Skip to main content
Top

Open Access 14-04-2025 | Sorafenib | Research

Exosomes delivering miR-129-5p combined with sorafenib ameliorate hepatocellular carcinoma progression via the KCTD1/HIF-1α/VEGF pathway

Authors: Xinyu Zhu, Zhiwei Li, Li Chen, Limin Li, Mi Ouyang, Hao Zhou, Kai Xiao, Ling Lin, Paul K. Chu, Chang Zhou, Chengfeng Xun, Liu Yang, Wenhuan Huang, Xiaofeng Ding

Published in: Cellular Oncology

Login to get access

Abstract

Background

Potassium channel tetramerization domain-containing 1 (KCTD1) plays a critical role in transcriptional regulation and adipogenesis, but its significance in hepatocellular cancer (HCC) has not been reported.

Methods

Immunohistochemistry, Western blotting and quantitative real-time PCR analysis were performed to assess the expression of KCTD1 and related genes in HCC cells. MTT assays, colony formation, cell migration, invasion and the in-vivo mouse models were utilized to evaluate the function of KCTD1 in HCC progression. Co-immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assays were conducted to elucidate the molecular mechanisms of KCTD1 in HCC.

Results

KCTD1 expression was increased in human HCC tissues and closely associated with advanced tumor stages. KCTD1 overexpression enhanced growth, migration, and invasion of Huh7 and HepG2 cells both in vitro and in vivo, while KCTD1 knockdown reversed these effects in MHCC97H cells. Mechanistically, KCTD1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) and enhanced HIF-1α protein stability with the inhibited prolyl-hydroxylases (PHD)/Von Hippel-Lindau (VHL) pathway, consequently activating the Vascular Endothelial Growth Factor (VEGF)/VEGFR2 pathway in HCC cells. Sorafenib and KCTD1 knockdown synergistically inhibited intrahepatic tumor growth following in situ injection of MHCC97H cells. miR-129-5p downregulated KCTD1 by binding to KCTD1 3′UTR. Finally, 45 µg exosomes from miR-129-5p-overexpressing MHCC97H cells combined with 25 mg/kg sorafenib to decrease HCC tumor size.

