Skip to main content
Top

Open Access 04-09-2024 | Systemic Lupus Erythematosus | RESEARCH

The dysregulation of mitochondrial homeostasis–related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients

Authors: Giada De Benedittis, Andrea Latini, Chiara Morgante, Carlo Perricone, Fulvia Ceccarelli, Giuseppe Novelli, Lucia Novelli, Cinzia Ciccacci, Paola Borgiani

Published in: Immunologic Research

Login to get access

Abstract

Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease. It is now widely demonstrated that oxidative stress (OS) plays an important role in the modulation of the pathogenesis of this disease. Mitochondrial DNA (mtDNA) is highly vulnerable to OS and it is known a decrease of mtDNA copy number in SLE patients. However, to date, it has not been investigated if this decrease is associated with a dysregulation of mitochondrial homeostasis genes. Our aim is to evaluate the amount of mtDNA copy number and the expression of the genes more involved in the mitochondrial homeostasis pathways, in peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls. We analysed the amount of mtDNA in PBMCs of 72 SLE patients and 61 healthy controls by qPCR. Then, we investigated the expression variability of TFAM and SIRT1 (biogenesis), MFN1 and MFF (fusion/fission) and PRKN2 (mitophagy) genes in a subgroup of SLE patients and healthy controls. Interestingly, we have observed a highly significant decrease in mtDNA copies in SLE patients compared to healthy controls (P < 0.0001). In addition, we have shown that the expression levels of SIRT1, MFN1 and PRKN2 genes were significantly decreased in SLE patients with respect to healthy controls (P = 0.00001 for SIRT1, P = 0.0150 for MFN1 and P = 0.0009 for PRKN2). Lastly, we have reported a positive correlation between PRKN2 expression level and mtDNA copy number (P = 0.019, r = 0.475). In conclusion, our data confirm the impairment of mtDNA copy number in the disease and show for the first time a dysregulation of the mitochondrial homeostasis genes. These results could provide additional support to the important role of mitochondria in SLE development.
Literature
1.
go back to reference Moulton VR, Suarez-Fueyo A, Meidan E, et al. Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med. 2017;23:615–35.CrossRefPubMedPubMedCentral Moulton VR, Suarez-Fueyo A, Meidan E, et al. Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med. 2017;23:615–35.CrossRefPubMedPubMedCentral
2.
go back to reference Cohen RA, Bayliss G, Crispin JC, et al. T cells and in situ cryoglobulin deposition in the pathogenesis of lupus nephritis. Clin Immunol. 2008;128:1–7.CrossRefPubMedPubMedCentral Cohen RA, Bayliss G, Crispin JC, et al. T cells and in situ cryoglobulin deposition in the pathogenesis of lupus nephritis. Clin Immunol. 2008;128:1–7.CrossRefPubMedPubMedCentral
4.
go back to reference Lee HT, Lin CS, Lee CS, et al. Increased 8-hydroxy-2’-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin Exp Immunol. 2014;176:66–77.CrossRefPubMedPubMedCentral Lee HT, Lin CS, Lee CS, et al. Increased 8-hydroxy-2’-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin Exp Immunol. 2014;176:66–77.CrossRefPubMedPubMedCentral
5.
go back to reference Jiang X. Chen, F, The effect of lipid peroxides and superoxide dismutase on systemic lupus erythematosus: a preliminary study. Clin Immunol Immunopathol. 1992;63:39–44.CrossRefPubMed Jiang X. Chen, F, The effect of lipid peroxides and superoxide dismutase on systemic lupus erythematosus: a preliminary study. Clin Immunol Immunopathol. 1992;63:39–44.CrossRefPubMed
6.
go back to reference Shah D, Sah S, Wanchu A, et al. Altered redox state and apoptosis in the pathogenesis of systemic lupus erythematosus. Immunobiology. 2013;218:620–7.CrossRefPubMed Shah D, Sah S, Wanchu A, et al. Altered redox state and apoptosis in the pathogenesis of systemic lupus erythematosus. Immunobiology. 2013;218:620–7.CrossRefPubMed
7.
go back to reference Scavuzzi BM, Simão ANC, Iriyoda TMV, et al. Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol Res. 2018;66:158–71.CrossRefPubMed Scavuzzi BM, Simão ANC, Iriyoda TMV, et al. Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol Res. 2018;66:158–71.CrossRefPubMed
