Skip to main content
Top

23-10-2024 | Systemic Sclerosis | RESEARCH

Nerandomilast Improves Bleomycin-Induced Systemic Sclerosis-Associated Interstitial Lung Disease in Mice by Regulating the TGF-β1 Pathway

Authors: Yuming Liu, Zhigang Liu, Xiaohe Li, Wenqi Li, Zhongyi Yang, Ran Jiao, Qing Wang, Lingxin Meng, Tiantian Zhang, Jing Liu, Dan Chai, Na Zhang, Shouchun Peng, Honggang Zhou, Cheng Yang

Published in: Inflammation

Login to get access

Abstract

Systemic sclerosis (SSc) is a rare connective tissue disease with a heterogeneous clinical course. Interstitial lung disease (ILD) is a common complication of SSc and a major contributor to SSc-related deaths. Besides nintedanib and tocilizumab, there are currently no clinically approved drugs for SSc-ILD, highlighting the urgent need for new treatment strategies. Previous studies have shown that cyclic adenosine monophosphate (cAMP) plays a crucial role in the pathogenesis of SSc and lung fibrosis. Phosphodiesterases (PDEs) are enzymes that specifically hydrolyze cAMP, making PDE inhibitors promising candidates for SSc-ILD treatment. Nerandomilast, a preferential phosphodiesterase 4B (PDE4B) inhibitor currently undergoing phase III clinical trials for idiopathic pulmonary fibrosis and progressive fibrosing interstitial lung diseases (PF-ILD), has good preference for PDE4B but lacks studies for SSc-ILD. Our research demonstrates that nerandomilast effectively inhibits skin and lung fibrosis in a bleomycin-induced mouse model of SSc-ILD. For lung fibrosis, we found that nerandomilast could improve bleomycin-induced SSc-ILD through inhibiting PDE4B and the TGF-β1-Smads/non-Smads signaling pathways, which provides a theoretical basis for potential therapeutic drug development for SSc-ILD.
Literature
1.
go back to reference Bukiri, Heather, and Elizabeth R. Volkmann. 2022. Current advances in the treatment of systemic sclerosis [J]. Current Opinion in Pharmacology 64: 102211.CrossRefPubMedPubMedCentral Bukiri, Heather, and Elizabeth R. Volkmann. 2022. Current advances in the treatment of systemic sclerosis [J]. Current Opinion in Pharmacology 64: 102211.CrossRefPubMedPubMedCentral
2.
go back to reference Raghu, G., S.B. Montesi, R.M. Silver, et al. 2024. Treatment of systemic sclerosis-associated interstitial lung disease: Evidence-based recommendations. An official American thoracic society clinical practice guideline [J]. American Journal of Respiratory and Critical Care Medicine 209 (2): 137–152.CrossRefPubMedPubMedCentral Raghu, G., S.B. Montesi, R.M. Silver, et al. 2024. Treatment of systemic sclerosis-associated interstitial lung disease: Evidence-based recommendations. An official American thoracic society clinical practice guideline [J]. American Journal of Respiratory and Critical Care Medicine 209 (2): 137–152.CrossRefPubMedPubMedCentral
3.
go back to reference Steele, R., M. Hudson, E. Lo, et al. 2012. Clinical decision rule to predict the presence of interstitial lung disease in systemic sclerosis[J]. Arthritis Care Res (Hoboken) 64: 519–524.CrossRefPubMed Steele, R., M. Hudson, E. Lo, et al. 2012. Clinical decision rule to predict the presence of interstitial lung disease in systemic sclerosis[J]. Arthritis Care Res (Hoboken) 64: 519–524.CrossRefPubMed
4.
go back to reference Therese, Keravis, and Lugnier Claire. 2010. Cyclic Nucleotide Phosphodiesterases (PDE) and Peptide Motifs[J]. Current Pharmaceutical Design 16 (9): 1114–1125.CrossRef Therese, Keravis, and Lugnier Claire. 2010. Cyclic Nucleotide Phosphodiesterases (PDE) and Peptide Motifs[J]. Current Pharmaceutical Design 16 (9): 1114–1125.CrossRef