Conclusions

These results suggested that KCTD1 protects HIF-1α from degradation and activates the VEGF signaling cascade to enhance HCC progression. Therefore, KCTD1 may serve as a novel target of HCC and pave the way for an efficient combined therapy in advanced HCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference J. Muto, K. Shirabe, K. Sugimachi, Y. Maehara, Review of angiogenesis in hepatocellular carcinoma. Hepatol. Res. 45(1), 1–9 (2015)PubMedCrossRef J. Muto, K. Shirabe, K. Sugimachi, Y. Maehara, Review of angiogenesis in hepatocellular carcinoma. Hepatol. Res. 45(1), 1–9 (2015)PubMedCrossRef
2.
go back to reference H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)PubMedCrossRef H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)PubMedCrossRef
3.
go back to reference J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc, de A.C. Oliveira, A. Santoro, J.L. Raoul, A. Forner et al., Sorafenib in advanced hepatocellular carcinoma. N Engl. J. Med. 359(4), 378–390 (2008)PubMedCrossRef J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc, de A.C. Oliveira, A. Santoro, J.L. Raoul, A. Forner et al., Sorafenib in advanced hepatocellular carcinoma. N Engl. J. Med. 359(4), 378–390 (2008)PubMedCrossRef
4.
go back to reference X.F. Ding, C. Luo, K.Q. Ren, J. Zhang, J.L. Zhou, X. Hu, R.S. Liu, Y. Wang, X. Gao, J. Zhang, Characterization and expression of a human KCTD1 gene containing the BTB domain, which mediates transcriptional repression and homomeric interactions. DNA Cell. Biol. 27(5), 257–265 (2008)PubMedCrossRef X.F. Ding, C. Luo, K.Q. Ren, J. Zhang, J.L. Zhou, X. Hu, R.S. Liu, Y. Wang, X. Gao, J. Zhang, Characterization and expression of a human KCTD1 gene containing the BTB domain, which mediates transcriptional repression and homomeric interactions. DNA Cell. Biol. 27(5), 257–265 (2008)PubMedCrossRef
5.
go back to reference X. Ding, C. Luo, J. Zhou, Y. Zhong, X. Hu, F. Zhou, K. Ren, L. Gan, A. He, J. Zhu et al., The interaction of KCTD1 with transcription factor AP-2alpha inhibits its transactivation. J. Cell. Biochem. 106(2), 285–295 (2009)PubMedCrossRef X. Ding, C. Luo, J. Zhou, Y. Zhong, X. Hu, F. Zhou, K. Ren, L. Gan, A. He, J. Zhu et al., The interaction of KCTD1 with transcription factor AP-2alpha inhibits its transactivation. J. Cell. Biochem. 106(2), 285–295 (2009)PubMedCrossRef
6.
go back to reference L. Pirone, G. Smaldone, R. Spinelli, M. Barberisi, F. Beguinot, L. Vitagliano, C. Miele, Di S. Gaetano, G.A. Raciti, E. Pedone, KCTD1: a novel modulator of adipogenesis through the interaction with the transcription factor AP2alpha. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 1864(12), 158514 (2019)PubMedCrossRef L. Pirone, G. Smaldone, R. Spinelli, M. Barberisi, F. Beguinot, L. Vitagliano, C. Miele, Di S. Gaetano, G.A. Raciti, E. Pedone, KCTD1: a novel modulator of adipogenesis through the interaction with the transcription factor AP2alpha. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 1864(12), 158514 (2019)PubMedCrossRef
7.
9.
go back to reference S. Tan, L. Xia, P. Yi, Y. Han, L. Tang, Q. Pan, Y. Tian, S. Rao, L. Oyang, J. Liang et al., Exosomal miRNAs in tumor microenvironment. J. Exp. Clin. Cancer Res. 39(1), 67 (2020)PubMedPubMedCentralCrossRef S. Tan, L. Xia, P. Yi, Y. Han, L. Tang, Q. Pan, Y. Tian, S. Rao, L. Oyang, J. Liang et al., Exosomal miRNAs in tumor microenvironment. J. Exp. Clin. Cancer Res. 39(1), 67 (2020)PubMedPubMedCentralCrossRef
10.
