Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2022

Open Access 21-03-2022 | Solid Tumor | Research Article

Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT

Authors: Sebastian E. Serfling, Constantin Lapa, Niklas Dreher, Philipp E. Hartrampf, Steven P. Rowe, Takahiro Higuchi, Andreas Schirbel, Alexander Weich, Stefanie Hahner, Martin Fassnacht, Andreas K. Buck, Rudolf A. Werner

Published in: Molecular Imaging and Biology | Issue 4/2022

Login to get access

Abstract

Background

CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs.

Methods

Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [68Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUVmean) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA, defined as SUVmean x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden.

Results

Median SUVmean in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUVmax in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found.

Conclusions

In patients with solid tumors imaged with [68Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged.
Literature
1.
go back to reference Chatterjee S, Behnam Azad B, Nimmagadda S (2014) The intricate role of CXCR4 in cancer. Adv Cancer Res 124:31–82CrossRef Chatterjee S, Behnam Azad B, Nimmagadda S (2014) The intricate role of CXCR4 in cancer. Adv Cancer Res 124:31–82CrossRef
2.
go back to reference Philipp-Abbrederis K, Herrmann K, Knop S et al (2015) In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 7:477–487CrossRef Philipp-Abbrederis K, Herrmann K, Knop S et al (2015) In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 7:477–487CrossRef
3.
go back to reference Zhou X, Dierks A, Kertels O, et al. (2020) 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers (Basel) 12. Zhou X, Dierks A, Kertels O, et al. (2020) 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers (Basel) 12.
4.
go back to reference Duell J, Krummenast F, Schirbel A et al (2021) Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. J Nucl Med 62:1415–1421CrossRef Duell J, Krummenast F, Schirbel A et al (2021) Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. J Nucl Med 62:1415–1421CrossRef
5.
go back to reference Werner RA, Kircher S, Higuchi T et al (2019) CXCR4-Directed Imaging in Solid Tumors. Front Oncol 9:770CrossRef Werner RA, Kircher S, Higuchi T et al (2019) CXCR4-Directed Imaging in Solid Tumors. Front Oncol 9:770CrossRef
6.
go back to reference Lewis R, Habringer S, Kircher M et al (2021) Investigation of spleen CXCR4 expression by [(68)Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res 11:77CrossRef Lewis R, Habringer S, Kircher M et al (2021) Investigation of spleen CXCR4 expression by [(68)Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res 11:77CrossRef
7.
go back to reference Lapa C, Herrmann K, Schirbel A et al (2017) CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 7:1589–1597CrossRef Lapa C, Herrmann K, Schirbel A et al (2017) CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 7:1589–1597CrossRef
8.
go back to reference Schottelius M, Herrmann K, Lapa C (2021) In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 13. Schottelius M, Herrmann K, Lapa C (2021) In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 13.
9.
go back to reference Ghobrial IM, Liu CJ, Zavidij O et al (2019) Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. Am J Hematol 94:1244–1253CrossRef Ghobrial IM, Liu CJ, Zavidij O et al (2019) Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. Am J Hematol 94:1244–1253CrossRef
10.
go back to reference Ludwig H, Weisel K, Petrucci MT et al (2017) Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a Phase IIa Study. Leukemia 31:997–1000CrossRef Ludwig H, Weisel K, Petrucci MT et al (2017) Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a Phase IIa Study. Leukemia 31:997–1000CrossRef
11.
go back to reference Beauregard JM, Hofman MS, Kong G, Hicks RJ (2012) The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 39:50–56CrossRef Beauregard JM, Hofman MS, Kong G, Hicks RJ (2012) The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 39:50–56CrossRef
12.
go back to reference Gafita A, Wang H, Robertson A, et al. (2021) Tumor sink effect in (68)Ga-PSMA-11 PET: Myth or Reality? J Nucl Med. Gafita A, Wang H, Robertson A, et al. (2021) Tumor sink effect in (68)Ga-PSMA-11 PET: Myth or Reality? J Nucl Med.
13.
go back to reference Weich A, Werner RA, Buck AK, et al. (2021) CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics (Basel) 11. Weich A, Werner RA, Buck AK, et al. (2021) CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics (Basel) 11.
14.
go back to reference Werner RA, Weich A, Higuchi T et al (2017) Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics 7:1489–1498CrossRef Werner RA, Weich A, Higuchi T et al (2017) Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics 7:1489–1498CrossRef
15.
go back to reference Bluemel C, Hahner S, Heinze B et al (2017) Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clin Nucl Med 42:e29–e34CrossRef Bluemel C, Hahner S, Heinze B et al (2017) Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clin Nucl Med 42:e29–e34CrossRef
16.
go back to reference Herrmann K, Lapa C, Wester HJ et al (2015) Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med 56:410–416CrossRef Herrmann K, Lapa C, Wester HJ et al (2015) Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med 56:410–416CrossRef
17.
go back to reference Werner RA, Hanscheid H, Leal JP et al (2019) Impact of Tumor Burden on Quantitative [(68)Ga] DOTATOC Biodistribution. Mol Imaging Biol 21:790–798CrossRef Werner RA, Hanscheid H, Leal JP et al (2019) Impact of Tumor Burden on Quantitative [(68)Ga] DOTATOC Biodistribution. Mol Imaging Biol 21:790–798CrossRef
