Skip to main content
Top
Published in: The Cerebellum 1/2024

21-01-2023 | Spinocerebellar Ataxia | RESEARCH

Cognitive Decline and Mood Alterations in the Mouse Model of Spinocerebellar Ataxia Type 2

Authors: Ksenia S. Marinina, Ilya B. Bezprozvanny, Polina A. Egorova

Published in: The Cerebellum | Issue 1/2024

Login to get access

Abstract

Spinocerebellar ataxia type 2 (SCA2) is a hereditary disorder, caused by an expansion of polyglutamine in the ataxin-2 protein. Although the mutant protein is expressed throughout all the cell and organ types, the cerebellum is primarily affected. The disease progression is mainly accompanied by a decline in motor functions. However, the disturbances in cognitive abilities and low mental state have also been reported in patients. Recent evidence suggests that the cerebellar functionality expands beyond the motor control. Thus, the cerebellum turned out to be involved into the language, verbal working, and spatial memory; executive functions such as working memory, planning, organizing, and strategy formation; and emotional processing. Here, we used the transgenic SCA2-58Q mice to evaluate their anxiety, cognitive functions, and mood alterations. The expression of the mutant ataxin-2 specifically in the cerebellar Purkinje cells (PCs) in SCA2-58Q mice allowed us to study the direct involvement of the cerebellum into the cognitive and affective control. We determined that SCA2-58Q mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Our results support the idea of cerebellar involvement in cognitive control and the handling of emotions.
Literature
1.
go back to reference Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2009. Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2009.
3.
go back to reference Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J. 2018;285(19):3547–65.PubMedCrossRef Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J. 2018;285(19):3547–65.PubMedCrossRef
4.
5.
go back to reference Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry. 2015;86(5):554–61.PubMedCrossRef Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry. 2015;86(5):554–61.PubMedCrossRef
6.
go back to reference Pirker W, Back C, Gerschlager W, Laccone F, Alesch F. Chronic thalamic stimulation in a patient with spinocerebellar ataxia type 2. Mov Disord. 2003;18(2):222–5.PubMedCrossRef Pirker W, Back C, Gerschlager W, Laccone F, Alesch F. Chronic thalamic stimulation in a patient with spinocerebellar ataxia type 2. Mov Disord. 2003;18(2):222–5.PubMedCrossRef
7.
go back to reference Wang Z. Experimental and clinical strategies for treating spinocerebellar ataxia type 3. Neuroscience. 2018;371:138–54.PubMedCrossRef Wang Z. Experimental and clinical strategies for treating spinocerebellar ataxia type 3. Neuroscience. 2018;371:138–54.PubMedCrossRef
10.
go back to reference De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamism in the cerebellum. Nat Neurosci. 2021;24(2):160–7.PubMedCrossRef De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamism in the cerebellum. Nat Neurosci. 2021;24(2):160–7.PubMedCrossRef
12.
go back to reference Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53.PubMedCrossRef Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53.PubMedCrossRef
13.
go back to reference Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRef
14.
go back to reference Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23(1–2):65–79.PubMedPubMedCentralCrossRef Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23(1–2):65–79.PubMedPubMedCentralCrossRef
15.
go back to reference Larry N, Yarkoni M, Lixenberg A, Joshua M. Cerebellar climbing fibers encode expected reward size. Elife. 2019;8. Larry N, Yarkoni M, Lixenberg A, Joshua M. Cerebellar climbing fibers encode expected reward size. Elife. 2019;8.
16.
go back to reference Heffley W, Hull C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. Elife. 2019;8. Heffley W, Hull C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. Elife. 2019;8.
17.
go back to reference Kostadinov D, Beau M, Blanco-Pozo M, Hausser M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019;22(6):950–62.PubMedPubMedCentralCrossRef Kostadinov D, Beau M, Blanco-Pozo M, Hausser M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019;22(6):950–62.PubMedPubMedCentralCrossRef