go back to reference Y. Wang, A. Moh-Moh-Aung, T. Wang, M. Fujisawa, T. Ohara, K.I. Yamamoto, M. Sakaguchi, T. Yoshimura, A. Matsukawa, Exosomal delivery of miR-200b-3p suppresses the growth of hepatocellular carcinoma cells by targeting ERG- and VEGF-mediated angiogenesis. Gene. 931, 148874 (2024)PubMedCrossRef Y. Wang, A. Moh-Moh-Aung, T. Wang, M. Fujisawa, T. Ohara, K.I. Yamamoto, M. Sakaguchi, T. Yoshimura, A. Matsukawa, Exosomal delivery of miR-200b-3p suppresses the growth of hepatocellular carcinoma cells by targeting ERG- and VEGF-mediated angiogenesis. Gene. 931, 148874 (2024)PubMedCrossRef
12.
go back to reference L. Yang, J. Qiu, Y. Xiao, X. Hu, Q. Liu, L. Chen, W. Huang, X. Li, L. Li, J. Zhang et al., AP-2β inhibits hepatocellular carcinoma invasion and metastasis through slug and snail to suppress epithelial-mesenchymal transition. Theranostics. 8(13), 3707–3721 (2018)PubMedPubMedCentralCrossRef L. Yang, J. Qiu, Y. Xiao, X. Hu, Q. Liu, L. Chen, W. Huang, X. Li, L. Li, J. Zhang et al., AP-2β inhibits hepatocellular carcinoma invasion and metastasis through slug and snail to suppress epithelial-mesenchymal transition. Theranostics. 8(13), 3707–3721 (2018)PubMedPubMedCentralCrossRef
13.
go back to reference O. Menyhart, A. Nagy, B. Gyorffy, Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc. Open. Sci. 5(12), 181006 (2018)PubMedPubMedCentralCrossRef O. Menyhart, A. Nagy, B. Gyorffy, Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc. Open. Sci. 5(12), 181006 (2018)PubMedPubMedCentralCrossRef
14.
go back to reference W. Huang, Z. Zhong, C. Luo, Y. Xiao, L. Li, X. Zhang, L. Yang, K. Xiao, Y. Ning, L. Chen et al., The miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics. 9(19), 5497–5516 (2019)PubMedPubMedCentralCrossRef W. Huang, Z. Zhong, C. Luo, Y. Xiao, L. Li, X. Zhang, L. Yang, K. Xiao, Y. Ning, L. Chen et al., The miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics. 9(19), 5497–5516 (2019)PubMedPubMedCentralCrossRef
15.
go back to reference W. Huang, C. Chen, Z. Liang, J. Qiu, X. Li, X. Hu, S. Xiang, X. Ding, J. Zhang, AP-2alpha inhibits hepatocellular carcinoma cell growth and migration. Int. J. Oncol. 48(3), 1125–1134 (2016)PubMedCrossRef W. Huang, C. Chen, Z. Liang, J. Qiu, X. Li, X. Hu, S. Xiang, X. Ding, J. Zhang, AP-2alpha inhibits hepatocellular carcinoma cell growth and migration. Int. J. Oncol. 48(3), 1125–1134 (2016)PubMedCrossRef
16.
go back to reference X. Ding, Z. Yang, F. Zhou, F. Wang, X. Li, C. Chen, X. Li, X. Hu, S. Xiang, J. Zhang, Transcription factor AP-2alpha regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression. Int. J. Biochem. Cell. Biol. 45(8), 1647–1656 (2013)PubMedCrossRef X. Ding, Z. Yang, F. Zhou, F. Wang, X. Li, C. Chen, X. Li, X. Hu, S. Xiang, J. Zhang, Transcription factor AP-2alpha regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression. Int. J. Biochem. Cell. Biol. 45(8), 1647–1656 (2013)PubMedCrossRef
17.
go back to reference Y. Wu, Y. Xiao, X. Ding, Y. Zhuo, P. Ren, C. Zhou, J. Zhou, A miR-200b/200c/429-Binding site polymorphism in the 3′ untranslated region of the AP-2α gene is Associated with Cisplatin Resistance. Plos One. 6(12), e29043 (2011)PubMedPubMedCentralCrossRef Y. Wu, Y. Xiao, X. Ding, Y. Zhuo, P. Ren, C. Zhou, J. Zhou, A miR-200b/200c/429-Binding site polymorphism in the 3′ untranslated region of the AP-2α gene is Associated with Cisplatin Resistance. Plos One. 6(12), e29043 (2011)PubMedPubMedCentralCrossRef
18.