5.
go back to reference Kolb, Martin, Bruno Crestani, and Toby M. Maher. 2023. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis[J]. European Respiratory Review 32 (167): 220206.CrossRefPubMedPubMedCentral Kolb, Martin, Bruno Crestani, and Toby M. Maher. 2023. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis[J]. European Respiratory Review 32 (167): 220206.CrossRefPubMedPubMedCentral
6.
go back to reference Raker, V.K., C. Becker, and K. Steinbrink. 2016. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases[J]. Frontiers in Immunology 7: 123.CrossRefPubMedPubMedCentral Raker, V.K., C. Becker, and K. Steinbrink. 2016. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases[J]. Frontiers in Immunology 7: 123.CrossRefPubMedPubMedCentral
7.
go back to reference Azevedo, M.F., F.R. Faucz, E. Bimpaki, et al. 2014. Clinical and molecular genetics of the phosphodiesterases (PDEs)[J]. Endocrine Reviews 35: 195–233.CrossRefPubMed Azevedo, M.F., F.R. Faucz, E. Bimpaki, et al. 2014. Clinical and molecular genetics of the phosphodiesterases (PDEs)[J]. Endocrine Reviews 35: 195–233.CrossRefPubMed
8.
go back to reference Yue, Su., Ding Jiaxiang, Yang Fan, et al. 2022. The regulatory role of PDE4B in the progression of inflammatory function study[J]. Frontiers in Pharmacology 13: 1663–9812. Yue, Su., Ding Jiaxiang, Yang Fan, et al. 2022. The regulatory role of PDE4B in the progression of inflammatory function study[J]. Frontiers in Pharmacology 13: 1663–9812.
9.
go back to reference Brown, W.M. 2007. Treating COPD with PDE 4 inhibitors[J]. International Journal of Chronic Obstructive Pulmonary Disease 2 (4): 517–533.PubMedPubMedCentral Brown, W.M. 2007. Treating COPD with PDE 4 inhibitors[J]. International Journal of Chronic Obstructive Pulmonary Disease 2 (4): 517–533.PubMedPubMedCentral
10.
go back to reference Higuchi, T., K. Takagi, A. Tochimoto, et al. 2023. Antifibrotic effect of apremilast in systemic sclerosis dermal fibroblasts and bleomycin-induced mouse model[J]. Science and Reports 13: 19378.CrossRef Higuchi, T., K. Takagi, A. Tochimoto, et al. 2023. Antifibrotic effect of apremilast in systemic sclerosis dermal fibroblasts and bleomycin-induced mouse model[J]. Science and Reports 13: 19378.CrossRef
11.
go back to reference Yang, X., Z. Xu, S. Hu, et al. 2023. Perspectives of PDE inhibitor on treating idiopathic pulmonary fibrosis[J]. Frontiers in Pharmacology 14: 1111393.CrossRefPubMedPubMedCentral Yang, X., Z. Xu, S. Hu, et al. 2023. Perspectives of PDE inhibitor on treating idiopathic pulmonary fibrosis[J]. Frontiers in Pharmacology 14: 1111393.CrossRefPubMedPubMedCentral
12.
go back to reference Herrmann, F.E., C. Hesslinger, L. Wollin, et al. 2022. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis[J]. Frontiers in Pharmacology 13: 838449.CrossRefPubMedPubMedCentral Herrmann, F.E., C. Hesslinger, L. Wollin, et al. 2022. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis[J]. Frontiers in Pharmacology 13: 838449.CrossRefPubMedPubMedCentral
13.
go back to reference Maher, T.M., C. Schlecker, D. Luedtke, et al. 2022. Phase I studies of BI 1015550, a preferential phosphodiesterase 4B inhibitor, in healthy males and patients with idiopathic pulmonary fibrosis[J]. ERJ Open Research 8 (4): 00240–02022.CrossRefPubMedPubMedCentral Maher, T.M., C. Schlecker, D. Luedtke, et al. 2022. Phase I studies of BI 1015550, a preferential phosphodiesterase 4B inhibitor, in healthy males and patients with idiopathic pulmonary fibrosis[J]. ERJ Open Research 8 (4): 00240–02022.CrossRefPubMedPubMedCentral