18.
go back to reference Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945CrossRef Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945CrossRef
19.
go back to reference Werner RA, Bundschuh RA, Bundschuh L et al (2020) Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Impact of Tumor Burden on Normal Organ Uptake. Mol Imaging Biol 22:190–197CrossRef Werner RA, Bundschuh RA, Bundschuh L et al (2020) Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Impact of Tumor Burden on Normal Organ Uptake. Mol Imaging Biol 22:190–197CrossRef
20.
go back to reference Lapa C, Schreder M, Schirbel A et al (2017) [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [(18)F]FDG and laboratory values. Theranostics 7:205–212CrossRef Lapa C, Schreder M, Schirbel A et al (2017) [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [(18)F]FDG and laboratory values. Theranostics 7:205–212CrossRef
21.
go back to reference Mayerhoefer M, Raderer M, Lamm W, et al. (2021) CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line H. pylori eradication. Blood. Mayerhoefer M, Raderer M, Lamm W, et al. (2021) CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line H. pylori eradication. Blood.
22.
go back to reference Vag T, Gerngross C, Herhaus P et al (2016) First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med 57:741–746CrossRef Vag T, Gerngross C, Herhaus P et al (2016) First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med 57:741–746CrossRef
23.
go back to reference Reubi JC, Schar JC, Waser B et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282CrossRef Reubi JC, Schar JC, Waser B et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282CrossRef
24.
go back to reference Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 Ligands: The Next Big Hit? J Nucl Med 58:77S-82SCrossRef Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 Ligands: The Next Big Hit? J Nucl Med 58:77S-82SCrossRef
25.
go back to reference Ghosh A, Wang X, Klein E, Heston WD (2005) Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res 65:727–731CrossRef Ghosh A, Wang X, Klein E, Heston WD (2005) Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res 65:727–731CrossRef
26.
go back to reference Remes SM, Leijon HL, Vesterinen TJ, Arola JT, Haglund CH (2019) Immunohistochemical Expression of Somatostatin Receptor Subtypes in a Panel of Neuroendocrine Neoplasias. J Histochem Cytochem 67:735–743CrossRef Remes SM, Leijon HL, Vesterinen TJ, Arola JT, Haglund CH (2019) Immunohistochemical Expression of Somatostatin Receptor Subtypes in a Panel of Neuroendocrine Neoplasias. J Histochem Cytochem 67:735–743CrossRef
27.
go back to reference Santagata S, Ierano C, Trotta AM et al (2021) CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 11:591386CrossRef Santagata S, Ierano C, Trotta AM et al (2021) CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 11:591386CrossRef
28.
go back to reference Hattermann K, Mentlein R (2013) An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann Anat 195:103–110CrossRef Hattermann K, Mentlein R (2013) An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann Anat 195:103–110CrossRef
29.
go back to reference Kim SW, Kim HY, Lee HJ, Yun HJ, Kim S, Jo DY (2009) Dexamethasone and hypoxia upregulate CXCR4 expression in myeloma cells. Leuk Lymphoma 50:1163–1173CrossRef Kim SW, Kim HY, Lee HJ, Yun HJ, Kim S, Jo DY (2009) Dexamethasone and hypoxia upregulate CXCR4 expression in myeloma cells. Leuk Lymphoma 50:1163–1173CrossRef
30.
go back to reference Lapa C, Luckerath K, Kircher S et al (2019) Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. Br J Haematol 184:440–443CrossRef Lapa C, Luckerath K, Kircher S et al (2019) Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. Br J Haematol 184:440–443CrossRef
31.
go back to reference Werner RA, Bundschuh RA, Bundschuh L et al (2018) Molecular imaging reporting and data systems (MI-RADS): a generalizable framework for targeted radiotracers with theranostic implications. Ann Nucl Med 32:512–522CrossRef Werner RA, Bundschuh RA, Bundschuh L et al (2018) Molecular imaging reporting and data systems (MI-RADS): a generalizable framework for targeted radiotracers with theranostic implications. Ann Nucl Med 32:512–522CrossRef
32.
go back to reference Werner RA, Bundschuh RA, Bundschuh L et al (2018) Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on (18)F-DCFPyL PET/CT Imaging. J Nucl Med 59:1857–1864CrossRef Werner RA, Bundschuh RA, Bundschuh L et al (2018) Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on (18)F-DCFPyL PET/CT Imaging. J Nucl Med 59:1857–1864CrossRef
33.
go back to reference Sahakyan K, Li X, Lodge MA et al (2020) Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Intrapatient and Interpatient Variability of Normal Organ Uptake. Mol Imaging Biol 22:181–189CrossRef Sahakyan K, Li X, Lodge MA et al (2020) Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Intrapatient and Interpatient Variability of Normal Organ Uptake. Mol Imaging Biol 22:181–189CrossRef
Metadata
Title
Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT
Authors
Sebastian E. Serfling
Constantin Lapa
Niklas Dreher
Philipp E. Hartrampf
Steven P. Rowe
Takahiro Higuchi
Andreas Schirbel
Alexander Weich
Stefanie Hahner
Martin Fassnacht
Andreas K. Buck
Rudolf A. Werner
Publication date
21-03-2022
Publisher
Springer International Publishing
Keyword
Solid Tumor
Published in
Molecular Imaging and Biology / Issue 4/2022
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-022-01717-1

Other articles of this Issue 4/2022

Molecular Imaging and Biology 4/2022 Go to the issue