go back to reference X. Ding, C. Fan, J. Zhou, Y. Zhong, R. Liu, K. Ren, X. Hu, C. Luo, S. Xiao, Y. Wang et al., GAS41 interacts with transcription factor AP-2beta and stimulates AP-2beta-mediated transactivation. Nucleic Acids Res. 34(9), 2570–2578 (2006)PubMedPubMedCentralCrossRef X. Ding, C. Fan, J. Zhou, Y. Zhong, R. Liu, K. Ren, X. Hu, C. Luo, S. Xiao, Y. Wang et al., GAS41 interacts with transcription factor AP-2beta and stimulates AP-2beta-mediated transactivation. Nucleic Acids Res. 34(9), 2570–2578 (2006)PubMedPubMedCentralCrossRef
19.
go back to reference F. Wang, W. Huang, X. Hu, C. Chen, X. Li, J. Qiu, Z. Liang, J. Zhang, L. Li, X. Wang et al., Transcription factor AP-2beta suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner beta-catenin. Mol. Carcinog. 56(8), 1909–1923 (2017)PubMedCrossRef F. Wang, W. Huang, X. Hu, C. Chen, X. Li, J. Qiu, Z. Liang, J. Zhang, L. Li, X. Wang et al., Transcription factor AP-2beta suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner beta-catenin. Mol. Carcinog. 56(8), 1909–1923 (2017)PubMedCrossRef
20.
go back to reference L. Hu, L. Chen, L. Yang, Z. Ye, W. Huang, X. Li, Q. Liu, J. Qiu, X. Ding, KCTD1 mutants in scalp–ear–nipple syndrome and AP–2α P59A in Char syndrome reciprocally abrogate their interactions, but can regulate Wnt/β–catenin signaling. Mol. Med. Rep. 22(5), 3895–3903 (2020)PubMedPubMedCentral L. Hu, L. Chen, L. Yang, Z. Ye, W. Huang, X. Li, Q. Liu, J. Qiu, X. Ding, KCTD1 mutants in scalp–ear–nipple syndrome and AP–2α P59A in Char syndrome reciprocally abrogate their interactions, but can regulate Wnt/β–catenin signaling. Mol. Med. Rep. 22(5), 3895–3903 (2020)PubMedPubMedCentral
21.
go back to reference C. Chen, Z. Liang, W. Huang, X. Li, F. Zhou, X. Hu, M. Han, X. Ding, S. Xiang, Eps8 regulates cellular proliferation and migration of breast cancer. Int. J. Oncol. 46(1), 205–214 (2015)PubMedCrossRef C. Chen, Z. Liang, W. Huang, X. Li, F. Zhou, X. Hu, M. Han, X. Ding, S. Xiang, Eps8 regulates cellular proliferation and migration of breast cancer. Int. J. Oncol. 46(1), 205–214 (2015)PubMedCrossRef
22.
23.
go back to reference Z.W. Zhu, H. Friess, L. Wang, M. Abou-Shady, A. Zimmermann, A.D. Lander, M. Korc, J. Kleeff, M.W. Buchler, Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 48(4), 558–564 (2001)PubMedPubMedCentralCrossRef Z.W. Zhu, H. Friess, L. Wang, M. Abou-Shady, A. Zimmermann, A.D. Lander, M. Korc, J. Kleeff, M.W. Buchler, Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 48(4), 558–564 (2001)PubMedPubMedCentralCrossRef
25.
go back to reference J.P. Piret, D. Mottet, M. Raes, C. Michiels, CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann. N Y Acad. Sci. 973(1), 443–447 (2002)PubMedCrossRef J.P. Piret, D. Mottet, M. Raes, C. Michiels, CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann. N Y Acad. Sci. 973(1), 443–447 (2002)PubMedCrossRef
26.
go back to reference D. Chilov, G. Camenisch, I. Kvietikova, U. Ziegler, M. Gassmann, R.H. Wenger, Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J. Cell. Sci. 112(Pt 8), 1203–1212 (1999)PubMedCrossRef D. Chilov, G. Camenisch, I. Kvietikova, U. Ziegler, M. Gassmann, R.H. Wenger, Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J. Cell. Sci. 112(Pt 8), 1203–1212 (1999)PubMedCrossRef
27.
28.
go back to reference C.A. Corzo, T. Condamine, L. Lu, M.J. Cotter, J.I. Youn, P. Cheng, H.I. Cho, E. Celis, D.G. Quiceno, T. Padhya et al., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207(11), 2439–2453 (2010)PubMedPubMedCentralCrossRef C.A. Corzo, T. Condamine, L. Lu, M.J. Cotter, J.I. Youn, P. Cheng, H.I. Cho, E. Celis, D.G. Quiceno, T. Padhya et al., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207(11), 2439–2453 (2010)PubMedPubMedCentralCrossRef
