating adipogenesis: new RNAs shed lights on obesity. Cell Mol Life Sci 73(10):2079–2087CrossRefPubMed Wei S, Du M, Jiang Z et al (2016) Long noncoding RNAs in regulating adipogenesis: new RNAs shed lights on obesity. Cell Mol Life Sci 73(10):2079–2087CrossRefPubMed
7.
go back to reference Morán I, Akerman I, van de Bunt M et al (2012) Human β cell transcriptome analysis uncovers lncRNAs That Are Tissue-Specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16(4):435–448CrossRefPubMedPubMedCentral Morán I, Akerman I, van de Bunt M et al (2012) Human β cell transcriptome analysis uncovers lncRNAs That Are Tissue-Specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16(4):435–448CrossRefPubMedPubMedCentral
8.
go back to reference Gm Ku, Kim H, Vaughn IW et al (2012) Research resource: RNA-Seq reveals unique features of the pancreatic β-cell transcriptome. Mol Endocrinol 26(10):1783–1792CrossRef Gm Ku, Kim H, Vaughn IW et al (2012) Research resource: RNA-Seq reveals unique features of the pancreatic β-cell transcriptome. Mol Endocrinol 26(10):1783–1792CrossRef
9.
go back to reference Valerio C, Cupri MG, Torchio M et al (2015) Diabetes and cancer: a critical appraisal of the pathogenetic and therapeutic links. Biomed Rep 3(2):131–136 Valerio C, Cupri MG, Torchio M et al (2015) Diabetes and cancer: a critical appraisal of the pathogenetic and therapeutic links. Biomed Rep 3(2):131–136
12.
go back to reference Gini A, Bidoli E, Zanier L et al (2016) Cancer among patients with type 2 diabetes mellitus: a population-based cohort study in northeastern Italy. Cancer Epidemiol 41:80–87CrossRefPubMed Gini A, Bidoli E, Zanier L et al (2016) Cancer among patients with type 2 diabetes mellitus: a population-based cohort study in northeastern Italy. Cancer Epidemiol 41:80–87CrossRefPubMed
13.
14.
go back to reference Carstensen B, Read SH, Friis S et al (2016) Cancer incidence in persons with type 1 diabetes: a five-country study of 9,000 cancers in type 1 diabetic individuals. Diabetologia 59:980–988CrossRefPubMedPubMedCentral Carstensen B, Read SH, Friis S et al (2016) Cancer incidence in persons with type 1 diabetes: a five-country study of 9,000 cancers in type 1 diabetic individuals. Diabetologia 59:980–988CrossRefPubMedPubMedCentral
15.
go back to reference Cannata D, Fierz Y, Vijayakumar A et al (2010) Type 2 diabetes and cancer: what is the connection? Mt Sinai J Med 77(2):197–213CrossRefPubMed Cannata D, Fierz Y, Vijayakumar A et al (2010) Type 2 diabetes and cancer: what is the connection? Mt Sinai J Med 77(2):197–213CrossRefPubMed
16.
go back to reference Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29:613–624CrossRef Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29:613–624CrossRef
17.
go back to reference Capobianco E, Lio’ P (2013) Comorbidity: a multidimensional approach. Trends Mol Med 19(9):515–521CrossRefPubMed Capobianco E, Lio’ P (2013) Comorbidity: a multidimensional approach. Trends Mol Med 19(9):515–521CrossRefPubMed
20.
go back to reference Rich SS, Cefalu WT (2016) The impact of precision medicine in diabetes: a multidimensional perspective. Diabetes Care 39(11):1854–1857CrossRefPubMed Rich SS, Cefalu WT (2016) The impact of precision medicine in diabetes: a multidimensional perspective. Diabetes Care 39(11):1854–1857CrossRefPubMed
21.
go back to reference Tuomi T, Santoro N, Caprio S et al (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094CrossRefPubMed Tuomi T, Santoro N, Caprio S et al (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094CrossRefPubMed
22.
go back to reference Madigan D, Ryan PB, Schuemie M et al (2013) Evaluating the impact of database heterogeneity on observational study results. Am J Epidemiol 178(4):645–651CrossRefPubMedPubMedCentral Madigan D, Ryan PB, Schuemie M et al (2013) Evaluating the impact of database heterogeneity on observational study results. Am J Epidemiol 178(4):645–651CrossRefPubMedPubMedCentral
24.
go back to reference Fodor A, Karnieli E (2016) Challenges of implementing personalized (precision) medicine: a focus on diabetes. Person Med 13(5):485–497CrossRef Fodor A, Karnieli E (2016) Challenges of implementing personalized (precision) medicine: a focus on diabetes. Person Med 13(5):485–497CrossRef
25.
26.
