Skip to main content
Top

03-09-2024 | Steatotic Liver Disease | REVIEW

Osteokines in Nonalcoholic Fatty Liver Disease

Authors: Ilias D. Vachliotis, Athanasios D. Anastasilakis, Vasileios Rafailidis, Stergios A. Polyzos

Published in: Current Obesity Reports

Login to get access

Abstract

Purpose of Review

To critically summarize evidence on the potential role of osteokines in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD).

Recent Findings

There are emerging data supporting that certain osteokines, which are specific bone-derived proteins, may beneficially or adversely affect hepatic metabolism, and their alterations in the setting of osteoporosis or other bone metabolic diseases may possibly contribute to the development and progression of NAFLD. There is evidence showing a potential bidirectional association between NAFLD and bone metabolism, which may imply the existence of a liver-bone axis. In this regard, osteocalcin, osteoprotegerin, bone morphogenic protein 4 (BMP4) and BMP6 appear to have a positive impact on the liver, thus possibly alleviating NAFLD, whereas osteopontin, receptor activator of nuclear factor kappa Β ligand (RANKL), sclerostin, periostin, BMP8B, and fibroblast growth factor 23 (FGF23) appear to have a negative impact on the liver, thus possibly exacerbating NAFLD.

Summary

The potential implication of osteokines in NAFLD warrants further animal and clinical research in the field that may possibly result in novel therapeutic targets for NAFLD in the future.
Literature
1.
go back to reference Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97.PubMedCrossRef Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97.PubMedCrossRef
2.
go back to reference Li L, Liu D-W, Yan H-Y, Wang Z-Y, Zhao S-H, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016;17:510–9.PubMedCrossRef Li L, Liu D-W, Yan H-Y, Wang Z-Y, Zhao S-H, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016;17:510–9.PubMedCrossRef
3.
go back to reference Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42:92–108.PubMedCrossRef Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42:92–108.PubMedCrossRef
4.
go back to reference Makri E, Goulas A, Polyzos SA. Epidemiology, pathogenesis, diagnosis and emerging treatment of nonalcoholic fatty liver disease. Arch Med Res. 2021;52:25–37.PubMedCrossRef Makri E, Goulas A, Polyzos SA. Epidemiology, pathogenesis, diagnosis and emerging treatment of nonalcoholic fatty liver disease. Arch Med Res. 2021;52:25–37.PubMedCrossRef
5.
go back to reference Polyzos SA, Mantzoros CS. Metabolic dysfunction-associated steatotic liver disease: Recent turning points for its diagnosis and management. Metabolism. 2024;157:155936. Polyzos SA, Mantzoros CS. Metabolic dysfunction-associated steatotic liver disease: Recent turning points for its diagnosis and management. Metabolism. 2024;157:155936.
6.
go back to reference Polyzos SA, Kechagias S, Tsochatzis EA. Review article: non-alcoholic fatty liver disease and cardiovascular diseases: associations and treatment considerations. Aliment Pharmacol Ther. 2021;54:1013–25.PubMedCrossRef Polyzos SA, Kechagias S, Tsochatzis EA. Review article: non-alcoholic fatty liver disease and cardiovascular diseases: associations and treatment considerations. Aliment Pharmacol Ther. 2021;54:1013–25.PubMedCrossRef
7.
go back to reference Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542–56.PubMedCrossRef Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542–56.PubMedCrossRef
8.
go back to reference Polyzos SA, Kountouras J, Zavos C, Deretzi G. Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol. 2012;46:272–84.PubMedCrossRef Polyzos SA, Kountouras J, Zavos C, Deretzi G. Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol. 2012;46:272–84.PubMedCrossRef
10.
go back to reference Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, et al. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab. 2024;36:1144-1163.e7.PubMedCrossRef Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, et al. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab. 2024;36:1144-1163.e7.PubMedCrossRef
11.
go back to reference Shimonty A, Bonewald LF, Huot JR. Metabolic health and disease: A role of osteokines? Calcif Tissue Int. 2023;113:21–38.PubMedCrossRef Shimonty A, Bonewald LF, Huot JR. Metabolic health and disease: A role of osteokines? Calcif Tissue Int. 2023;113:21–38.PubMedCrossRef
12.
go back to reference Vachliotis ID, Anastasilakis AD, Goulas A, Goulis DG, Polyzos SA. Nonalcoholic fatty liver disease and osteoporosis: A potential association with therapeutic implications. Diabetes Obes Metab. 2022;24:1702–20.PubMedCrossRef Vachliotis ID, Anastasilakis AD, Goulas A, Goulis DG, Polyzos SA. Nonalcoholic fatty liver disease and osteoporosis: A potential association with therapeutic implications. Diabetes Obes Metab. 2022;24:1702–20.PubMedCrossRef
13.
go back to reference Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci. 2023;24:8445.PubMedPubMedCentralCrossRef Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci. 2023;24:8445.PubMedPubMedCentralCrossRef
14.
go back to reference Azizieh FY, Shehab D, Al Jarallah K, Mojiminiyi O, Gupta R, Raghupathy R. Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. J Inflamm Res. 2019;12:99–108.PubMedPubMedCentralCrossRef Azizieh FY, Shehab D, Al Jarallah K, Mojiminiyi O, Gupta R, Raghupathy R. Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. J Inflamm Res. 2019;12:99–108.PubMedPubMedCentralCrossRef
15.
go back to reference Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879–91.PubMedPubMedCentralCrossRef Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879–91.PubMedPubMedCentralCrossRef
16.
go back to reference Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–79.PubMedCrossRef Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–79.PubMedCrossRef
17.
go back to reference Shu L, Fu Y, Sun H. The association between common serum adipokines levels and postmenopausal osteoporosis: A meta-analysis. J Cell Mol Med. 2022;26:4333–42.PubMedPubMedCentralCrossRef Shu L, Fu Y, Sun H. The association between common serum adipokines levels and postmenopausal osteoporosis: A meta-analysis. J Cell Mol Med. 2022;26:4333–42.PubMedPubMedCentralCrossRef
18.
go back to reference Santos JPMD, de Maio MC, Lemes MA, Laurindo LF, Haber JFDS, Bechara MD, et al. Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int J Mol Sci. 2022;23:498.PubMedPubMedCentralCrossRef Santos JPMD, de Maio MC, Lemes MA, Laurindo LF, Haber JFDS, Bechara MD, et al. Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int J Mol Sci. 2022;23:498.PubMedPubMedCentralCrossRef
19.
go back to reference Ehnert S, Aspera-Werz RH, Ruoß M, Dooley S, Hengstler JG, Nadalin S, et al. Hepatic osteodystrophy-molecular mechanisms proposed to favor its development. Int J Mol Sci. 2019;20:2555.PubMedPubMedCentralCrossRef Ehnert S, Aspera-Werz RH, Ruoß M, Dooley S, Hengstler JG, Nadalin S, et al. Hepatic osteodystrophy-molecular mechanisms proposed to favor its development. Int J Mol Sci. 2019;20:2555.PubMedPubMedCentralCrossRef
20.
go back to reference Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Yavropoulou MP, Makras P. Postmenopausal osteoporosis coexisting with other metabolic diseases: Treatment considerations. Maturitas. 2021;147:19–25.PubMedCrossRef Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Yavropoulou MP, Makras P. Postmenopausal osteoporosis coexisting with other metabolic diseases: Treatment considerations. Maturitas. 2021;147:19–25.PubMedCrossRef
21.
go back to reference Zhao J, Lei H, Wang T, Xiong X. Liver-bone crosstalk in non-alcoholic fatty liver disease: Clinical implications and underlying pathophysiology. Front Endocrinol. 2023;14:1161402.CrossRef Zhao J, Lei H, Wang T, Xiong X. Liver-bone crosstalk in non-alcoholic fatty liver disease: Clinical implications and underlying pathophysiology. Front Endocrinol. 2023;14:1161402.CrossRef
22.