18.
go back to reference Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424). Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424).
19.
go back to reference Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef
20.
go back to reference D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.PubMedPubMedCentralCrossRef D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.PubMedPubMedCentralCrossRef
21.
go back to reference Chen YL, Tu PC, Lee YC, Chen YS, Li CT, Su TP. Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophr Res. 2013;149(1–3):26–34.PubMedCrossRef Chen YL, Tu PC, Lee YC, Chen YS, Li CT, Su TP. Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophr Res. 2013;149(1–3):26–34.PubMedCrossRef
22.
go back to reference Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL, Huang Z. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state FMRI. PLoS One. 2013;8(12):e79999.PubMedPubMedCentralCrossRefADS Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL, Huang Z. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state FMRI. PLoS One. 2013;8(12):e79999.PubMedPubMedCentralCrossRefADS
23.
go back to reference Bledsoe JC, Semrud-Clikeman M, Pliszka SR. Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-deficit/hyperactivity disorder–combined type. J Am Acad Child Adolesc Psychiatry. 2011;50(6):593–601.PubMedPubMedCentralCrossRef Bledsoe JC, Semrud-Clikeman M, Pliszka SR. Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-deficit/hyperactivity disorder–combined type. J Am Acad Child Adolesc Psychiatry. 2011;50(6):593–601.PubMedPubMedCentralCrossRef
24.
go back to reference Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, Hu D. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7(6):e39516.PubMedPubMedCentralCrossRefADS Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, Hu D. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7(6):e39516.PubMedPubMedCentralCrossRefADS
25.
go back to reference Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, Nicoletti A, Giuffrida S. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.PubMedCrossRef Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, Nicoletti A, Giuffrida S. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.PubMedCrossRef
26.
go back to reference Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250(2):207–11.PubMedCrossRef Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250(2):207–11.PubMedCrossRef
27.
go back to reference Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, Soliveri P, Girotti F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43.PubMedCrossRef Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, Soliveri P, Girotti F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43.PubMedCrossRef
28.
go back to reference Gigante AF, Lelli G, Romano R, Pellicciari R, Di Candia A, Mancino PV, Pau M, Fiore P, Defazio G. The relationships between ataxia and cognition in spinocerebellar ataxia type 2. Cerebellum. 2020;19(1):40–7.PubMedCrossRef Gigante AF, Lelli G, Romano R, Pellicciari R, Di Candia A, Mancino PV, Pau M, Fiore P, Defazio G. The relationships between ataxia and cognition in spinocerebellar ataxia type 2. Cerebellum. 2020;19(1):40–7.PubMedCrossRef
29.
go back to reference Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11(1):82.PubMedPubMedCentralCrossRef Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11(1):82.PubMedPubMedCentralCrossRef
30.
go back to reference Paneque HM, Reynaldo AR, Velazquez PL, Santos FN, Miranda HE, Real PN, Garcia ER, Hechavarria PR. Type 2 spinocerebellar ataxia: an experience in psychological rehabilitation. Rev Neurol. 2001;33(11):1001–5.PubMed Paneque HM, Reynaldo AR, Velazquez PL, Santos FN, Miranda HE, Real PN, Garcia ER, Hechavarria PR. Type 2 spinocerebellar ataxia: an experience in psychological rehabilitation. Rev Neurol. 2001;33(11):1001–5.PubMed
31.
go back to reference Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience. 2017;366:44–53.PubMedCrossRef Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience. 2017;366:44–53.PubMedCrossRef