14.
go back to reference Raghu, G., M. Remy-Jardin, L. Richeldi, et al. 2022. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: An official ATS/ERS/JRS/ALAT Clinical Practice Guideline[J]. American Journal of Respiratory and Critical Care Medicine 205: e18–e47.CrossRefPubMedPubMedCentral Raghu, G., M. Remy-Jardin, L. Richeldi, et al. 2022. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: An official ATS/ERS/JRS/ALAT Clinical Practice Guideline[J]. American Journal of Respiratory and Critical Care Medicine 205: e18–e47.CrossRefPubMedPubMedCentral
15.
go back to reference Maier, C., A. Ramming, C. Bergmann, et al. 2017. Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages[J]. Annals of the Rheumatic Diseases 76: 1133–1141.CrossRefPubMed Maier, C., A. Ramming, C. Bergmann, et al. 2017. Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages[J]. Annals of the Rheumatic Diseases 76: 1133–1141.CrossRefPubMed
16.
go back to reference Bruni, C., L. Chung, A.M. Hoffmann-Vold, et al. 2022. High-resolution computed tomography of the chest for the screening, re-screening and follow-up of systemic sclerosis-associated interstitial lung disease: A EUSTAR-SCTC survey [J]. Clinical and Experimental Rheumatology 40 (10): 1951–1955.PubMed Bruni, C., L. Chung, A.M. Hoffmann-Vold, et al. 2022. High-resolution computed tomography of the chest for the screening, re-screening and follow-up of systemic sclerosis-associated interstitial lung disease: A EUSTAR-SCTC survey [J]. Clinical and Experimental Rheumatology 40 (10): 1951–1955.PubMed
17.
go back to reference Calverley, P.M., K.F. Rabe, U.M. Goehring, et al. 2009. Roflumilast in symptomatic chronic obstructive pulmonary disease: Two randomised clinical trials[J]. Lancet 374: 685–694.CrossRefPubMed Calverley, P.M., K.F. Rabe, U.M. Goehring, et al. 2009. Roflumilast in symptomatic chronic obstructive pulmonary disease: Two randomised clinical trials[J]. Lancet 374: 685–694.CrossRefPubMed
18.
go back to reference Lee, R., C. Reese, M. Bonner, et al. 2014. Bleomycin delivery by osmotic minipump: Similarity to human scleroderma interstitial lung disease[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology 306 (8): L736–L748.CrossRefPubMedPubMedCentral Lee, R., C. Reese, M. Bonner, et al. 2014. Bleomycin delivery by osmotic minipump: Similarity to human scleroderma interstitial lung disease[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology 306 (8): L736–L748.CrossRefPubMedPubMedCentral
19.
go back to reference Lescoat, A., M. Lelong, M. Jeljeli, et al. 2020. Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: Perspectives for scleroderma-associated interstitial lung disease[J]. Biochemical Pharmacology 178: 114103.CrossRefPubMed Lescoat, A., M. Lelong, M. Jeljeli, et al. 2020. Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: Perspectives for scleroderma-associated interstitial lung disease[J]. Biochemical Pharmacology 178: 114103.CrossRefPubMed
20.
go back to reference Hu, P.Q., A.A. Hurwitz, and J.J. Oppenheim. 2007. Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice[J]. Journal of Rheumatology 34 (11): 2243–2252.PubMed Hu, P.Q., A.A. Hurwitz, and J.J. Oppenheim. 2007. Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice[J]. Journal of Rheumatology 34 (11): 2243–2252.PubMed
21.
go back to reference Aso, Y., K. Yoneda, and Y. Kikkawa. 1976. Morphologic and biochemical study of pulmonary changes induced by bleomycin in mice[J]. Laboratory Investigation 35 (6): 558–568.PubMed Aso, Y., K. Yoneda, and Y. Kikkawa. 1976. Morphologic and biochemical study of pulmonary changes induced by bleomycin in mice[J]. Laboratory Investigation 35 (6): 558–568.PubMed
22.
go back to reference Yamamoto, T., M. Kuroda, and K. Nishioka. 2000. Animal model of sclerotic skin. III: histopathological comparison of bleomycin-induced scleroderma in various mice strains[J]. Archives of Dermatological Research 292 (11): 535–541.CrossRefPubMed Yamamoto, T., M. Kuroda, and K. Nishioka. 2000. Animal model of sclerotic skin. III: histopathological comparison of bleomycin-induced scleroderma in various mice strains[J]. Archives of Dermatological Research 292 (11): 535–541.CrossRefPubMed
23.
go back to reference Ravanetti, F., E. Ferrini, L. Ragionieri, et al. 2021. SSC-ILD mouse model induced by osmotic minipump delivered bleomycin: Effect of Nintedanib[J]. Science and Reports 11 (1): 18513.CrossRef Ravanetti, F., E. Ferrini, L. Ragionieri, et al. 2021. SSC-ILD mouse model induced by osmotic minipump delivered bleomycin: Effect of Nintedanib[J]. Science and Reports 11 (1): 18513.CrossRef
24.
go back to reference Do, N.N., and S.A. Eming. 2016. Skin fibrosis: Models and mechanisms[J]. Current Research in Translational Medicin 64: 185–193.CrossRef Do, N.N., and S.A. Eming. 2016. Skin fibrosis: Models and mechanisms[J]. Current Research in Translational Medicin 64: 185–193.CrossRef
25.
go back to reference Bagnato, G., and S. Harari. 2015. Cellular interactions in the pathogenesis of interstitial lung diseases[J]. European Respiratory Review : An Official Journal of the European Respiratory Society 24 (135): 102–114.CrossRefPubMed Bagnato, G., and S. Harari. 2015. Cellular interactions in the pathogenesis of interstitial lung diseases[J]. European Respiratory Review : An Official Journal of the European Respiratory Society 24 (135): 102–114.CrossRefPubMed
26.
go back to reference Lohmann-Matthes, M.L., C. Steinmüller, and G. Franke-Ullmann. 1994. Pulmonary macrophages [J]. The European Respiratory Journal 7 (9): 1678–1689.CrossRefPubMed Lohmann-Matthes, M.L., C. Steinmüller, and G. Franke-Ullmann. 1994. Pulmonary macrophages [J]. The European Respiratory Journal 7 (9): 1678–1689.CrossRefPubMed
27.
go back to reference Zhang, Z., Y. Wu, B. Wu, et al. 2019. DZ2002 ameliorates fibrosis, inflammation, and vasculopathy in experimental systemic sclerosis models[J]. Arthritis Research & Therapy 21: 1–15.CrossRef Zhang, Z., Y. Wu, B. Wu, et al. 2019. DZ2002 ameliorates fibrosis, inflammation, and vasculopathy in experimental systemic sclerosis models[J]. Arthritis Research & Therapy 21: 1–15.CrossRef
28.
29.
go back to reference Baillie, G.S., G.S. Tejeda, and M.P. Kelly. 2019. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: Inhibition and beyond[J]. Nature Reviews Drug Discovery 18: 770–796.CrossRefPubMedPubMedCentral Baillie, G.S., G.S. Tejeda, and M.P. Kelly. 2019. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: Inhibition and beyond[J]. Nature Reviews Drug Discovery 18: 770–796.CrossRefPubMedPubMedCentral
Metadata
Title
Nerandomilast Improves Bleomycin-Induced Systemic Sclerosis-Associated Interstitial Lung Disease in Mice by Regulating the TGF-β1 Pathway
Authors
Yuming Liu
Zhigang Liu
Xiaohe Li
Wenqi Li
Zhongyi Yang
Ran Jiao
Qing Wang
Lingxin Meng
Tiantian Zhang
Jing Liu
Dan Chai
Na Zhang
Shouchun Peng
Honggang Zhou
Cheng Yang
Publication date
23-10-2024
Publisher
Springer US
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02153-9

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Live: Wednesday 29th January, 18:00-19:30 CET

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more