23.
go back to reference Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep. 2015;13:180–5.PubMedCrossRef Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep. 2015;13:180–5.PubMedCrossRef
24.
go back to reference Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009;9:299–314.PubMedCrossRef Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009;9:299–314.PubMedCrossRef
25.
go back to reference Zhang M, Nie X, Yuan Y, Wang Y, Ma X, Yin J, et al. Osteocalcin alleviates nonalcoholic fatty liver disease in mice through GPRC6A. Int J Endocrinol. 2021;2021:9178616.PubMedCentralCrossRef Zhang M, Nie X, Yuan Y, Wang Y, Ma X, Yin J, et al. Osteocalcin alleviates nonalcoholic fatty liver disease in mice through GPRC6A. Int J Endocrinol. 2021;2021:9178616.PubMedCentralCrossRef
26.
go back to reference Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50:568–75.PubMedCrossRef Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50:568–75.PubMedCrossRef
27.
go back to reference Du J, Zhang M, Lu J, Zhang X, Xiong Q, Xu Y, et al. Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Endocrine. 2016;53:701–9.PubMedCrossRef Du J, Zhang M, Lu J, Zhang X, Xiong Q, Xu Y, et al. Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Endocrine. 2016;53:701–9.PubMedCrossRef
28.
go back to reference Zhang X-L, Wang Y-N, Ma L-Y, Liu Z-S, Ye F, Yang J-H. Uncarboxylated osteocalcin ameliorates hepatic glucose and lipid metabolism in KKAy mice via activating insulin signaling pathway. Acta Pharmacol Sin. 2020;41:383–93.PubMedCrossRef Zhang X-L, Wang Y-N, Ma L-Y, Liu Z-S, Ye F, Yang J-H. Uncarboxylated osteocalcin ameliorates hepatic glucose and lipid metabolism in KKAy mice via activating insulin signaling pathway. Acta Pharmacol Sin. 2020;41:383–93.PubMedCrossRef
29.
go back to reference Gupte AA, Sabek OM, Fraga D, Minze LJ, Nishimoto SK, Liu JZ, et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology. 2014;155:4697–705.PubMedPubMedCentralCrossRef Gupte AA, Sabek OM, Fraga D, Minze LJ, Nishimoto SK, Liu JZ, et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology. 2014;155:4697–705.PubMedPubMedCentralCrossRef
30.
go back to reference Musso G, Paschetta E, Gambino R, Cassader M, Molinaro F. Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends Mol Med. 2013;19:522–35.PubMedCrossRef Musso G, Paschetta E, Gambino R, Cassader M, Molinaro F. Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends Mol Med. 2013;19:522–35.PubMedCrossRef
31.
go back to reference Otani T, Mizokami A, Kawakubo-Yasukochi T, Takeuchi H, Inai T, Hirata M. The roles of osteocalcin in lipid metabolism in adipose tissue and liver. Adv Biol Regul. 2020;78: 100752.PubMedCrossRef Otani T, Mizokami A, Kawakubo-Yasukochi T, Takeuchi H, Inai T, Hirata M. The roles of osteocalcin in lipid metabolism in adipose tissue and liver. Adv Biol Regul. 2020;78: 100752.PubMedCrossRef
33.
go back to reference Polyzos SA, Kountouras J, Zavos C. Adiponectin as a potential therapeutic agent for nonalcoholic steatohepatitis. Hepatol Res. 2010;40:446–7.PubMedCrossRef Polyzos SA, Kountouras J, Zavos C. Adiponectin as a potential therapeutic agent for nonalcoholic steatohepatitis. Hepatol Res. 2010;40:446–7.PubMedCrossRef
34.
go back to reference Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12:365–83.PubMedCrossRef Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12:365–83.PubMedCrossRef
35.
go back to reference Dou J, Ma X, Fang Q, Hao Y, Yang R, Wang F, et al. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in Chinese men. Clin Exp Pharmacol Physiol. 2013;40:282–8.PubMedCrossRef Dou J, Ma X, Fang Q, Hao Y, Yang R, Wang F, et al. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in Chinese men. Clin Exp Pharmacol Physiol. 2013;40:282–8.PubMedCrossRef
36.
go back to reference Liu J-J, Chen Y-Y, Mo Z-N, Tian G-X, Tan A-H, Gao Y, et al. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in adult males. South China Int J Mol Sci. 2013;14:19782–91.PubMedCrossRef Liu J-J, Chen Y-Y, Mo Z-N, Tian G-X, Tan A-H, Gao Y, et al. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in adult males. South China Int J Mol Sci. 2013;14:19782–91.PubMedCrossRef
37.
go back to reference Luo Y-Q, Ma X-J, Hao Y-P, Pan X-P, Xu Y-T, Xiong Q, et al. Inverse relationship between serum osteocalcin levels and nonalcoholic fatty liver disease in postmenopausal Chinese women with normal blood glucose levels. Acta Pharmacol Sin. 2015;36:1497–502.PubMedPubMedCentralCrossRef Luo Y-Q, Ma X-J, Hao Y-P, Pan X-P, Xu Y-T, Xiong Q, et al. Inverse relationship between serum osteocalcin levels and nonalcoholic fatty liver disease in postmenopausal Chinese women with normal blood glucose levels. Acta Pharmacol Sin. 2015;36:1497–502.PubMedPubMedCentralCrossRef
38.
go back to reference Sinn DH, Gwak G-Y, Rhee SY, Cho J, Son HJ, Paik Y-H, et al. Association between serum osteocalcin levels and non-alcoholic fatty liver disease in women. Digestion. 2015;91:150–7.PubMedCrossRef Sinn DH, Gwak G-Y, Rhee SY, Cho J, Son HJ, Paik Y-H, et al. Association between serum osteocalcin levels and non-alcoholic fatty liver disease in women. Digestion. 2015;91:150–7.PubMedCrossRef
39.
go back to reference Yang HJ, Shim SG, Ma BO, Kwak JY. Association of nonalcoholic fatty liver disease with bone mineral density and serum osteocalcin levels in Korean men. Eur J Gastroenterol Hepatol. 2016;28:338–44.PubMedPubMedCentralCrossRef Yang HJ, Shim SG, Ma BO, Kwak JY. Association of nonalcoholic fatty liver disease with bone mineral density and serum osteocalcin levels in Korean men. Eur J Gastroenterol Hepatol. 2016;28:338–44.PubMedPubMedCentralCrossRef
40.
go back to reference Wang N, Wang Y, Chen X, Zhang W, Chen Y, Xia F, et al. Bone Turnover Markers and Probable Advanced Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Men and Postmenopausal Women With Type 2 Diabetes. Front Endocrinol. 2019;10:926.CrossRef Wang N, Wang Y, Chen X, Zhang W, Chen Y, Xia F, et al. Bone Turnover Markers and Probable Advanced Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Men and Postmenopausal Women With Type 2 Diabetes. Front Endocrinol. 2019;10:926.CrossRef
41.
go back to reference Aller R, Castrillon JLP, de Luis DA, Conde R, Izaola O, Sagrado MG, et al. Relation of osteocalcin with insulin resistance and histopathological changes of non alcoholic fatty liver disease. Ann Hepatol. 2011;10:50–5.PubMedCrossRef Aller R, Castrillon JLP, de Luis DA, Conde R, Izaola O, Sagrado MG, et al. Relation of osteocalcin with insulin resistance and histopathological changes of non alcoholic fatty liver disease. Ann Hepatol. 2011;10:50–5.PubMedCrossRef
42.