32.
go back to reference Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606.PubMedCrossRef Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606.PubMedCrossRef
33.
go back to reference Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26(1):44–50.PubMedCrossRef Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26(1):44–50.PubMedCrossRef
34.
go back to reference Egorova PA, Zakharova OA, Vlasova OL, Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol. 2016;115(6):2840–51.PubMedPubMedCentralCrossRef Egorova PA, Zakharova OA, Vlasova OL, Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol. 2016;115(6):2840–51.PubMedPubMedCentralCrossRef
35.
go back to reference Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the climbing fiber-Purkinje cell circuit in SCA2-58Q transgenic mouse model. Cerebellum. 2018;17(5):590–600.PubMedPubMedCentralCrossRef Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the climbing fiber-Purkinje cell circuit in SCA2-58Q transgenic mouse model. Cerebellum. 2018;17(5):590–600.PubMedPubMedCentralCrossRef
36.
go back to reference Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2. Cell Calcium. 2021;93:102319.PubMedCrossRef Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2. Cell Calcium. 2021;93:102319.PubMedCrossRef
37.
go back to reference Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strobaek D, Liang X, Egorova P, Vorontsova D, Christophersen P, Ronn LC, Bezprozvanny I. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.PubMedPubMedCentralCrossRef Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strobaek D, Liang X, Egorova P, Vorontsova D, Christophersen P, Ronn LC, Bezprozvanny I. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.PubMedPubMedCentralCrossRef
38.
go back to reference Kasumu AW, Liang X, Egorova P, Vorontsova D, Bezprozvanny I. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci. 2012;32(37):12786–96.PubMedPubMedCentralCrossRef Kasumu AW, Liang X, Egorova P, Vorontsova D, Bezprozvanny I. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci. 2012;32(37):12786–96.PubMedPubMedCentralCrossRef
40.
go back to reference Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, Liang M, Higashida C, Sumi K, Furuhara K, Inahata Y, Huang JJ, Koizumi K, Yokoyama S, Tsuji T, Petugina Y, Sumarokov A, Salmina AB, Hashida K, Kitao Y, Hori O, Asano M, Kitamura Y, Kozaka T, Shiba K, Zhong F, Xie MJ, Sato M, Ishihara K, Higashida H. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci. 2014;8:133.PubMedPubMedCentralCrossRef Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, Liang M, Higashida C, Sumi K, Furuhara K, Inahata Y, Huang JJ, Koizumi K, Yokoyama S, Tsuji T, Petugina Y, Sumarokov A, Salmina AB, Hashida K, Kitao Y, Hori O, Asano M, Kitamura Y, Kozaka T, Shiba K, Zhong F, Xie MJ, Sato M, Ishihara K, Higashida H. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci. 2014;8:133.PubMedPubMedCentralCrossRef
41.
go back to reference Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav. 1980;13(2):167–70.PubMedCrossRef Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav. 1980;13(2):167–70.PubMedCrossRef
42.
go back to reference Lueptow LM. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J Vis Exp. 2017 ;(126). Lueptow LM. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J Vis Exp. 2017 ;(126).
44.
45.
go back to reference Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep. 2019;39(3):223–37.PubMedPubMedCentralCrossRef Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep. 2019;39(3):223–37.PubMedPubMedCentralCrossRef
46.
go back to reference Stezin A, Bhardwaj S, Hegde S, Jain S, Bharath RD, Saini J, Pal PK. Cognitive impairment and its neuroimaging correlates in spinocerebellar ataxia 2. Parkinsonism Relat Disord. 2021;85:78–83.PubMedPubMedCentralCrossRef Stezin A, Bhardwaj S, Hegde S, Jain S, Bharath RD, Saini J, Pal PK. Cognitive impairment and its neuroimaging correlates in spinocerebellar ataxia 2. Parkinsonism Relat Disord. 2021;85:78–83.PubMedPubMedCentralCrossRef
47.