8.
go back to reference Nagy G, Barcza M, Gonchoroff N, et al. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J Immunol. 2004;173:3676–83.CrossRefPubMed Nagy G, Barcza M, Gonchoroff N, et al. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J Immunol. 2004;173:3676–83.CrossRefPubMed
9.
go back to reference Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol. 2024;261:109939.CrossRefPubMed Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol. 2024;261:109939.CrossRefPubMed
10.
go back to reference Fu W, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells Int. 2019;2019:9757201. Fu W, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells Int. 2019;2019:9757201.
11.
go back to reference Li X, Fang P, Mai J, et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.CrossRefPubMedPubMedCentral Li X, Fang P, Mai J, et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.CrossRefPubMedPubMedCentral
12.
go back to reference Shah D, Kiran R, Wanchu A, et al. Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol Lett. 2010;129:7–12.CrossRefPubMed Shah D, Kiran R, Wanchu A, et al. Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol Lett. 2010;129:7–12.CrossRefPubMed
13.
go back to reference Cui L, Weiyao J, Chenghong S, et al. Rheumatoid arthritis and mitochondrial homeostasis: the crossroads of metabolism and immunity. Front Med. 2022;9:1017650.CrossRef Cui L, Weiyao J, Chenghong S, et al. Rheumatoid arthritis and mitochondrial homeostasis: the crossroads of metabolism and immunity. Front Med. 2022;9:1017650.CrossRef
14.
go back to reference Lee HT, Lin CS, Chen WS, et al. Leukocyte mitochondrial DNA alteration in systemic lupus erythematosus and its relevance to the susceptibility to lupus nephritis. Int J Mol Sci. 2012;13:8853–68.CrossRefPubMedPubMedCentral Lee HT, Lin CS, Chen WS, et al. Leukocyte mitochondrial DNA alteration in systemic lupus erythematosus and its relevance to the susceptibility to lupus nephritis. Int J Mol Sci. 2012;13:8853–68.CrossRefPubMedPubMedCentral
15.
go back to reference Li Z, Zong QQ, Zhai CX, et al. An association study on the risk, glucocorticoids effectiveness, and prognosis of systemic lupus erythematosus: insight from mitochondrial DNA copy number. Immunol Res. 2022;70:850–9.CrossRefPubMed Li Z, Zong QQ, Zhai CX, et al. An association study on the risk, glucocorticoids effectiveness, and prognosis of systemic lupus erythematosus: insight from mitochondrial DNA copy number. Immunol Res. 2022;70:850–9.CrossRefPubMed
16.
go back to reference Brenmoehl J. Hoeflich, A, Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. 2013;13:755–61.CrossRefPubMed Brenmoehl J. Hoeflich, A, Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. 2013;13:755–61.CrossRefPubMed
17.
go back to reference Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett. 2018;592:793–811.CrossRefPubMedPubMedCentral Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett. 2018;592:793–811.CrossRefPubMedPubMedCentral
19.
20.
go back to reference De Benedittis G, Latini A, Colafrancesco S, Priori R, Perricone C, Novelli L, Borgiani P, Ciccacci C. Alteration of mitochondrial DNA copy number and increased expression levels of mitochondrial dynamics-related genes in Sjögren’s syndrome. Biomedicines. 2022;10:2699.CrossRefPubMedPubMedCentral De Benedittis G, Latini A, Colafrancesco S, Priori R, Perricone C, Novelli L, Borgiani P, Ciccacci C. Alteration of mitochondrial DNA copy number and increased expression levels of mitochondrial dynamics-related genes in Sjögren’s syndrome. Biomedicines. 2022;10:2699.CrossRefPubMedPubMedCentral
21.
go back to reference Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.CrossRefPubMed Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.CrossRefPubMed
22.
go back to reference Latini A, Novelli L, Ceccarelli F, et al. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients. Lupus. 2021;30:1086–93.CrossRefPubMed Latini A, Novelli L, Ceccarelli F, et al. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients. Lupus. 2021;30:1086–93.CrossRefPubMed
23.