go back to reference Yilmaz Y, Kurt R, Eren F, Imeryuz N. Serum osteocalcin levels in patients with nonalcoholic fatty liver disease: association with ballooning degeneration. Scand J Clin Lab Invest. 2011;71:631–6.PubMedCrossRef Yilmaz Y, Kurt R, Eren F, Imeryuz N. Serum osteocalcin levels in patients with nonalcoholic fatty liver disease: association with ballooning degeneration. Scand J Clin Lab Invest. 2011;71:631–6.PubMedCrossRef
43.
go back to reference Xia M, Rong S, Zhu X, Yan H, Chang X, Sun X, et al. Osteocalcin and Non-Alcoholic Fatty Liver Disease: Lessons From Two Population-Based Cohorts and Animal Models. J Bone Miner Res. 2021;36:712–28.PubMedCrossRef Xia M, Rong S, Zhu X, Yan H, Chang X, Sun X, et al. Osteocalcin and Non-Alcoholic Fatty Liver Disease: Lessons From Two Population-Based Cohorts and Animal Models. J Bone Miner Res. 2021;36:712–28.PubMedCrossRef
44.
go back to reference Fang D, Yin H, Ji X, Sun H, Zhao X, Bi Y, et al. Low levels of osteocalcin, but not CTX or P1NP, are associated with nonalcoholic hepatic steatosis and steatohepatitis. Diabetes Metab. 2023;49: 101397.PubMedCrossRef Fang D, Yin H, Ji X, Sun H, Zhao X, Bi Y, et al. Low levels of osteocalcin, but not CTX or P1NP, are associated with nonalcoholic hepatic steatosis and steatohepatitis. Diabetes Metab. 2023;49: 101397.PubMedCrossRef
45.
go back to reference Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73:202–9.PubMedCrossRef Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73:202–9.PubMedCrossRef
46.
go back to reference Wang Y-J, Jin C-H, Ke J-F, Wang J-W, Ma Y-L, Lu J-X, et al. Decreased serum osteocalcin is an independent risk factor for metabolic dysfunction-associated fatty liver disease in type 2 diabetes. Diabetes Metab Syndr Obes. 2022;15:3717–28.PubMedPubMedCentralCrossRef Wang Y-J, Jin C-H, Ke J-F, Wang J-W, Ma Y-L, Lu J-X, et al. Decreased serum osteocalcin is an independent risk factor for metabolic dysfunction-associated fatty liver disease in type 2 diabetes. Diabetes Metab Syndr Obes. 2022;15:3717–28.PubMedPubMedCentralCrossRef
47.
go back to reference McKee MD, Nanci A. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res. 1996;35:197–205.PubMedCrossRef McKee MD, Nanci A. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res. 1996;35:197–205.PubMedCrossRef
48.
go back to reference Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett. 2013;331:11–7.PubMedCrossRef Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett. 2013;331:11–7.PubMedCrossRef
49.
go back to reference Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, et al. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell. 2003;14:173–89.PubMedPubMedCentralCrossRef Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, et al. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell. 2003;14:173–89.PubMedPubMedCentralCrossRef
51.
go back to reference Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145–54.PubMedCrossRef Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145–54.PubMedCrossRef
53.
go back to reference Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007;27:2302–9.PubMedCrossRef Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007;27:2302–9.PubMedCrossRef
54.
go back to reference Sahai A, Malladi P, Melin-Aldana H, Green RM, Whitington PF. Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol. 2004;287:G264–73.PubMedCrossRef Sahai A, Malladi P, Melin-Aldana H, Green RM, Whitington PF. Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol. 2004;287:G264–73.PubMedCrossRef
55.
go back to reference Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, et al. Osteopontin takes center stage in chronic liver disease. Hepatology. 2021;73:1594–608.PubMedCrossRef Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, et al. Osteopontin takes center stage in chronic liver disease. Hepatology. 2021;73:1594–608.PubMedCrossRef
56.
go back to reference Kiefer FW, Neschen S, Pfau B, Legerer B, Neuhofer A, Kahle M, et al. Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia. 2011;54:2132–42.PubMedPubMedCentralCrossRef Kiefer FW, Neschen S, Pfau B, Legerer B, Neuhofer A, Kahle M, et al. Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia. 2011;54:2132–42.PubMedPubMedCentralCrossRef
57.
go back to reference Kiefer FW, Zeyda M, Gollinger K, Pfau B, Neuhofer A, Weichhart T, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes. 2010;59:935–46.PubMedPubMedCentralCrossRef Kiefer FW, Zeyda M, Gollinger K, Pfau B, Neuhofer A, Weichhart T, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes. 2010;59:935–46.PubMedPubMedCentralCrossRef
58.
go back to reference Honda M, Kimura C, Uede T, Kon S. Neutralizing antibody against osteopontin attenuates non-alcoholic steatohepatitis in mice. J Cell Commun Signal. 2020;14:223–32.PubMedPubMedCentralCrossRef Honda M, Kimura C, Uede T, Kon S. Neutralizing antibody against osteopontin attenuates non-alcoholic steatohepatitis in mice. J Cell Commun Signal. 2020;14:223–32.PubMedPubMedCentralCrossRef
59.
go back to reference Bertola A, Deveaux V, Bonnafous S, Rousseau D, Anty R, Wakkach A, et al. Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes. 2009;58:125–33.PubMedPubMedCentralCrossRef Bertola A, Deveaux V, Bonnafous S, Rousseau D, Anty R, Wakkach A, et al. Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes. 2009;58:125–33.PubMedPubMedCentralCrossRef
60.
go back to reference Nuñez-Garcia M, Gomez-Santos B, Buqué X, García-Rodriguez JL, Romero MR, Marin JJG, et al. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver. J Lipid Res. 2017;58:1903–15.PubMedPubMedCentralCrossRef Nuñez-Garcia M, Gomez-Santos B, Buqué X, García-Rodriguez JL, Romero MR, Marin JJG, et al. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver. J Lipid Res. 2017;58:1903–15.PubMedPubMedCentralCrossRef
61.
go back to reference Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29:623–32.PubMedCrossRef Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29:623–32.PubMedCrossRef
62.
go back to reference Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol Commun. 2022;6:12–35.PubMedCrossRef Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol Commun. 2022;6:12–35.PubMedCrossRef
63.
go back to reference Tang M, Jiang Y, Jia H, Patpur BK, Yang B, Li J, et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. Artif Cells Nanomed Biotechnol. 2020;48:159–68.PubMedCrossRef Tang M, Jiang Y, Jia H, Patpur BK, Yang B, Li J, et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. Artif Cells Nanomed Biotechnol. 2020;48:159–68.PubMedCrossRef
64.
go back to reference Lancha A, Rodríguez A, Catalán V, Becerril S, Sáinz N, Ramírez B, et al. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS ONE. 2014;9: e98398.PubMedPubMedCentralCrossRef Lancha A, Rodríguez A, Catalán V, Becerril S, Sáinz N, Ramírez B, et al. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS ONE. 2014;9: e98398.PubMedPubMedCentralCrossRef
65.
66.
go back to reference Xu Z, Xi F, Deng X, Ni Y, Pu C, Wang D, et al. Osteopontin Promotes Macrophage M1 Polarization by Activation of the JAK1/STAT1/HMGB1 Signaling Pathway in Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol. 2023;11:273–83.PubMed Xu Z, Xi F, Deng X, Ni Y, Pu C, Wang D, et al. Osteopontin Promotes Macrophage M1 Polarization by Activation of the JAK1/STAT1/HMGB1 Signaling Pathway in Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol. 2023;11:273–83.PubMed
67.
go back to reference Kahles F, Findeisen HM, Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3:384–93.PubMedPubMedCentralCrossRef Kahles F, Findeisen HM, Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3:384–93.PubMedPubMedCentralCrossRef
68.
go back to reference Jiang X, Zhang F, Ji X, Dong F, Yu H, Xue M, et al. Lipid-injured hepatocytes release sOPN to improve macrophage migration via CD44 engagement and pFak-NFκB signaling. Cytokine. 2021;142: 155474.PubMedCrossRef Jiang X, Zhang F, Ji X, Dong F, Yu H, Xue M, et al. Lipid-injured hepatocytes release sOPN to improve macrophage migration via CD44 engagement and pFak-NFκB signaling. Cytokine. 2021;142: 155474.PubMedCrossRef
69.
go back to reference Han H, Ge X, Komakula SSB, Desert R, Das S, Song Z, et al. Macrophage-derived Osteopontin (SPP1) Protects From Nonalcoholic Steatohepatitis. Gastroenterology. 2023;165:201–17.PubMedCrossRef Han H, Ge X, Komakula SSB, Desert R, Das S, Song Z, et al. Macrophage-derived Osteopontin (SPP1) Protects From Nonalcoholic Steatohepatitis. Gastroenterology. 2023;165:201–17.PubMedCrossRef
70.
go back to reference Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver. Immunity. 2020;53:641-657.e14.PubMedPubMedCentralCrossRef Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver. Immunity. 2020;53:641-657.e14.PubMedPubMedCentralCrossRef
71.
go back to reference Cui G, Chen J, He J, Lu C, Wei Y, Wang L, et al. Osteopontin promotes dendritic cell maturation and function in response to HBV antigens. Drug Des Devel Ther. 2015;9:3003–16.PubMedPubMedCentral Cui G, Chen J, He J, Lu C, Wei Y, Wang L, et al. Osteopontin promotes dendritic cell maturation and function in response to HBV antigens. Drug Des Devel Ther. 2015;9:3003–16.PubMedPubMedCentral
72.
go back to reference Chung JW, Kim MS, Piao Z-H, Jeong M, Yoon SR, Shin N, et al. Osteopontin promotes the development of natural killer cells from hematopoietic stem cells. Stem Cells. 2008;26:2114–23.PubMedCrossRef Chung JW, Kim MS, Piao Z-H, Jeong M, Yoon SR, Shin N, et al. Osteopontin promotes the development of natural killer cells from hematopoietic stem cells. Stem Cells. 2008;26:2114–23.PubMedCrossRef
74.
go back to reference Soysouvanh F, Rousseau D, Bonnafous S, Bourinet M, Strazzulla A, Patouraux S, et al. Osteopontin-driven T-cell accumulation and function in adipose tissue and liver promoted insulin resistance and MAFLD. Obesity. 2023;31:2568–82.PubMedCrossRef Soysouvanh F, Rousseau D, Bonnafous S, Bourinet M, Strazzulla A, Patouraux S, et al. Osteopontin-driven T-cell accumulation and function in adipose tissue and liver promoted insulin resistance and MAFLD. Obesity. 2023;31:2568–82.PubMedCrossRef
75.
go back to reference Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol. 2020;19:344–52.PubMedCrossRef Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol. 2020;19:344–52.PubMedCrossRef
77.
go back to reference Syn W-K, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53:106–15.PubMedCrossRef Syn W-K, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53:106–15.PubMedCrossRef
78.
go back to reference Syn W-K, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 2012;61:1323–9.PubMedCrossRef Syn W-K, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 2012;61:1323–9.PubMedCrossRef
79.
go back to reference Urtasun R, Lopategi A, George J, Leung T-M, Lu Y, Wang X, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology. 2012;55:594–608.PubMedCrossRef Urtasun R, Lopategi A, George J, Leung T-M, Lu Y, Wang X, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology. 2012;55:594–608.PubMedCrossRef
80.
go back to reference Lorena D, Darby IA, Gadeau A-P, Leen LLS, Rittling S, Porto LC, et al. Osteopontin expression in normal and fibrotic liver. altered liver healing in osteopontin-deficient mice. J Hepatol. 2006;44:383–90.PubMedCrossRef Lorena D, Darby IA, Gadeau A-P, Leen LLS, Rittling S, Porto LC, et al. Osteopontin expression in normal and fibrotic liver. altered liver healing in osteopontin-deficient mice. J Hepatol. 2006;44:383–90.PubMedCrossRef
81.
go back to reference Arriazu E, Ge X, Leung T-M, Magdaleno F, Lopategi A, Lu Y, et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. 2017;66:1123–37.PubMedCrossRef Arriazu E, Ge X, Leung T-M, Magdaleno F, Lopategi A, Lu Y, et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. 2017;66:1123–37.PubMedCrossRef
82.
go back to reference Xiao X, Gang Y, Gu Y, Zhao L, Chu J, Zhou J, et al. Osteopontin contributes to TGF-β1 mediated hepatic stellate cell activation. Dig Dis Sci. 2012;57:2883–91.PubMedCrossRef Xiao X, Gang Y, Gu Y, Zhao L, Chu J, Zhou J, et al. Osteopontin contributes to TGF-β1 mediated hepatic stellate cell activation. Dig Dis Sci. 2012;57:2883–91.PubMedCrossRef
83.
go back to reference Coombes JD, Choi SS, Swiderska-Syn M, Manka P, Reid DT, Palma E, et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim Biophys Acta. 2016;1862:135–44.PubMedCrossRef Coombes JD, Choi SS, Swiderska-Syn M, Manka P, Reid DT, Palma E, et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim Biophys Acta. 2016;1862:135–44.PubMedCrossRef
84.
go back to reference Glass O, Henao R, Patel K, Guy CD, Gruss HJ, Syn W-K, et al. Serum Interleukin-8, Osteopontin, and Monocyte Chemoattractant Protein 1 Are Associated With Hepatic Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Hepatol Commun. 2018;2:1344–55.PubMedPubMedCentralCrossRef Glass O, Henao R, Patel K, Guy CD, Gruss HJ, Syn W-K, et al. Serum Interleukin-8, Osteopontin, and Monocyte Chemoattractant Protein 1 Are Associated With Hepatic Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Hepatol Commun. 2018;2:1344–55.PubMedPubMedCentralCrossRef
85.
go back to reference Kriss M, Golden-Mason L, Kaplan J, Mirshahi F, Setiawan VW, Sanyal AJ, et al. Increased hepatic and circulating chemokine and osteopontin expression occurs early in human NAFLD development. PLoS ONE. 2020;15: e0236353.PubMedPubMedCentralCrossRef Kriss M, Golden-Mason L, Kaplan J, Mirshahi F, Setiawan VW, Sanyal AJ, et al. Increased hepatic and circulating chemokine and osteopontin expression occurs early in human NAFLD development. PLoS ONE. 2020;15: e0236353.PubMedPubMedCentralCrossRef
86.
go back to reference Yilmaz Y, Ozturk O, Alahdab YO, Senates E, Colak Y, Doganay HL, et al. Serum osteopontin levels as a predictor of portal inflammation in patients with nonalcoholic fatty liver disease. Dig Liver Dis. 2013;45:58–62.PubMedCrossRef Yilmaz Y, Ozturk O, Alahdab YO, Senates E, Colak Y, Doganay HL, et al. Serum osteopontin levels as a predictor of portal inflammation in patients with nonalcoholic fatty liver disease. Dig Liver Dis. 2013;45:58–62.PubMedCrossRef
87.