29.
go back to reference G.L. Wang, B.H. Jiang, E.A. Rue, G.L. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92(12), 5510–5514 (1995)PubMedPubMedCentralCrossRef G.L. Wang, B.H. Jiang, E.A. Rue, G.L. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92(12), 5510–5514 (1995)PubMedPubMedCentralCrossRef
30.
go back to reference M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, W.G. Jr. Kaelin, HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 292(5516), 464–468 (2001)PubMedCrossRef M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, W.G. Jr. Kaelin, HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 292(5516), 464–468 (2001)PubMedCrossRef
31.
go back to reference P. Jaakkola, D.R. Mole, Y.M. Tian, M.I. Wilson, J. Gielbert, S.J. Gaskell, von A. Kriegsheim, H.F. Hebestreit, M. Mukherji, C.J. Schofield et al., Targeting of HIF-alpha to the Von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292(5516), 468–472 (2001)PubMedCrossRef P. Jaakkola, D.R. Mole, Y.M. Tian, M.I. Wilson, J. Gielbert, S.J. Gaskell, von A. Kriegsheim, H.F. Hebestreit, M. Mukherji, C.J. Schofield et al., Targeting of HIF-alpha to the Von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292(5516), 468–472 (2001)PubMedCrossRef
32.
go back to reference Q. Sun, H. Zhou, N.O. Binmadi, J.R. Basile, Hypoxia-inducible factor-1-mediated regulation of semaphorin 4D affects tumor growth and vascularity. J. Biol. Chem. 284(46), 32066–32074 (2009)PubMedPubMedCentralCrossRef Q. Sun, H. Zhou, N.O. Binmadi, J.R. Basile, Hypoxia-inducible factor-1-mediated regulation of semaphorin 4D affects tumor growth and vascularity. J. Biol. Chem. 284(46), 32066–32074 (2009)PubMedPubMedCentralCrossRef
33.
go back to reference Y.S. Zhang, F.J. Yuan, G.F. Jia, J.F. Zhang, L.Y. Hu, L. Huang, J. Wang, Z.Q. Dai, CIK cells from patients with HCC possess strong cytotoxicity to multidrug-resistant cell line Bel-7402/R. World J. Gastroenterol. 11(22), 3339–3345 (2005)PubMedPubMedCentralCrossRef Y.S. Zhang, F.J. Yuan, G.F. Jia, J.F. Zhang, L.Y. Hu, L. Huang, J. Wang, Z.Q. Dai, CIK cells from patients with HCC possess strong cytotoxicity to multidrug-resistant cell line Bel-7402/R. World J. Gastroenterol. 11(22), 3339–3345 (2005)PubMedPubMedCentralCrossRef
34.
go back to reference D. Zhang, H. Lee, Z. Zhu, J.K. Minhas, Y. Jin, Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 312(1), L110–L121 (2017)PubMedCrossRef D. Zhang, H. Lee, Z. Zhu, J.K. Minhas, Y. Jin, Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 312(1), L110–L121 (2017)PubMedCrossRef
35.
go back to reference M. Zhai, Y. Zhu, M. Yang, C. Mao, Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv. Sci. (Weinh). 7(19), 2001334 (2020)PubMedCrossRef M. Zhai, Y. Zhu, M. Yang, C. Mao, Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv. Sci. (Weinh). 7(19), 2001334 (2020)PubMedCrossRef
36.
go back to reference A.G. Marneros, A.E. Beck, E.H. Turner, M.J. McMillin, M.J. Edwards, M. Field, de N.L. Macena Sobreira, A.B. Perez, J.A. Fortes, A.K. Lampe et al., Mutations in KCTD1 cause scalp-ear-nipple syndrome. Am. J. Hum. Genet. 92(4), 621–626 (2013)PubMedPubMedCentralCrossRef A.G. Marneros, A.E. Beck, E.H. Turner, M.J. McMillin, M.J. Edwards, M. Field, de N.L. Macena Sobreira, A.B. Perez, J.A. Fortes, A.K. Lampe et al., Mutations in KCTD1 cause scalp-ear-nipple syndrome. Am. J. Hum. Genet. 92(4), 621–626 (2013)PubMedPubMedCentralCrossRef
37.
