Skip to main content
Top

04-05-2024 | Research Article

Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney

Authors: Nima Gilani, Artem Mikheev, Inge M. Brinkmann, Malika Kumbella, James S. Babb, Dibash Basukala, Andreas Wetscherek, Thomas Benkert, Hersh Chandarana, Eric E. Sigmund

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine

Login to get access

Abstract

Objective

Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers.

Materials and methods

In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled “REnal Flow and Microstructure AnisotroPy (REFMAP)”, and a multiply encoded model titled “FC-IVIM” providing estimates of fluid velocity and branching length.

Results

Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46–0.55, <0.001).

Conclusions

These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.
Appendix
Available only for authorised users
Literature
3.
go back to reference Sigmund EE, Mikheev A, Brinkmann IM, Gilani N et al (2023) Cardiac phase and flow compensation effects on renal flow and microstructure anisotropy MRI in healthy human kidney. J Magn Reson Imaging 58(1):210–220PubMedCrossRef Sigmund EE, Mikheev A, Brinkmann IM, Gilani N et al (2023) Cardiac phase and flow compensation effects on renal flow and microstructure anisotropy MRI in healthy human kidney. J Magn Reson Imaging 58(1):210–220PubMedCrossRef
5.
go back to reference Pierpaoli C (2010) Artifacts in diffusion MRI. In: DK Jones (ed) Diffusion MRI: theory, methods and applications. Oxford University Press, Oxford, pp 303–318CrossRef Pierpaoli C (2010) Artifacts in diffusion MRI. In: DK Jones (ed) Diffusion MRI: theory, methods and applications. Oxford University Press, Oxford, pp 303–318CrossRef
6.
go back to reference Gilani N, Mikheev A, Brinkmann IM, Basukala D et al (2023) Characterization of motion dependent magnetic field inhomogeneity for DWI in the kidneys. Magn Reson Imaging 100:93–101PubMedCrossRef Gilani N, Mikheev A, Brinkmann IM, Basukala D et al (2023) Characterization of motion dependent magnetic field inhomogeneity for DWI in the kidneys. Magn Reson Imaging 100:93–101PubMedCrossRef
7.
go back to reference Lanzman RS, Ljimani A, Muller-Lutz A, Weller J et al (2019) Assessment of time-resolved renal diffusion parameters over the entire cardiac cycle. Magn Reson Imaging 55:1–6PubMedCrossRef Lanzman RS, Ljimani A, Muller-Lutz A, Weller J et al (2019) Assessment of time-resolved renal diffusion parameters over the entire cardiac cycle. Magn Reson Imaging 55:1–6PubMedCrossRef
8.
go back to reference Ito K, Hayashida M, Kanki A, Yamamoto A et al (2018) Alterations in apparent diffusion coefficient values of the kidney during the cardiac cycle: evaluation with ECG-triggered diffusion-weighted MR imaging. Magn Reson Imaging 52:1–8PubMedCrossRef Ito K, Hayashida M, Kanki A, Yamamoto A et al (2018) Alterations in apparent diffusion coefficient values of the kidney during the cardiac cycle: evaluation with ECG-triggered diffusion-weighted MR imaging. Magn Reson Imaging 52:1–8PubMedCrossRef
9.
go back to reference Wittsack HJ, Lanzman RS, Quentin M, Kuhlemann J et al (2012) Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Invest Radiol 47(4):226–230PubMedCrossRef Wittsack HJ, Lanzman RS, Quentin M, Kuhlemann J et al (2012) Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Invest Radiol 47(4):226–230PubMedCrossRef
10.
go back to reference Milani B, Ledoux JB, Rotzinger DC, Kanemitsu M et al (2019) Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments. Magn Reson Med 81(1):583–593PubMedCrossRef Milani B, Ledoux JB, Rotzinger DC, Kanemitsu M et al (2019) Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments. Magn Reson Med 81(1):583–593PubMedCrossRef
11.
go back to reference Heusch P, Wittsack HJ, Kropil P, Blondin D et al (2013) Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging 37(1):233–236PubMedCrossRef Heusch P, Wittsack HJ, Kropil P, Blondin D et al (2013) Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging 37(1):233–236PubMedCrossRef
12.
go back to reference Gilani N, Mikheev A, Brinkmann IM, Basukala D et al (2023) The effect of cardiac gating on the repeatability of quantitative renal diffusion MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Toronto, Canada, p 1498 Gilani N, Mikheev A, Brinkmann IM, Basukala D et al (2023) The effect of cardiac gating on the repeatability of quantitative renal diffusion MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Toronto, Canada, p 1498
13.
go back to reference Heptinstall RH (2007) Heptinstall’s pathology of the kidney, vol 1. Lippincott Williams & Wilkins, Philadelphia Heptinstall RH (2007) Heptinstall’s pathology of the kidney, vol 1. Lippincott Williams & Wilkins, Philadelphia
14.
go back to reference Gilani N, Malcolm P, Johnson G (2017) A monte carlo study of restricted diffusion: implications for diffusion MRI of prostate cancer. Magn Reson Med 77(4):1671–1677PubMedCrossRef Gilani N, Malcolm P, Johnson G (2017) A monte carlo study of restricted diffusion: implications for diffusion MRI of prostate cancer. Magn Reson Med 77(4):1671–1677PubMedCrossRef
15.
go back to reference Gilani N, Malcolm P, Johnson G (2017) An improved model for prostate diffusion incorporating the results of monte carlo simulations of diffusion in the cellular compartment. NMR Biomed 30(12):e3782CrossRef Gilani N, Malcolm P, Johnson G (2017) An improved model for prostate diffusion incorporating the results of monte carlo simulations of diffusion in the cellular compartment. NMR Biomed 30(12):e3782CrossRef
16.
go back to reference Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedCrossRef Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedCrossRef
17.
go back to reference Thoeny HC, Keyzer FD (2011) Diffusion-weighted MR Imaging of native and transplanted kidneys. Radiology 259(1):25–38PubMedCrossRef Thoeny HC, Keyzer FD (2011) Diffusion-weighted MR Imaging of native and transplanted kidneys. Radiology 259(1):25–38PubMedCrossRef
18.
go back to reference Zhang JL, Sigmund EE, Chandarana H, Rusinek H et al (2010) Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 254(3):783–792PubMedPubMedCentralCrossRef Zhang JL, Sigmund EE, Chandarana H, Rusinek H et al (2010) Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 254(3):783–792PubMedPubMedCentralCrossRef
19.
go back to reference Ljimani A, Caroli A, Laustsen C, Francis S et al (2020) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA 33(1):177–195PubMedCrossRef Ljimani A, Caroli A, Laustsen C, Francis S et al (2020) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA 33(1):177–195PubMedCrossRef
20.
go back to reference Caroli A, Schneider M, Friedli I, Ljimani A et al (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(2S):ii29–ii40PubMedPubMedCentralCrossRef Caroli A, Schneider M, Friedli I, Ljimani A et al (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(2S):ii29–ii40PubMedPubMedCentralCrossRef
21.
go back to reference Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging JMRI 14(1):42–49PubMedCrossRef Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging JMRI 14(1):42–49PubMedCrossRef
22.
go back to reference Periquito JS, Gladytz T, Millward JM, Delgado PR et al (2021) Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant Imaging Med Surg 11(7):3098–3119PubMedPubMedCentralCrossRef Periquito JS, Gladytz T, Millward JM, Delgado PR et al (2021) Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant Imaging Med Surg 11(7):3098–3119PubMedPubMedCentralCrossRef
23.
go back to reference van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, Froeling M (2017) Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging 46(1):228–239PubMedCrossRef van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, Froeling M (2017) Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging 46(1):228–239PubMedCrossRef
25.