go back to reference Wang C, He M, Peng J, Li S, Long M, Chen W, et al. Increased plasma osteopontin levels are associated with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Cytokine. 2020;125: 154837.PubMedCrossRef Wang C, He M, Peng J, Li S, Long M, Chen W, et al. Increased plasma osteopontin levels are associated with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Cytokine. 2020;125: 154837.PubMedCrossRef
88.
go back to reference Anastasilakis AD, Polyzos SA, Makras P. Therapy of endocrine disease: Denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. Eur J Endocrinol. 2018;179:R31-45.PubMedCrossRef Anastasilakis AD, Polyzos SA, Makras P. Therapy of endocrine disease: Denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. Eur J Endocrinol. 2018;179:R31-45.PubMedCrossRef
89.
go back to reference Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact. 2020;20:372–81.PubMedPubMedCentral Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact. 2020;20:372–81.PubMedPubMedCentral
90.
go back to reference Tsukasaki M, Asano T, Muro R, Huynh NC-N, Komatsu N, Okamoto K, et al. OPG Production Matters Where It Happened. Cell Rep. 2020;32:108124.PubMedCrossRef Tsukasaki M, Asano T, Muro R, Huynh NC-N, Komatsu N, Okamoto K, et al. OPG Production Matters Where It Happened. Cell Rep. 2020;32:108124.PubMedCrossRef
91.
go back to reference Polyzos SA, Makras P, Tournis S, Anastasilakis AD. Off-label uses of denosumab in metabolic bone diseases. Bone. 2019;129: 115048.PubMedCrossRef Polyzos SA, Makras P, Tournis S, Anastasilakis AD. Off-label uses of denosumab in metabolic bone diseases. Bone. 2019;129: 115048.PubMedCrossRef
92.
go back to reference Vachliotis ID, Polyzos SA. Osteoprotegerin/receptor activator of nuclear factor-kappa B ligand/receptor activator of nuclear factor-kappa B axis in obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Curr Obes Rep. 2023;12:147–62.PubMedPubMedCentralCrossRef Vachliotis ID, Polyzos SA. Osteoprotegerin/receptor activator of nuclear factor-kappa B ligand/receptor activator of nuclear factor-kappa B axis in obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Curr Obes Rep. 2023;12:147–62.PubMedPubMedCentralCrossRef
93.
go back to reference Bernardi S, Fabris B, Thomas M, Toffoli B, Tikellis C, Candido R, et al. Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Mol Cell Endocrinol. 2014;394:13–20.PubMedCrossRef Bernardi S, Fabris B, Thomas M, Toffoli B, Tikellis C, Candido R, et al. Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Mol Cell Endocrinol. 2014;394:13–20.PubMedCrossRef
94.
go back to reference Karmakar S, Majumdar S, Maiti A, Choudhury M, Ghosh A, Das AS, et al. Protective role of black tea extract against nonalcoholic steatohepatitis-induced skeletal dysfunction. J Osteoporos. 2011;2011:426863.PubMedPubMedCentralCrossRef Karmakar S, Majumdar S, Maiti A, Choudhury M, Ghosh A, Das AS, et al. Protective role of black tea extract against nonalcoholic steatohepatitis-induced skeletal dysfunction. J Osteoporos. 2011;2011:426863.PubMedPubMedCentralCrossRef
95.
go back to reference Zhong L, Yuan J, Huang L, Li S, Deng L. RANKL is involved in Runx2-triggered hepatic infiltration of macrophages in mice with NAFLD induced by a high-fat diet. Biomed Res Int. 2020;2020:6953421.PubMedPubMedCentralCrossRef Zhong L, Yuan J, Huang L, Li S, Deng L. RANKL is involved in Runx2-triggered hepatic infiltration of macrophages in mice with NAFLD induced by a high-fat diet. Biomed Res Int. 2020;2020:6953421.PubMedPubMedCentralCrossRef
96.
go back to reference Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19:358–63.PubMedCrossRef Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19:358–63.PubMedCrossRef
97.
go back to reference Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han C-Y, et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res. 2014;29:1158–69.PubMedCrossRef Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han C-Y, et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res. 2014;29:1158–69.PubMedCrossRef
98.
go back to reference Polyzos SA, Goulas A. Treatment of nonalcoholic fatty liver disease with an anti-osteoporotic medication: A hypothesis on drug repurposing. Med Hypotheses. 2021;146: 110379.PubMedCrossRef Polyzos SA, Goulas A. Treatment of nonalcoholic fatty liver disease with an anti-osteoporotic medication: A hypothesis on drug repurposing. Med Hypotheses. 2021;146: 110379.PubMedCrossRef
99.
go back to reference Yang M, Xu D, Liu Y, Guo X, Li W, Guo C, et al. Combined Serum Biomarkers in Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis. PLoS ONE. 2015;10: e0131664.PubMedPubMedCentralCrossRef Yang M, Xu D, Liu Y, Guo X, Li W, Guo C, et al. Combined Serum Biomarkers in Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis. PLoS ONE. 2015;10: e0131664.PubMedPubMedCentralCrossRef
100.
go back to reference Yang M, Liu Y, Zhou G, Guo X, Zou S, Liu S, et al. Value of serum osteoprotegerin in noninvasive diagnosis of nonalcoholic steatohepatitis. Zhonghua Gan Zang Bing Za Zhi. 2016;24:96–101.PubMed Yang M, Liu Y, Zhou G, Guo X, Zou S, Liu S, et al. Value of serum osteoprotegerin in noninvasive diagnosis of nonalcoholic steatohepatitis. Zhonghua Gan Zang Bing Za Zhi. 2016;24:96–101.PubMed
101.
go back to reference Habibie H, Adhyatmika A, Schaafsma D, Melgert BN. The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther. 2021;228: 107941.PubMedCrossRef Habibie H, Adhyatmika A, Schaafsma D, Melgert BN. The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther. 2021;228: 107941.PubMedCrossRef
102.
go back to reference Mantovani A, Sani E, Fassio A, Colecchia A, Viapiana O, Gatti D, et al. Association between non-alcoholic fatty liver disease and bone turnover biomarkers in post-menopausal women with type 2 diabetes. Diabetes Metab. 2019;45:347–55.PubMedCrossRef Mantovani A, Sani E, Fassio A, Colecchia A, Viapiana O, Gatti D, et al. Association between non-alcoholic fatty liver disease and bone turnover biomarkers in post-menopausal women with type 2 diabetes. Diabetes Metab. 2019;45:347–55.PubMedCrossRef
103.
go back to reference Nikseresht M, Azarmehr N, Arya A, Alipoor B, Fadaei R, Khalvati B, et al. Circulating mRNA and plasma levels of osteoprotegerin and receptor activator of NF-κB ligand in nonalcoholic fatty liver disease. Biotechnol Appl Biochem. 2021;68:1243–9.PubMed Nikseresht M, Azarmehr N, Arya A, Alipoor B, Fadaei R, Khalvati B, et al. Circulating mRNA and plasma levels of osteoprotegerin and receptor activator of NF-κB ligand in nonalcoholic fatty liver disease. Biotechnol Appl Biochem. 2021;68:1243–9.PubMed
104.
go back to reference Takeno A, Yamamoto M, Notsu M, Sugimoto T. Administration of anti-receptor activator of nuclear factor-kappa B ligand (RANKL) antibody for the treatment of osteoporosis was associated with amelioration of hepatitis in a female patient with growth hormone deficiency: a case report. BMC Endocr Disord. 2016;16:66.PubMedPubMedCentralCrossRef Takeno A, Yamamoto M, Notsu M, Sugimoto T. Administration of anti-receptor activator of nuclear factor-kappa B ligand (RANKL) antibody for the treatment of osteoporosis was associated with amelioration of hepatitis in a female patient with growth hormone deficiency: a case report. BMC Endocr Disord. 2016;16:66.PubMedPubMedCentralCrossRef
106.