go back to reference S. Xu, W. Li, J. Wu, Y. Lu, M. Xie, Y. Li, J. Zou, T. Zeng, H. Ling, The role of miR-129-5p in Cancer: a Novel Therapeutic Target. Curr. Mol. Pharmacol. 15(4), 647–657 (2022)PubMedCrossRef S. Xu, W. Li, J. Wu, Y. Lu, M. Xie, Y. Li, J. Zou, T. Zeng, H. Ling, The role of miR-129-5p in Cancer: a Novel Therapeutic Target. Curr. Mol. Pharmacol. 15(4), 647–657 (2022)PubMedCrossRef
38.
go back to reference W. Luo, J. Wang, W. Xu, C. Ma, F. Wan, Y. Huang, M. Yao, H. Zhang, Y. Qu, D. Ye et al., LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell. Death Dis. 12(11), 1043 (2021)PubMedPubMedCentralCrossRef W. Luo, J. Wang, W. Xu, C. Ma, F. Wan, Y. Huang, M. Yao, H. Zhang, Y. Qu, D. Ye et al., LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell. Death Dis. 12(11), 1043 (2021)PubMedPubMedCentralCrossRef
39.
go back to reference S. Ghafouri-Fard, T. Khoshbakht, B.M. Hussen, S.T. Abdullah, M. Taheri, M. Samadian, A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell. Int. 22(1), 342 (2022)PubMedPubMedCentralCrossRef S. Ghafouri-Fard, T. Khoshbakht, B.M. Hussen, S.T. Abdullah, M. Taheri, M. Samadian, A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell. Int. 22(1), 342 (2022)PubMedPubMedCentralCrossRef
40.
go back to reference H. Han, W. Li, H. Shen, J. Zhang, Y. Zhu, Y. Li, microRNA-129-5p, a c-Myc negative target, affects hepatocellular carcinoma progression by blocking the Warburg effect. J. Mol. Cell. Biol. 8(5), 400–410 (2016)PubMedCrossRef H. Han, W. Li, H. Shen, J. Zhang, Y. Zhu, Y. Li, microRNA-129-5p, a c-Myc negative target, affects hepatocellular carcinoma progression by blocking the Warburg effect. J. Mol. Cell. Biol. 8(5), 400–410 (2016)PubMedCrossRef
41.
go back to reference Z. Liu, Y. Wang, L. Wang, B. Yao, L. Sun, R. Liu, T. Chen, Y. Niu, K. Tu, Q. Liu, Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging mir-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 38(1), 194 (2019)PubMedPubMedCentralCrossRef Z. Liu, Y. Wang, L. Wang, B. Yao, L. Sun, R. Liu, T. Chen, Y. Niu, K. Tu, Q. Liu, Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging mir-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 38(1), 194 (2019)PubMedPubMedCentralCrossRef
42.
go back to reference Y. Zhou, Y. Huang, T. Dai, Z. Hua, J. Xu, Y. Lin, L. Han, X. Yue, L. Ho, J. Lu et al., LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging mir-16-5p and upregulation of cyclin E1. Biomed. Pharmacother. 133, 111030 (2021)PubMedCrossRef Y. Zhou, Y. Huang, T. Dai, Z. Hua, J. Xu, Y. Lin, L. Han, X. Yue, L. Ho, J. Lu et al., LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging mir-16-5p and upregulation of cyclin E1. Biomed. Pharmacother. 133, 111030 (2021)PubMedCrossRef
43.
go back to reference G.L. Semenza, P.H. Roth, H.M. Fang, G.L. Wang, Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269(38), 23757–23763 (1994)PubMedCrossRef G.L. Semenza, P.H. Roth, H.M. Fang, G.L. Wang, Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269(38), 23757–23763 (1994)PubMedCrossRef
44.
go back to reference B.H. Jiang, E. Rue, G.L. Wang, R. Roe, G.L. Semenza, Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271(30), 17771–17778 (1996)PubMedCrossRef B.H. Jiang, E. Rue, G.L. Wang, R. Roe, G.L. Semenza, Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271(30), 17771–17778 (1996)PubMedCrossRef
45.
go back to reference G. Breier, Functions of the VEGF/VEGF receptor system in the vascular system. Semin Thromb. Hemost. 26(5), 553–559 (2000)PubMedCrossRef G. Breier, Functions of the VEGF/VEGF receptor system in the vascular system. Semin Thromb. Hemost. 26(5), 553–559 (2000)PubMedCrossRef
47.
go back to reference P. Saharinen, L. Eklund, K. Pulkki, P. Bono, K. Alitalo, VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 17(7), 347–362 (2011)PubMedCrossRef P. Saharinen, L. Eklund, K. Pulkki, P. Bono, K. Alitalo, VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 17(7), 347–362 (2011)PubMedCrossRef
48.
go back to reference N. Pore, S. Liu, H.K. Shu, B. Li, D. Haas-Kogan, D. Stokoe, J. Milanini-Mongiat, G. Pages, D.M. O’Rourke, E. Bernhard et al., Sp1 is involved in akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol. Biol. Cell. 15(11), 4841–4853 (2004)PubMedPubMedCentralCrossRef N. Pore, S. Liu, H.K. Shu, B. Li, D. Haas-Kogan, D. Stokoe, J. Milanini-Mongiat, G. Pages, D.M. O’Rourke, E. Bernhard et al., Sp1 is involved in akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol. Biol. Cell. 15(11), 4841–4853 (2004)PubMedPubMedCentralCrossRef
49.
go back to reference J.A. Forsythe, B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, G.L. Semenza, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16(9), 4604–4613 (1996)PubMedPubMedCentralCrossRef J.A. Forsythe, B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, G.L. Semenza, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16(9), 4604–4613 (1996)PubMedPubMedCentralCrossRef
50.
go back to reference D. Wei, X. Le, L. Zheng, L. Wang, J.A. Frey, A.C. Gao, Z. Peng, S. Huang, H.Q. Xiong, J.L. Abbruzzese et al., Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 22(3), 319–329 (2003)PubMedCrossRef D. Wei, X. Le, L. Zheng, L. Wang, J.A. Frey, A.C. Gao, Z. Peng, S. Huang, H.Q. Xiong, J.L. Abbruzzese et al., Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 22(3), 319–329 (2003)PubMedCrossRef
51.
go back to reference P.H. Maxwell, M.S. Wiesener, G.W. Chang, S.C. Clifford, E.C. Vaux, M.E. Cockman, C.C. Wykoff, C.W. Pugh, E.R. Maher, P.J. Ratcliffe, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399(6733), 271–275 (1999)PubMedCrossRef P.H. Maxwell, M.S. Wiesener, G.W. Chang, S.C. Clifford, E.C. Vaux, M.E. Cockman, C.C. Wykoff, C.W. Pugh, E.R. Maher, P.J. Ratcliffe, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399(6733), 271–275 (1999)PubMedCrossRef
53.
go back to reference C. Ngambenjawong, H.H. Gustafson, S.H. Pun, Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv Rev. 114, 206–221 (2017)PubMedPubMedCentralCrossRef C. Ngambenjawong, H.H. Gustafson, S.H. Pun, Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv Rev. 114, 206–221 (2017)PubMedPubMedCentralCrossRef
54.
go back to reference Z. Li, T. Wu, B. Zheng, L. Chen, Individualized precision treatment: Targeting TAM in HCC. Cancer Lett. 458, 86–91 (2019)PubMedCrossRef Z. Li, T. Wu, B. Zheng, L. Chen, Individualized precision treatment: Targeting TAM in HCC. Cancer Lett. 458, 86–91 (2019)PubMedCrossRef
55.
go back to reference L. D’Ignazio, M. Batie, S. Rocha, Hypoxia and inflammation in Cancer, Focus on HIF and NF-kappaB. Biomed. 5(2) (2017) L. D’Ignazio, M. Batie, S. Rocha, Hypoxia and inflammation in Cancer, Focus on HIF and NF-kappaB. Biomed. 5(2) (2017)
56.
go back to reference O.R. Colegio, N.Q. Chu, A.L. Szabo, T. Chu, A.M. Rhebergen, V. Jairam, N. Cyrus, C.E. Brokowski, S.C. Eisenbarth, G.M. Phillips et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513(7519), 559–563 (2014)PubMedPubMedCentralCrossRef O.R. Colegio, N.Q. Chu, A.L. Szabo, T. Chu, A.M. Rhebergen, V. Jairam, N. Cyrus, C.E. Brokowski, S.C. Eisenbarth, G.M. Phillips et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513(7519), 559–563 (2014)PubMedPubMedCentralCrossRef
57.
go back to reference J. Baier, M. Gansbauer, C. Giessler, H. Arnold, M. Muske, U. Schleicher, S. Lukassen, A. Ekici, M. Rauh, C. Daniel et al., Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J. Clin. Invest. 130(11), 5703–5720 (2020)PubMedCrossRef J. Baier, M. Gansbauer, C. Giessler, H. Arnold, M. Muske, U. Schleicher, S. Lukassen, A. Ekici, M. Rauh, C. Daniel et al., Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J. Clin. Invest. 130(11), 5703–5720 (2020)PubMedCrossRef
58.
go back to reference Y. Wang, M. Fu, J. Wang, J. Zhang, X. Han, Y. Song, Y. Fan, K. Hu, J. Zhou, J. Ge, Qiliqiangxin Improves Cardiac Function through Regulating Energy Metabolism via HIF-1alpha-Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction. Biomed Res Int. 2020, 1276195 (2020) Y. Wang, M. Fu, J. Wang, J. Zhang, X. Han, Y. Song, Y. Fan, K. Hu, J. Zhou, J. Ge, Qiliqiangxin Improves Cardiac Function through Regulating Energy Metabolism via HIF-1alpha-Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction. Biomed Res Int. 2020, 1276195 (2020)
59.
go back to reference F. Mouriaux, F. Sanschagrin, C. Diorio, S. Landreville, F. Comoz, E. Petit, M. Bernaudin, A.P. Rousseau, D. Bergeron, M. Morcos, Increased HIF-1alpha expression correlates with cell proliferation and vascular markers CD31 and VEGF-A in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 55(3), 1277–1283 (2014)CrossRef F. Mouriaux, F. Sanschagrin, C. Diorio, S. Landreville, F. Comoz, E. Petit, M. Bernaudin, A.P. Rousseau, D. Bergeron, M. Morcos, Increased HIF-1alpha expression correlates with cell proliferation and vascular markers CD31 and VEGF-A in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 55(3), 1277–1283 (2014)CrossRef
60.
go back to reference L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie, S. Wilhelm, M. Lynch, C. Carter, Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006)PubMedCrossRef L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie, S. Wilhelm, M. Lynch, C. Carter, Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006)PubMedCrossRef
Metadata
Title
Exosomes delivering miR-129-5p combined with sorafenib ameliorate hepatocellular carcinoma progression via the KCTD1/HIF-1α/VEGF pathway
Authors
Xinyu Zhu
Zhiwei Li
Li Chen
Limin Li
Mi Ouyang
Hao Zhou
Kai Xiao
Ling Lin
Paul K. Chu
Chang Zhou
Chengfeng Xun
Liu Yang
Wenhuan Huang
Xiaofeng Ding
Publication date
14-04-2025
Publisher
Springer Netherlands
Published in
Cellular Oncology
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-025-01044-x

Women’s health knowledge hub

Elevate your patient care with our comprehensive, evidence-based medical education on women's health. Designed to help you provide exceptional care for your female patients at every stage of life, we provide expert insights into topics such as reproductive health, menopause, breast cancer and sex-specific health risks and precision medicine.

Read more

Incorporating comprehensive genomic profiling into the standard-of-care for NSCLC and thyroid cancer

In this interactive webinar, experts Dr. Subbiah, Dr. Drilon, and Dr. Williams discuss best pathological practices within NSCLC and thyroid cancer, as well as how genomic testing can improve outcomes in clinical practice, using patient case studies as illustrations.

This content is intended only for US-based healthcare providers.

Supported by:
  • Illumina, Inc., and Eli Lilly and Company
Dr. Vivek Subbiah
Dr. Alexander Drilon
Dr. Michelle Williams
Developed by: Springer Healthcare
Watch now
Video

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more