27.
go back to reference Blankin AV (2017) The road to precision oncology. Nat Genet 49(1):2017 Blankin AV (2017) The road to precision oncology. Nat Genet 49(1):2017
28.
go back to reference Piette JD, Kerr EA (2006) The impact of comorbid chronic conditions on diabetes. Care Diabetes Care 29(3):725–731CrossRefPubMed Piette JD, Kerr EA (2006) The impact of comorbid chronic conditions on diabetes. Care Diabetes Care 29(3):725–731CrossRefPubMed
29.
go back to reference Dart AB, Martens PJ, Rigatto C et al (2014) Earlier onset of complications in youth with type 2 diabetes. Diabetes Care 37(2):436–443CrossRefPubMed Dart AB, Martens PJ, Rigatto C et al (2014) Earlier onset of complications in youth with type 2 diabetes. Diabetes Care 37(2):436–443CrossRefPubMed
30.
go back to reference Maric-Bilkan C (2017) Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci 131(9):833–846CrossRefPubMed Maric-Bilkan C (2017) Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci 131(9):833–846CrossRefPubMed
31.
32.
go back to reference Capobianco E (2015) Cancer hallmarks through the network Lens. Cancer Cell Microenviron 2(4):e943 Capobianco E (2015) Cancer hallmarks through the network Lens. Cancer Cell Microenviron 2(4):e943
35.
go back to reference Jensen AB, Moseley PL, Ti Oprea et al (2014) Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nature Comm 5:4022 Jensen AB, Moseley PL, Ti Oprea et al (2014) Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nature Comm 5:4022
36.
go back to reference Gersung M, Papaemmanuil E, Martincorena I et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49(3):332–340CrossRef Gersung M, Papaemmanuil E, Martincorena I et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49(3):332–340CrossRef
37.
go back to reference Richesson RL, Rusincovitch SA, Wixted D et al (2013) A comparison of phenotype definitions for diabetes mellitus. J Am Med Inform Assoc 20(e2):e319–e326CrossRefPubMedPubMedCentral Richesson RL, Rusincovitch SA, Wixted D et al (2013) A comparison of phenotype definitions for diabetes mellitus. J Am Med Inform Assoc 20(e2):e319–e326CrossRefPubMedPubMedCentral
38.
go back to reference Ozery-Flato M, Ein-Dor L, Parush-Shear-Yashuv N et al (2016) Identifying and investigating unexpected response to treatment: a diabetes case study. Big Data 4(3):148–159CrossRefPubMed Ozery-Flato M, Ein-Dor L, Parush-Shear-Yashuv N et al (2016) Identifying and investigating unexpected response to treatment: a diabetes case study. Big Data 4(3):148–159CrossRefPubMed
39.
go back to reference Gabert R, Thomson B, Gakidou E et al (2016) Identifying high-risk neighborhoods using electronic medical records: a population-based approach for targeting diabetes prevention and treatment interventions. PLoS ONE 11(7):e0159227CrossRefPubMedPubMedCentral Gabert R, Thomson B, Gakidou E et al (2016) Identifying high-risk neighborhoods using electronic medical records: a population-based approach for targeting diabetes prevention and treatment interventions. PLoS ONE 11(7):e0159227CrossRefPubMedPubMedCentral
40.
go back to reference Li L, Cheng WY, Glicksberg BS et al (2015) Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 7(311):311ra174CrossRefPubMedPubMedCentral Li L, Cheng WY, Glicksberg BS et al (2015) Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 7(311):311ra174CrossRefPubMedPubMedCentral
41.
go back to reference Anderson AE, Kerr WT, Thames A et al (2016) Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: a cross-sectional, unselected, retrospective study. J Biomed Inform 60:162–168CrossRefPubMed Anderson AE, Kerr WT, Thames A et al (2016) Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: a cross-sectional, unselected, retrospective study. J Biomed Inform 60:162–168CrossRefPubMed
42.
go back to reference Spratt SE, Pereira K, Granger BB et al (2017) Assessing electronic health record phenotypes against gold-standard diagnostic criteria for diabetes mellitus. J Am Med Inform Assoc 24(e1):e121–e128PubMed Spratt SE, Pereira K, Granger BB et al (2017) Assessing electronic health record phenotypes against gold-standard diagnostic criteria for diabetes mellitus. J Am Med Inform Assoc 24(e1):e121–e128PubMed
43.
go back to reference Razavian N, Blecker S, Schmidt AM et al (2015) Population-level prediction of type 2 diabetes from claims data and analysis of risk factors. Big Data 3(4):277–287CrossRefPubMed Razavian N, Blecker S, Schmidt AM et al (2015) Population-level prediction of type 2 diabetes from claims data and analysis of risk factors. Big Data 3(4):277–287CrossRefPubMed
Metadata
Title
Systems and precision medicine approaches to diabetes heterogeneity: a Big Data perspective
Author
Enrico Capobianco
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0155-4