go back to reference Lu Y, Liu X, Jiao Y, Xiong X, Wang E, Wang X, et al. Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. J Clin Invest. 2014;124:3501–13.PubMedPubMedCentralCrossRef Lu Y, Liu X, Jiao Y, Xiong X, Wang E, Wang X, et al. Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. J Clin Invest. 2014;124:3501–13.PubMedPubMedCentralCrossRef
107.
go back to reference Jia Y, Zhong F, Jiang S, Guo Q, Jin H, Wang F, et al. Periostin in chronic liver diseases: Current research and future perspectives. Life Sci. 2019;226:91–7.PubMedCrossRef Jia Y, Zhong F, Jiang S, Guo Q, Jin H, Wang F, et al. Periostin in chronic liver diseases: Current research and future perspectives. Life Sci. 2019;226:91–7.PubMedCrossRef
108.
go back to reference Polyzos SA, Anastasilakis AD. Periostin on the road to nonalcoholic fatty liver disease. Endocrine. 2016;51:4–6.PubMedCrossRef Polyzos SA, Anastasilakis AD. Periostin on the road to nonalcoholic fatty liver disease. Endocrine. 2016;51:4–6.PubMedCrossRef
109.
go back to reference Zhu J-Z, Zhu H-T, Dai Y-N, Li C-X, Fang Z-Y, Zhao D-J, et al. Serum periostin is a potential biomarker for non-alcoholic fatty liver disease: a case-control study. Endocrine. 2016;51:91–100.PubMedCrossRef Zhu J-Z, Zhu H-T, Dai Y-N, Li C-X, Fang Z-Y, Zhao D-J, et al. Serum periostin is a potential biomarker for non-alcoholic fatty liver disease: a case-control study. Endocrine. 2016;51:91–100.PubMedCrossRef
110.
go back to reference Yang Z, Zhang H, Niu Y, Zhang W, Zhu L, Li X, et al. Circulating periostin in relation to insulin resistance and nonalcoholic fatty liver disease among overweight and obese subjects. Sci Rep. 2016;6:37886.PubMedPubMedCentralCrossRef Yang Z, Zhang H, Niu Y, Zhang W, Zhu L, Li X, et al. Circulating periostin in relation to insulin resistance and nonalcoholic fatty liver disease among overweight and obese subjects. Sci Rep. 2016;6:37886.PubMedPubMedCentralCrossRef
111.
go back to reference Polyzos SA, Kountouras J, Anastasilakis AD, Papatheodorou A, Kokkoris P, Terpos E. Circulating periostin in patients with nonalcoholic fatty liver disease. Endocrine. 2017;56:438–41.PubMedCrossRef Polyzos SA, Kountouras J, Anastasilakis AD, Papatheodorou A, Kokkoris P, Terpos E. Circulating periostin in patients with nonalcoholic fatty liver disease. Endocrine. 2017;56:438–41.PubMedCrossRef
112.
go back to reference Smirne C, Mulas V, Barbaglia MN, Mallela VR, Minisini R, Barizzone N, et al. Periostin circulating levels and genetic variants in patients with non-alcoholic fatty liver disease. Diagnostics (Basel). 2020;10:1003.PubMedCrossRef Smirne C, Mulas V, Barbaglia MN, Mallela VR, Minisini R, Barizzone N, et al. Periostin circulating levels and genetic variants in patients with non-alcoholic fatty liver disease. Diagnostics (Basel). 2020;10:1003.PubMedCrossRef
113.
go back to reference Anastasilakis AD, Polyzos SA, Toulis KA. Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes. 2011;18:383–8.PubMedCrossRef Anastasilakis AD, Polyzos SA, Toulis KA. Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes. 2011;18:383–8.PubMedCrossRef
114.
go back to reference Weivoda MM, Youssef SJ, Oursler MJ. Sclerostin expression and functions beyond the osteocyte. Bone. 2017;96:45–50.PubMedCrossRef Weivoda MM, Youssef SJ, Oursler MJ. Sclerostin expression and functions beyond the osteocyte. Bone. 2017;96:45–50.PubMedCrossRef
115.
go back to reference Magarò MS, Bertacchini J, Florio F, Zavatti M, Potì F, Cavani F, et al. Identification of sclerostin as a putative new myokine involved in the muscle-to-bone crosstalk. Biomedicines. 2021;9:71.PubMedPubMedCentralCrossRef Magarò MS, Bertacchini J, Florio F, Zavatti M, Potì F, Cavani F, et al. Identification of sclerostin as a putative new myokine involved in the muscle-to-bone crosstalk. Biomedicines. 2021;9:71.PubMedPubMedCentralCrossRef
116.
go back to reference Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Kwon CH, et al. Sclerostin aggravates insulin signaling in skeletal muscle and hepatic steatosis via upregulation of ER stress by mTOR-mediated inhibition of autophagy under hyperlipidemic conditions. J Cell Physiol. 2022;237:4226–37.PubMedCrossRef Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Kwon CH, et al. Sclerostin aggravates insulin signaling in skeletal muscle and hepatic steatosis via upregulation of ER stress by mTOR-mediated inhibition of autophagy under hyperlipidemic conditions. J Cell Physiol. 2022;237:4226–37.PubMedCrossRef
117.
go back to reference Zhou F, Wang Y, Li Y, Tang M, Wan S, Tian H, et al. Decreased sclerostin secretion in humans and mice with nonalcoholic fatty liver disease. Front Endocrinol. 2021;12: 707505.CrossRef Zhou F, Wang Y, Li Y, Tang M, Wan S, Tian H, et al. Decreased sclerostin secretion in humans and mice with nonalcoholic fatty liver disease. Front Endocrinol. 2021;12: 707505.CrossRef
118.
go back to reference Polyzos SA, Anastasilakis AD, Kountouras J, Makras P, Papatheodorou A, Kokkoris P, et al. Circulating sclerostin and Dickkopf-1 levels in patients with nonalcoholic fatty liver disease. J Bone Miner Metab. 2016;34:447–56.PubMedCrossRef Polyzos SA, Anastasilakis AD, Kountouras J, Makras P, Papatheodorou A, Kokkoris P, et al. Circulating sclerostin and Dickkopf-1 levels in patients with nonalcoholic fatty liver disease. J Bone Miner Metab. 2016;34:447–56.PubMedCrossRef
119.
go back to reference Li Z, Wen X, Li N, Zhong C, Chen L, Zhang F, et al. The roles of hepatokine and osteokine in liver-bone crosstalk: Advance in basic and clinical aspects. Front Endocrinol (Lausanne). 2023;14:1149233.PubMedCrossRef Li Z, Wen X, Li N, Zhong C, Chen L, Zhang F, et al. The roles of hepatokine and osteokine in liver-bone crosstalk: Advance in basic and clinical aspects. Front Endocrinol (Lausanne). 2023;14:1149233.PubMedCrossRef
120.
go back to reference Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283:2219–32.PubMedCrossRef Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283:2219–32.PubMedCrossRef
121.
go back to reference Tarantino G, Conca P, Riccio A, Tarantino M, Di Minno MN, Chianese D, et al. Enhanced serum concentrations of transforming growth factor-beta1 in simple fatty liver: is it really benign? J Transl Med. 2008;6:72.PubMedPubMedCentralCrossRef Tarantino G, Conca P, Riccio A, Tarantino M, Di Minno MN, Chianese D, et al. Enhanced serum concentrations of transforming growth factor-beta1 in simple fatty liver: is it really benign? J Transl Med. 2008;6:72.PubMedPubMedCentralCrossRef
122.
go back to reference Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 2022;13: 880298.PubMedPubMedCentralCrossRef Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 2022;13: 880298.PubMedPubMedCentralCrossRef
123.
go back to reference Herrera B, Addante A, Sánchez A. BMP signalling at the crossroad of liver fibrosis and regeneration. Int J Mol Sci. 2017;19:1.CrossRef Herrera B, Addante A, Sánchez A. BMP signalling at the crossroad of liver fibrosis and regeneration. Int J Mol Sci. 2017;19:1.CrossRef
124.
go back to reference Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, et al. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging. 2019;11:11520–40.PubMedPubMedCentralCrossRef Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, et al. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging. 2019;11:11520–40.PubMedPubMedCentralCrossRef
125.
go back to reference Wang X, Ma B, Wen X, You H, Sheng C, Bu L, et al. Bone morphogenetic protein 4 alleviates nonalcoholic steatohepatitis by inhibiting hepatic ferroptosis. Cell Death Discov. 2022;8:234.PubMedPubMedCentralCrossRef Wang X, Ma B, Wen X, You H, Sheng C, Bu L, et al. Bone morphogenetic protein 4 alleviates nonalcoholic steatohepatitis by inhibiting hepatic ferroptosis. Cell Death Discov. 2022;8:234.PubMedPubMedCentralCrossRef
126.
go back to reference Arndt S, Wacker E, Dorn C, Koch A, Saugspier M, Thasler WE, et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut. 2015;64:973–81.PubMedCrossRef Arndt S, Wacker E, Dorn C, Koch A, Saugspier M, Thasler WE, et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut. 2015;64:973–81.PubMedCrossRef
127.
go back to reference Mahli A, Seitz T, Beckröge T, Freese K, Thasler WE, Benkert M, et al. Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells. 2019;8:457.PubMedPubMedCentralCrossRef Mahli A, Seitz T, Beckröge T, Freese K, Thasler WE, Benkert M, et al. Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells. 2019;8:457.PubMedPubMedCentralCrossRef
128.
go back to reference Vacca M, Leslie J, Virtue S, Lam BYH, Govaere O, Tiniakos D, et al. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat Metab. 2020;2:514–31.PubMedCrossRef Vacca M, Leslie J, Virtue S, Lam BYH, Govaere O, Tiniakos D, et al. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat Metab. 2020;2:514–31.PubMedCrossRef
129.
go back to reference Mounika N, Yadav A, Kamboj P, Banerjee SK, Deka UJ, Kaur S, et al. Circulatory bone morphogenetic protein (BMP) 8B is a non-invasive predictive biomarker for the diagnosis of non-alcoholic steatohepatitis (NASH). PLoS ONE. 2023;18: e0295839.PubMedPubMedCentralCrossRef Mounika N, Yadav A, Kamboj P, Banerjee SK, Deka UJ, Kaur S, et al. Circulatory bone morphogenetic protein (BMP) 8B is a non-invasive predictive biomarker for the diagnosis of non-alcoholic steatohepatitis (NASH). PLoS ONE. 2023;18: e0295839.PubMedPubMedCentralCrossRef
130.
go back to reference Marañón P, Isaza SC, Fernández-García CE, Rey E, Gallego-Durán R, Montero-Vallejo R, et al. Circulating bone morphogenetic protein 8A is a novel biomarker to predict advanced liver fibrosis. Biomark Res. 2023;11:46.PubMedPubMedCentralCrossRef Marañón P, Isaza SC, Fernández-García CE, Rey E, Gallego-Durán R, Montero-Vallejo R, et al. Circulating bone morphogenetic protein 8A is a novel biomarker to predict advanced liver fibrosis. Biomark Res. 2023;11:46.PubMedPubMedCentralCrossRef
131.
go back to reference Jiang Q-Q, Liu B-B, Xu K-S. New insights into BMP9 signaling in liver diseases. Mol Cell Biochem. 2021;476:3591–600.PubMedCrossRef Jiang Q-Q, Liu B-B, Xu K-S. New insights into BMP9 signaling in liver diseases. Mol Cell Biochem. 2021;476:3591–600.PubMedCrossRef
132.
go back to reference Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90:985–96.PubMedPubMedCentralCrossRef Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90:985–96.PubMedPubMedCentralCrossRef
133.
go back to reference Mattinzoli D, Ikehata M, Tsugawa K, Alfieri CM, Dongiovanni P, Trombetta E, et al. FGF23 and fetuin-A interaction in the liver and in the circulation. Int J Biol Sci. 2018;14:586–98.PubMedPubMedCentralCrossRef Mattinzoli D, Ikehata M, Tsugawa K, Alfieri CM, Dongiovanni P, Trombetta E, et al. FGF23 and fetuin-A interaction in the liver and in the circulation. Int J Biol Sci. 2018;14:586–98.PubMedPubMedCentralCrossRef
134.
go back to reference He X, Shen Y, Ma X, Ying L, Peng J, Pan X, et al. The association of serum FGF23 and non-alcoholic fatty liver disease is independent of vitamin D in type 2 diabetes patients. Clin Exp Pharmacol Physiol. 2018;45:668–74.PubMedCrossRef He X, Shen Y, Ma X, Ying L, Peng J, Pan X, et al. The association of serum FGF23 and non-alcoholic fatty liver disease is independent of vitamin D in type 2 diabetes patients. Clin Exp Pharmacol Physiol. 2018;45:668–74.PubMedCrossRef
135.
go back to reference Cao W, Xu Y, Shen Y, Wang Y, Ma X, Bao Y. Serum fibroblast growth factor 23 level and liver fat content in MAFLD: A community-based cohort. Diabetes Metab Syndr Obes. 2021;14:4135–43.PubMedPubMedCentralCrossRef Cao W, Xu Y, Shen Y, Wang Y, Ma X, Bao Y. Serum fibroblast growth factor 23 level and liver fat content in MAFLD: A community-based cohort. Diabetes Metab Syndr Obes. 2021;14:4135–43.PubMedPubMedCentralCrossRef
136.
go back to reference Kord-Varkaneh H, Djafarian K, Khorshidi M, Shab-Bidar S. Association between serum osteocalcin and body mass index: a systematic review and meta-analysis. Endocrine. 2017;58:24–32.PubMedCrossRef Kord-Varkaneh H, Djafarian K, Khorshidi M, Shab-Bidar S. Association between serum osteocalcin and body mass index: a systematic review and meta-analysis. Endocrine. 2017;58:24–32.PubMedCrossRef
137.
go back to reference Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, et al. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008;149:1350–7.PubMedCrossRef Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, et al. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008;149:1350–7.PubMedCrossRef
138.
go back to reference Chen J, Zeng P, Gong L, Zhang X, Ling Z, Bi K, et al. Osteopontin exacerbates high-fat diet-induced metabolic disorders in a microbiome-dependent manner. MBio. 2022;13: e0253122.PubMedCrossRef Chen J, Zeng P, Gong L, Zhang X, Ling Z, Bi K, et al. Osteopontin exacerbates high-fat diet-induced metabolic disorders in a microbiome-dependent manner. MBio. 2022;13: e0253122.PubMedCrossRef
139.
go back to reference Vianello E, Kalousová M, Dozio E, Tacchini L, Zima T, Corsi Romanelli MM. Osteopontin: The molecular bridge between fat and cardiac-renal disorders. Int J Mol Sci. 2020;21:5568.PubMedPubMedCentralCrossRef Vianello E, Kalousová M, Dozio E, Tacchini L, Zima T, Corsi Romanelli MM. Osteopontin: The molecular bridge between fat and cardiac-renal disorders. Int J Mol Sci. 2020;21:5568.PubMedPubMedCentralCrossRef
140.
go back to reference Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab. 2007;92:3719–27.PubMedCrossRef Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab. 2007;92:3719–27.PubMedCrossRef
141.
go back to reference Ahmad R, Al-Mass A, Al-Ghawas D, Shareif N, Zghoul N, Melhem M, et al. Interaction of osteopontin with IL-18 in obese individuals: implications for insulin resistance. PLoS ONE. 2013;8: e63944.PubMedPubMedCentralCrossRef Ahmad R, Al-Mass A, Al-Ghawas D, Shareif N, Zghoul N, Melhem M, et al. Interaction of osteopontin with IL-18 in obese individuals: implications for insulin resistance. PLoS ONE. 2013;8: e63944.PubMedPubMedCentralCrossRef
142.
go back to reference You JS, Ji H-I, Chang KJ, Yoo MC, Yang H-I, Jeong I-K, et al. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol Med Rep. 2013;8:579–84.PubMedCrossRef You JS, Ji H-I, Chang KJ, Yoo MC, Yang H-I, Jeong I-K, et al. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol Med Rep. 2013;8:579–84.PubMedCrossRef
143.
go back to reference Schaller G, Aso Y, Schernthaner G-H, Kopp H-P, Inukai T, Kriwanek S, et al. Increase of osteopontin plasma concentrations after bariatric surgery independent from inflammation and insulin resistance. Obes Surg. 2009;19:351–6.PubMedCrossRef Schaller G, Aso Y, Schernthaner G-H, Kopp H-P, Inukai T, Kriwanek S, et al. Increase of osteopontin plasma concentrations after bariatric surgery independent from inflammation and insulin resistance. Obes Surg. 2009;19:351–6.PubMedCrossRef
144.
go back to reference Riedl M, Vila G, Maier C, Handisurya A, Shakeri-Manesch S, Prager G, et al. Plasma osteopontin increases after bariatric surgery and correlates with markers of bone turnover but not with insulin resistance. J Clin Endocrinol Metab. 2008;93:2307–12.PubMedCrossRef Riedl M, Vila G, Maier C, Handisurya A, Shakeri-Manesch S, Prager G, et al. Plasma osteopontin increases after bariatric surgery and correlates with markers of bone turnover but not with insulin resistance. J Clin Endocrinol Metab. 2008;93:2307–12.PubMedCrossRef
145.
go back to reference Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, et al. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep. 2018;8:8553.PubMedPubMedCentralCrossRef Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, et al. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep. 2018;8:8553.PubMedPubMedCentralCrossRef
146.
go back to reference Yang Y, Zhang Y, Zhou X, Chen D, Ouyang G, Liu Y, et al. Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis. FEBS Lett. 2021;595:2099–112.PubMedCrossRef Yang Y, Zhang Y, Zhou X, Chen D, Ouyang G, Liu Y, et al. Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis. FEBS Lett. 2021;595:2099–112.PubMedCrossRef
147.
go back to reference Luo Y, Qu H, Wang H, Wei H, Wu J, Duan Y, et al. Plasma periostin levels are increased in Chinese subjects with obesity and type 2 diabetes and are positively correlated with glucose and lipid parameters. Mediators Inflamm. 2016;2016:6423637.PubMedPubMedCentralCrossRef Luo Y, Qu H, Wang H, Wei H, Wu J, Duan Y, et al. Plasma periostin levels are increased in Chinese subjects with obesity and type 2 diabetes and are positively correlated with glucose and lipid parameters. Mediators Inflamm. 2016;2016:6423637.PubMedPubMedCentralCrossRef
148.
go back to reference Dimitri P, Wales JK, Bishop N. Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone. 2011;48:189–96.PubMedCrossRef Dimitri P, Wales JK, Bishop N. Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone. 2011;48:189–96.PubMedCrossRef
149.
go back to reference Ashley DT, O’Sullivan EP, Davenport C, Devlin N, Crowley RK, McCaffrey N, et al. Similar to adiponectin, serum levels of osteoprotegerin are associated with obesity in healthy subjects. Metabolism. 2011;60:994–1000.PubMedCrossRef Ashley DT, O’Sullivan EP, Davenport C, Devlin N, Crowley RK, McCaffrey N, et al. Similar to adiponectin, serum levels of osteoprotegerin are associated with obesity in healthy subjects. Metabolism. 2011;60:994–1000.PubMedCrossRef
150.
go back to reference Courtalin M, Bertheaume N, Badr S, During A, Lombardo D, Deken V, et al. Relationships between circulating sclerostin, bone marrow adiposity, other adipose deposits and lean mass in post-menopausal women. Int J Mol Sci. 2023;24:5922.PubMedPubMedCentralCrossRef Courtalin M, Bertheaume N, Badr S, During A, Lombardo D, Deken V, et al. Relationships between circulating sclerostin, bone marrow adiposity, other adipose deposits and lean mass in post-menopausal women. Int J Mol Sci. 2023;24:5922.PubMedPubMedCentralCrossRef
151.
go back to reference Alramah T, Cherian P, Al-Khairi I, Abu-Farha M, Thanaraj TA, Albatineh AN, et al. Evaluating the correlation of sclerostin levels with obesity and type 2 diabetes in a multiethnic population living in Kuwait. Front Endocrinol (Lausanne). 2024;15:1392675.PubMedPubMedCentralCrossRef Alramah T, Cherian P, Al-Khairi I, Abu-Farha M, Thanaraj TA, Albatineh AN, et al. Evaluating the correlation of sclerostin levels with obesity and type 2 diabetes in a multiethnic population living in Kuwait. Front Endocrinol (Lausanne). 2024;15:1392675.PubMedPubMedCentralCrossRef
152.
go back to reference Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutiérrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS ONE. 2015;10: e0122885.PubMedPubMedCentralCrossRef Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutiérrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS ONE. 2015;10: e0122885.PubMedPubMedCentralCrossRef
153.
go back to reference Hu X, Ma X, Luo Y, Xu Y, Xiong Q, Pan X, et al. Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin Nutr. 2018;37:223–8.PubMedCrossRef Hu X, Ma X, Luo Y, Xu Y, Xiong Q, Pan X, et al. Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin Nutr. 2018;37:223–8.PubMedCrossRef
154.
go back to reference Holecki M, Chudek J, Owczarek A, Olszanecka-Glinianowicz M, Bożentowicz-Wikarek M, Duława J, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol. 2015;82:900–9.CrossRef Holecki M, Chudek J, Owczarek A, Olszanecka-Glinianowicz M, Bożentowicz-Wikarek M, Duława J, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol. 2015;82:900–9.CrossRef
155.
go back to reference Kouvari M, Valenzuela-Vallejo L, Guatibonza-Garcia V, Polyzos SA, Deng Y, Kokkorakis M, et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study. Metabolism. 2023;147: 155666.PubMedCrossRef Kouvari M, Valenzuela-Vallejo L, Guatibonza-Garcia V, Polyzos SA, Deng Y, Kokkorakis M, et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study. Metabolism. 2023;147: 155666.PubMedCrossRef
Metadata
Title
Osteokines in Nonalcoholic Fatty Liver Disease
Authors
Ilias D. Vachliotis
Athanasios D. Anastasilakis
Vasileios Rafailidis
Stergios A. Polyzos
Publication date
03-09-2024
Publisher
Springer US
Published in
Current Obesity Reports
Electronic ISSN: 2162-4968
DOI
https://doi.org/10.1007/s13679-024-00586-9

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more