go back to reference Hilbert F, Bock M, Neubauer H, Veldhoen S et al (2016) An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR Biomed 29(10):1403–1413PubMedCrossRef Hilbert F, Bock M, Neubauer H, Veldhoen S et al (2016) An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR Biomed 29(10):1403–1413PubMedCrossRef
26.
go back to reference Van Phi VD, Becker AS, Ciritsis A, Reiner CS, Boss A (2018) Intravoxel incoherent motion analysis of abdominal organs: application of simultaneous multislice acquisition. Invest Radiol 53(3):179–185CrossRef Van Phi VD, Becker AS, Ciritsis A, Reiner CS, Boss A (2018) Intravoxel incoherent motion analysis of abdominal organs: application of simultaneous multislice acquisition. Invest Radiol 53(3):179–185CrossRef
27.
go back to reference Wetscherek A, Stieltjes B, Laun FB (2015) Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med 74(2):410–419PubMedCrossRef Wetscherek A, Stieltjes B, Laun FB (2015) Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med 74(2):410–419PubMedCrossRef
28.
go back to reference Stabinska J, Ljimani A, Zollner HJ, Wilken E et al (2021) Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologies. Magn Reson Med 85(6):3085–3095PubMedCrossRef Stabinska J, Ljimani A, Zollner HJ, Wilken E et al (2021) Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologies. Magn Reson Med 85(6):3085–3095PubMedCrossRef
29.
go back to reference Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111(3):209–219CrossRef Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111(3):209–219CrossRef
30.
go back to reference Lemberskiy G, Rosenkrantz AB, Veraart J, Taneja SS, Novikov DS, Fieremans E (2017) Time-dependent diffusion in prostate cancer. Invest Radiol 52(7):405–411PubMedCrossRef Lemberskiy G, Rosenkrantz AB, Veraart J, Taneja SS, Novikov DS, Fieremans E (2017) Time-dependent diffusion in prostate cancer. Invest Radiol 52(7):405–411PubMedCrossRef
31.
go back to reference Gurney-Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A (2020) Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: an accurate and precise clinically feasible protocol. Magn Reson Med 83(3):1003–1015PubMedCrossRef Gurney-Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A (2020) Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: an accurate and precise clinically feasible protocol. Magn Reson Med 83(3):1003–1015PubMedCrossRef
32.
go back to reference Piskunowicz M, Hofmann L, Zuercher E, Bassi I et al (2015) A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease. Magn Reson Imaging 33(3):253–261PubMedCrossRef Piskunowicz M, Hofmann L, Zuercher E, Bassi I et al (2015) A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease. Magn Reson Imaging 33(3):253–261PubMedCrossRef
33.
go back to reference Milani B, Ansaloni A, Sousa-Guimaraes S, Vakilzadeh N et al (2017) Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant 32(12):2097–2105PubMed Milani B, Ansaloni A, Sousa-Guimaraes S, Vakilzadeh N et al (2017) Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant 32(12):2097–2105PubMed
34.
go back to reference Li LP, Milani B, Pruijm M, Kohn O et al (2020) Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. MAGMA 33(1):113–120PubMedCrossRef Li LP, Milani B, Pruijm M, Kohn O et al (2020) Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. MAGMA 33(1):113–120PubMedCrossRef
35.
go back to reference Zhao K, Li S, Liu Y, Li Q et al (2023) Diagnostic and prognostic performance of renal compartment volume and the apparent diffusion coefficient obtained from magnetic resonance imaging in mild, moderate and severe diabetic kidney disease. Quant Imaging Med Surg 13(6):3973–3987PubMedPubMedCentralCrossRef Zhao K, Li S, Liu Y, Li Q et al (2023) Diagnostic and prognostic performance of renal compartment volume and the apparent diffusion coefficient obtained from magnetic resonance imaging in mild, moderate and severe diabetic kidney disease. Quant Imaging Med Surg 13(6):3973–3987PubMedPubMedCentralCrossRef
36.
go back to reference Sanmiguel Serpa LC, De Visschere P, Speeckaert M, Pullens P (2023) A new method to analyse renal perfusion: a proof of concept. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Toronto, Canada, p 3803 Sanmiguel Serpa LC, De Visschere P, Speeckaert M, Pullens P (2023) A new method to analyse renal perfusion: a proof of concept. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Toronto, Canada, p 3803
37.
go back to reference Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593PubMedCrossRef Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593PubMedCrossRef
38.
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(1S):S208–S219PubMedCrossRef Smith SM, Jenkinson M, Woolrich MW, Beckmann CF et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(1S):S208–S219PubMedCrossRef
40.
go back to reference Jones DK, Basser PJ (2004) “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 52(5):979–993PubMedCrossRef Jones DK, Basser PJ (2004) “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 52(5):979–993PubMedCrossRef
41.
go back to reference Hirsch JG, Schwenk SM, Rossmanith C, Hennerici MG, Gass A (2003) Deviations from the diffusion tensor model as revealed by contour plot visualization using high angular resolution diffusion-weighted imaging (HARDI). MAGMA 16(2):93–102PubMedCrossRef Hirsch JG, Schwenk SM, Rossmanith C, Hennerici MG, Gass A (2003) Deviations from the diffusion tensor model as revealed by contour plot visualization using high angular resolution diffusion-weighted imaging (HARDI). MAGMA 16(2):93–102PubMedCrossRef
42.
go back to reference Funck C, Laun FB, Wetscherek A (2018) Characterization of the diffusion coefficient of blood. Magn Reson Med 79(5):2752–2758PubMedCrossRef Funck C, Laun FB, Wetscherek A (2018) Characterization of the diffusion coefficient of blood. Magn Reson Med 79(5):2752–2758PubMedCrossRef
43.
go back to reference Johnson GA, Benveniste H, Black RD, Hedlund LW, Maronpot RR, Smith BR (1993) Histology by magnetic resonance microscopy. Magn Reson Q 9(1):1–30PubMed Johnson GA, Benveniste H, Black RD, Hedlund LW, Maronpot RR, Smith BR (1993) Histology by magnetic resonance microscopy. Magn Reson Q 9(1):1–30PubMed
44.
go back to reference de Rochefort L, Liu T, Kressler B, Liu J et al (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMedCrossRef de Rochefort L, Liu T, Kressler B, Liu J et al (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMedCrossRef
45.
go back to reference Xie L, Bennett KM, Liu C, Johnson GA, Zhang JL, Lee VS (2016) MRI tools for assessment of microstructure and nephron function of the kidney. Am J Physiol Renal Physiol 311(6):F1109–F1124PubMedPubMedCentralCrossRef Xie L, Bennett KM, Liu C, Johnson GA, Zhang JL, Lee VS (2016) MRI tools for assessment of microstructure and nephron function of the kidney. Am J Physiol Renal Physiol 311(6):F1109–F1124PubMedPubMedCentralCrossRef
46.
go back to reference Morozov D, Parvin N, Charlton JR, Bennett KM (2021) Mapping kidney tubule diameter ex vivo by diffusion MRI. Am J Physiol Renal Physiol 320(5):F934–F946PubMedPubMedCentralCrossRef Morozov D, Parvin N, Charlton JR, Bennett KM (2021) Mapping kidney tubule diameter ex vivo by diffusion MRI. Am J Physiol Renal Physiol 320(5):F934–F946PubMedPubMedCentralCrossRef
47.
go back to reference Taphorn K, Busse M, Brantl J, Gunther B et al (2022) X-ray stain localization with near-field ptychographic computed tomography. Adv Sci (Weinh) 9(24):e2201723PubMedCrossRef Taphorn K, Busse M, Brantl J, Gunther B et al (2022) X-ray stain localization with near-field ptychographic computed tomography. Adv Sci (Weinh) 9(24):e2201723PubMedCrossRef
48.
go back to reference Puelles VG, Combes AN, Bertram JF (2021) Clearly imaging and quantifying the kidney in 3D. Kidney Int 100(4):780–786PubMedCrossRef Puelles VG, Combes AN, Bertram JF (2021) Clearly imaging and quantifying the kidney in 3D. Kidney Int 100(4):780–786PubMedCrossRef
49.
go back to reference Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRef Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRef
50.
go back to reference Afzali M, Pieciak T, Newman S, Garyfallidis E et al (2021) The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 347:108951PubMedPubMedCentralCrossRef Afzali M, Pieciak T, Newman S, Garyfallidis E et al (2021) The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 347:108951PubMedPubMedCentralCrossRef
51.
go back to reference Liu AL, Mikheev A, Rusinek H, Huang WC et al (2018) REnal flow and microstructure anisotroPy (REFMAP) MRI in normal and peritumoral renal tissue. J Magn Reson Imaging 48(1):188–197PubMedPubMedCentralCrossRef Liu AL, Mikheev A, Rusinek H, Huang WC et al (2018) REnal flow and microstructure anisotroPy (REFMAP) MRI in normal and peritumoral renal tissue. J Magn Reson Imaging 48(1):188–197PubMedPubMedCentralCrossRef
52.
go back to reference Fioretto P, Sutherland DER, Najafian B, Mauer M (2006) Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 69(5):907–912PubMedCrossRef Fioretto P, Sutherland DER, Najafian B, Mauer M (2006) Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 69(5):907–912PubMedCrossRef
53.
go back to reference Kriz W, Napiwotzky P (1979) Structural and functional aspects of the renal interstitium. Contrib Nephrol 16:104–108PubMedCrossRef Kriz W, Napiwotzky P (1979) Structural and functional aspects of the renal interstitium. Contrib Nephrol 16:104–108PubMedCrossRef
54.
go back to reference Scott LA, Dickie BR, Rawson SD, Coutts G et al (2021) Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab 41(8):1939–1953PubMedCrossRef Scott LA, Dickie BR, Rawson SD, Coutts G et al (2021) Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab 41(8):1939–1953PubMedCrossRef
55.
go back to reference Gilani N, Hildebrand S, Schueth A, Roebroeck A (2019) Monte Carlo simulation of diffusion MRI in geometries constructed from two-photon microscopy of human cortical grey matter. bioRxiv. https://doi.org/10.1101/626945 Gilani N, Hildebrand S, Schueth A, Roebroeck A (2019) Monte Carlo simulation of diffusion MRI in geometries constructed from two-photon microscopy of human cortical grey matter. bioRxiv. https://​doi.​org/​10.​1101/​626945
56.
go back to reference Kirilina E, Helbling S, Morawski M, Pine K et al (2020) Superficial white matter imaging: contrast mechanisms and whole-brain in vivo mapping. Sci Adv 6(41):eaaz9281PubMedPubMedCentralCrossRef Kirilina E, Helbling S, Morawski M, Pine K et al (2020) Superficial white matter imaging: contrast mechanisms and whole-brain in vivo mapping. Sci Adv 6(41):eaaz9281PubMedPubMedCentralCrossRef
57.
go back to reference Ahlgren A, Knutsson L, Wirestam R, Nilsson M et al (2016) Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data. NMR Biomed 29(5):640–649PubMedPubMedCentralCrossRef Ahlgren A, Knutsson L, Wirestam R, Nilsson M et al (2016) Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data. NMR Biomed 29(5):640–649PubMedPubMedCentralCrossRef
58.
go back to reference Fournet G, Li JR, Cerjanic AM, Sutton BP, Ciobanu L, Le Bihan D (2017) A two-pool model to describe the IVIM cerebral perfusion. J Cereb Blood Flow Metab 37(8):2987–3000PubMedCrossRef Fournet G, Li JR, Cerjanic AM, Sutton BP, Ciobanu L, Le Bihan D (2017) A two-pool model to describe the IVIM cerebral perfusion. J Cereb Blood Flow Metab 37(8):2987–3000PubMedCrossRef
59.
go back to reference Kennan RP, Gao JH, Zhong J, Gore JC (1994) A general model of microcirculatory blood flow effects in gradient sensitized MRI. Med Phys 21(4):539–545PubMedCrossRef Kennan RP, Gao JH, Zhong J, Gore JC (1994) A general model of microcirculatory blood flow effects in gradient sensitized MRI. Med Phys 21(4):539–545PubMedCrossRef
Metadata
Title
Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney
Authors
Nima Gilani
Artem Mikheev
Inge M. Brinkmann
Malika Kumbella
James S. Babb
Dibash Basukala
Andreas Wetscherek
Thomas Benkert
Hersh Chandarana
Eric E. Sigmund
Publication date
04-05-2024
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-024-01159-6