go back to reference Rooney JP, Ryde IT, Sanders LH, et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol. 2015;1241:23–38.CrossRefPubMedPubMedCentral Rooney JP, Ryde IT, Sanders LH, et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol. 2015;1241:23–38.CrossRefPubMedPubMedCentral
24.
go back to reference Xing J, Chen M, Wood CG, et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J Natl Cancer Inst Monogr. 2008;100:1104–12.CrossRef Xing J, Chen M, Wood CG, et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J Natl Cancer Inst Monogr. 2008;100:1104–12.CrossRef
25.
26.
go back to reference Perez-Sanchez C, Ruiz-Limon P, Aguirre MA, et al. Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood. 2012;119:5859–70.CrossRefPubMed Perez-Sanchez C, Ruiz-Limon P, Aguirre MA, et al. Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood. 2012;119:5859–70.CrossRefPubMed
27.
go back to reference Alarcon F, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same for different MO. Front Immunol. 2021;12:649693.CrossRef Alarcon F, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same for different MO. Front Immunol. 2021;12:649693.CrossRef
28.
go back to reference Sherman JM, Stone EM, Freeman-Cook LL, et al. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell. 1999;10:3045–59.CrossRefPubMedPubMedCentral Sherman JM, Stone EM, Freeman-Cook LL, et al. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell. 1999;10:3045–59.CrossRefPubMedPubMedCentral
29.
go back to reference Aquilano K, Baldelli S, Pagliei B, et al. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal. 2013;18:386–99.CrossRefPubMedPubMedCentral Aquilano K, Baldelli S, Pagliei B, et al. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal. 2013;18:386–99.CrossRefPubMedPubMedCentral
30.
go back to reference Wu K, Li B, Lin Q, et al. Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life sci. 2021;274:119299.CrossRefPubMed Wu K, Li B, Lin Q, et al. Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life sci. 2021;274:119299.CrossRefPubMed
31.
go back to reference Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200.CrossRefPubMedPubMedCentral Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200.CrossRefPubMedPubMedCentral
32.
go back to reference Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. 2005;14:R283–9.CrossRefPubMed Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. 2005;14:R283–9.CrossRefPubMed
33.
go back to reference Hara H, Araya J, Ito S, et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol. 2013;305:L737–46.CrossRefPubMed Hara H, Araya J, Ito S, et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol. 2013;305:L737–46.CrossRefPubMed
35.
go back to reference Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13:736–66.CrossRefPubMedPubMedCentral Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13:736–66.CrossRefPubMedPubMedCentral
36.
go back to reference Di Sante G, Pestell TG, Casimiro MC, et al. Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria. Am J Pathol. 2015;185:266–79.CrossRefPubMedPubMedCentral Di Sante G, Pestell TG, Casimiro MC, et al. Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria. Am J Pathol. 2015;185:266–79.CrossRefPubMedPubMedCentral
37.
go back to reference Guo J, Wang R, Liu D. Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front Endocrinol (Lausanne). 2021;12:639165.CrossRefPubMed Guo J, Wang R, Liu D. Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front Endocrinol (Lausanne). 2021;12:639165.CrossRefPubMed
38.
go back to reference Rothfuss O, Fischer H, Hasegawa T, et al. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet. 2009;18:3832–50.CrossRefPubMed Rothfuss O, Fischer H, Hasegawa T, et al. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet. 2009;18:3832–50.CrossRefPubMed
Metadata
Title
The dysregulation of mitochondrial homeostasis–related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients
Authors
Giada De Benedittis
Andrea Latini
Chiara Morgante
Carlo Perricone
Fulvia Ceccarelli
Giuseppe Novelli
Lucia Novelli
Cinzia Ciccacci
Paola Borgiani
Publication date
04-09-2024
Publisher
Springer US
Published in
Immunologic Research
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-024-09535-z