go back to reference Mastammanavar VS, Kamble N, Yadav R, Netravathi M, Jain S, Kumar K, Pal PK. Non-motor symptoms in patients with autosomal dominant spinocerebellar ataxia. Acta Neurol Scand. 2020;142(4):368–76.PubMedCrossRef Mastammanavar VS, Kamble N, Yadav R, Netravathi M, Jain S, Kumar K, Pal PK. Non-motor symptoms in patients with autosomal dominant spinocerebellar ataxia. Acta Neurol Scand. 2020;142(4):368–76.PubMedCrossRef
49.
go back to reference Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288(14):1740–8.PubMedCrossRef Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288(14):1740–8.PubMedCrossRef
50.
go back to reference Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF, Sharp WS, Giedd JN, Rapoport JL. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55.PubMedCrossRef Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF, Sharp WS, Giedd JN, Rapoport JL. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55.PubMedCrossRef
51.
go back to reference Duan K, Jiang W, Rootes-Murdy K, Schoenmacker GH, Arias-Vasquez A, Buitelaar JK, Hoogman M, Oosterlaan J, Hoekstra PJ, Heslenfeld DJ, Hartman CA, Calhoun VD, Turner JA, Liu J. Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood. Transl Psychiatry. 2021;11(1):184.PubMedPubMedCentralCrossRef Duan K, Jiang W, Rootes-Murdy K, Schoenmacker GH, Arias-Vasquez A, Buitelaar JK, Hoogman M, Oosterlaan J, Hoekstra PJ, Heslenfeld DJ, Hartman CA, Calhoun VD, Turner JA, Liu J. Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood. Transl Psychiatry. 2021;11(1):184.PubMedPubMedCentralCrossRef
52.
go back to reference Kraskovskaya NA, Erofeev AI, Grishina ED, et al. Development of hippocampus-associated cognitive dysfunction in Huntington’s disease mouse model. J Evol Biochem Phys. 2021;57:1449–60.CrossRef Kraskovskaya NA, Erofeev AI, Grishina ED, et al. Development of hippocampus-associated cognitive dysfunction in Huntington’s disease mouse model. J Evol Biochem Phys. 2021;57:1449–60.CrossRef
53.
go back to reference Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet. 2020;29(1):117–31.PubMedCrossRef Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet. 2020;29(1):117–31.PubMedCrossRef
54.
go back to reference Valis M, Masopust J, Bazant J, Rihova Z, Kalnicka D, Urban A, Zumrova A, Hort J. Cognitive changes in spinocerebellar ataxia type 2. Neuro Endocrinol Lett. 2011;32(3):354–9.PubMed Valis M, Masopust J, Bazant J, Rihova Z, Kalnicka D, Urban A, Zumrova A, Hort J. Cognitive changes in spinocerebellar ataxia type 2. Neuro Endocrinol Lett. 2011;32(3):354–9.PubMed
55.
go back to reference Hult LS, Nilsson N, Soylu R, Kirik D, Petersen A. Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2013;22(17):3485–97.CrossRef Hult LS, Nilsson N, Soylu R, Kirik D, Petersen A. Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2013;22(17):3485–97.CrossRef
56.
go back to reference Minichino A, Bersani FS, Trabucchi G, Albano G, Primavera M, Delle CR, Biondi M. The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv Psichiatr. 2014;49(3):124–31.PubMed Minichino A, Bersani FS, Trabucchi G, Albano G, Primavera M, Delle CR, Biondi M. The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv Psichiatr. 2014;49(3):124–31.PubMed
57.
go back to reference Mills NP, Delbello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162(8):1530–2.PubMedCrossRef Mills NP, Delbello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162(8):1530–2.PubMedCrossRef
58.
go back to reference Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80(2):395–9.PubMedCrossRef Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80(2):395–9.PubMedCrossRef
59.
go back to reference Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29(29):9148–62.PubMedPubMedCentralCrossRef Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29(29):9148–62.PubMedPubMedCentralCrossRef
Metadata
Title
Cognitive Decline and Mood Alterations in the Mouse Model of Spinocerebellar Ataxia Type 2
Authors
Ksenia S. Marinina
Ilya B. Bezprozvanny
Polina A. Egorova
Publication date
21-01-2023
Publisher
Springer US
Published in
The Cerebellum / Issue 1/2024
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-023-01520-w

Other articles of this Issue 1/2024

The Cerebellum 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine