Skip to main content
Top

06-09-2024 | Skin Cancer | Head and Neck

The utility and reliability of a deep learning algorithm as a diagnosis support tool in head & neck non-melanoma skin malignancies

Authors: Alfonso Medela, Alberto Sabater, Ignacio Hernández Montilla, Taig MacCarthy, Andy Aguilar, Carlos Miguel Chiesa-Estomba

Published in: European Archives of Oto-Rhino-Laryngology

Login to get access

Abstract

Objective

The incidence of non-melanoma skin cancers, encompassing basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), is on the rise globally and new methods to improve skin malignancy diagnosis are necessary. This study aims to assess the performance of a CE-certified medical device as a diagnosis support tool in a head & neck (H&N) outpatient clinic, specifically focusing on the classification of three key diagnostics: BCC, cSCC, and non-malignant lesions (such as Actinic Cheilitis, Actinic Keratosis, and Seborrheic Keratosis).

Methods

a prospective, longitudinal, non-randomized study was designed to evaluate the performance of a deep learning-based method as a diagnosis tool in a group of patients referred to the head & neck clinic for suspicious skin lesions.

Results

135 patients were included, 92 (68.1%) were male and 43 (31.9%) were female. The median age was 71 years +/- 9 (Min: 56/Max: 91). Of those, 108 were malignant pathologies (54 basal cell carcinoma and 54 squamous cell carcinoma) and 27 benign pathologies (14 seborrheic keratoses, 2 actinic keratoses, and 11 actinic cheilitis). Of special significance is the remarkable performance of the medical device in identifying malignant lesions (basal cell carcinoma and squamous cell carcinoma) within the top-5 most likely diagnoses in above 90% of cases, underscoring its potential utility for early diagnosis and treatment.

Conclusion

In this study, the effectiveness of deep learning methods, with a particular focus on vision transformers, as a diagnostic aid for H&N cutaneous non-melanoma skin cancers was demonstrated, highlighting its potential value for early detection and treatment of non-melanoma skin cancers. In this vein, further research is needed in the future to elucidate the role of this technology, because of its potential in the primary care clinic, dermatology, and head & neck surgery clinic as well as in patients with suspicious lesions, as a self-exploration tool.
Literature
1.
go back to reference Karia PS, Jambusaria-Pahlajani A, Harrington DP, Murphy GF, Qureshi AA, Schmults CD (2014) Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and women’s Hospital tumor staging for cutaneous squamous cell carcinoma. J Clin Oncol 32(4):327CrossRefPubMed Karia PS, Jambusaria-Pahlajani A, Harrington DP, Murphy GF, Qureshi AA, Schmults CD (2014) Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and women’s Hospital tumor staging for cutaneous squamous cell carcinoma. J Clin Oncol 32(4):327CrossRefPubMed
2.
go back to reference Apalla Z, Nashan D, Weller RB, Castellsagué X (2017) Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatology Therapy 7:5–19CrossRefPubMedPubMedCentral Apalla Z, Nashan D, Weller RB, Castellsagué X (2017) Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatology Therapy 7:5–19CrossRefPubMedPubMedCentral
3.
go back to reference Rowe DE, Carroll RJ, Day CL Jr (1992) Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of thse skin, ear, and lip: implications for treatment modality selection. J Am Acad Dermatol 26(6):976–990CrossRefPubMed Rowe DE, Carroll RJ, Day CL Jr (1992) Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of thse skin, ear, and lip: implications for treatment modality selection. J Am Acad Dermatol 26(6):976–990CrossRefPubMed
4.
go back to reference Burton KA, Ashack KA, Khachemoune A (2016) Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol 17:491–450CrossRefPubMed Burton KA, Ashack KA, Khachemoune A (2016) Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol 17:491–450CrossRefPubMed
5.
go back to reference Gray DT, Suman VJ, Su WD, Clay RP, Harmsen WS, Roenigk RK (1997) Trends in the population-based incidence of squamous cell carcinoma of the skin first diagnosed between 1984 and 1992. Arch Dermatol 133(6):735–740CrossRefPubMed Gray DT, Suman VJ, Su WD, Clay RP, Harmsen WS, Roenigk RK (1997) Trends in the population-based incidence of squamous cell carcinoma of the skin first diagnosed between 1984 and 1992. Arch Dermatol 133(6):735–740CrossRefPubMed
6.
go back to reference Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30(5):774–778CrossRefPubMed Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30(5):774–778CrossRefPubMed
7.
go back to reference Motaparthi K, Kapil JP, Velazquez EF (2017) Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on cancer staging guidelines, prognostic factors, and histopathologic variants. Adv Anat Pathol 24(4):171–194CrossRefPubMed Motaparthi K, Kapil JP, Velazquez EF (2017) Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on cancer staging guidelines, prognostic factors, and histopathologic variants. Adv Anat Pathol 24(4):171–194CrossRefPubMed
8.
go back to reference Neelapu R, Devi GL, Rao KS (2018) Deep learning based conventional neural network architecture for medical image classification. Traitement Du Signal 35(2):169CrossRef Neelapu R, Devi GL, Rao KS (2018) Deep learning based conventional neural network architecture for medical image classification. Traitement Du Signal 35(2):169CrossRef
9.
go back to reference Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H (2003) Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 139(3):361–367CrossRefPubMed Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H (2003) Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 139(3):361–367CrossRefPubMed
10.
go back to reference Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Rubegni P (2004) Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res 10(6):1881–1886CrossRefPubMed Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Rubegni P (2004) Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res 10(6):1881–1886CrossRefPubMed
11.
go back to reference Kittler H, Pehamberger H, Wolff K, Binder M J. T. I. O. (2002). Diagnostic accuracy of dermoscopy. Lancet Oncol, 3(3), 159–165 Kittler H, Pehamberger H, Wolff K, Binder M J. T. I. O. (2002). Diagnostic accuracy of dermoscopy. Lancet Oncol, 3(3), 159–165
12.
go back to reference Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015), October Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In International workshop on machine learning in medical imaging (pp. 118–126). Cham: Springer International Publishing Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015), October Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In International workshop on machine learning in medical imaging (pp. 118–126). Cham: Springer International Publishing
13.
go back to reference Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397
14.
go back to reference Binder M, Kittler H, Seeber A, Steiner A, Pehamberger H, Wolff K (1998) Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma Res 8(3):261–266CrossRefPubMed Binder M, Kittler H, Seeber A, Steiner A, Pehamberger H, Wolff K (1998) Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma Res 8(3):261–266CrossRefPubMed
15.
go back to reference Hoffmann K (1997) In: Altmeyer P, Stücker M (eds) Skin cancer and UV radiation. Springer, Berlin, pp 219–226 Hoffmann K (1997) In: Altmeyer P, Stücker M (eds) Skin cancer and UV radiation. Springer, Berlin, pp 219–226
16.
go back to reference WH JR CLARK (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1983–1904 WH JR CLARK (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1983–1904
17.
go back to reference Schindewolf T, Stolz W, Albert R, Abmayr W, Harms H (1993) Classification of melanocytic lesions with color and texture analysis using digital image processing. Anal Quant Cytol Histol 15(1):1–11PubMed Schindewolf T, Stolz W, Albert R, Abmayr W, Harms H (1993) Classification of melanocytic lesions with color and texture analysis using digital image processing. Anal Quant Cytol Histol 15(1):1–11PubMed
18.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMedPubMedCentral Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMedPubMedCentral
19.
go back to reference Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Zalaudek I (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842CrossRefPubMed Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Zalaudek I (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842CrossRefPubMed
20.
go back to reference Marchetti MA, Codella NC, Dusza SW, Gutman DA, Helba B, Kalloo A, International Skin Imaging Collaboration (2018) …. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Journal of the American Academy of Dermatology, 78(2), 270–277 Marchetti MA, Codella NC, Dusza SW, Gutman DA, Helba B, Kalloo A, International Skin Imaging Collaboration (2018) …. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Journal of the American Academy of Dermatology, 78(2), 270–277
21.
go back to reference Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Utikal JS (2019) Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer 119:11–17CrossRefPubMed Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Utikal JS (2019) Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer 119:11–17CrossRefPubMed
22.
go back to reference Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
23.
go back to reference Lomas ALBJ, Leonardi-Bee J, Bath‐Hextall FJBJ (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRefPubMed Lomas ALBJ, Leonardi-Bee J, Bath‐Hextall FJBJ (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRefPubMed
24.
go back to reference Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthetic Surg 5(1):3–10CrossRef Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthetic Surg 5(1):3–10CrossRef
25.
go back to reference Loftus TJ, Shickel B, Ozrazgat-Baslanti T, Ren Y, Glicksberg BS, Cao J, Bihorac A (2022) Artificial intelligence-enabled decision support in nephrology. Nat Rev Nephrol 18(7):452–465CrossRefPubMedPubMedCentral Loftus TJ, Shickel B, Ozrazgat-Baslanti T, Ren Y, Glicksberg BS, Cao J, Bihorac A (2022) Artificial intelligence-enabled decision support in nephrology. Nat Rev Nephrol 18(7):452–465CrossRefPubMedPubMedCentral
26.
go back to reference Liang H, Tsui BY, Ni H, Valentim CC, Baxter SL, Liu G, Xia H (2019) Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 25(3):433–438CrossRefPubMed Liang H, Tsui BY, Ni H, Valentim CC, Baxter SL, Liu G, Xia H (2019) Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 25(3):433–438CrossRefPubMed
27.
go back to reference Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13:1–17CrossRef Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13:1–17CrossRef
28.
go back to reference Hincapié MA, Gallego JC, Gempeler A, Piñeros JA, Nasner D, Escobar MF (2020) Implementation and usefulness of telemedicine during the COVID-19 pandemic: a scoping review. J Prim care Community Health 11:2150132720980612CrossRefPubMedPubMedCentral Hincapié MA, Gallego JC, Gempeler A, Piñeros JA, Nasner D, Escobar MF (2020) Implementation and usefulness of telemedicine during the COVID-19 pandemic: a scoping review. J Prim care Community Health 11:2150132720980612CrossRefPubMedPubMedCentral
29.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep Learn Nat 521(7553):436–444 LeCun Y, Bengio Y, Hinton G (2015) Deep Learn Nat 521(7553):436–444
30.
go back to reference Asbeck SM, Imo BU, Okobi OE, Dorcé-Medard J (2023) The dermatologic care needs of a Rural Community in South Florida. Int J Environ Res Public Health 20(4):3071CrossRefPubMedPubMedCentral Asbeck SM, Imo BU, Okobi OE, Dorcé-Medard J (2023) The dermatologic care needs of a Rural Community in South Florida. Int J Environ Res Public Health 20(4):3071CrossRefPubMedPubMedCentral
31.
go back to reference Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Coz D (2020) A deep learning system for differential diagnosis of skin diseases. Nat Med 26(6):900–908CrossRefPubMed Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Coz D (2020) A deep learning system for differential diagnosis of skin diseases. Nat Med 26(6):900–908CrossRefPubMed
32.
go back to reference Ameri A (2020) A deep learning approach to skin cancer detection in dermoscopy images. J Biomedical Phys Eng 10(6):801CrossRef Ameri A (2020) A deep learning approach to skin cancer detection in dermoscopy images. J Biomedical Phys Eng 10(6):801CrossRef
33.
go back to reference SM J, Aravindan PM, C., Appavu R (2023) Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools Appl 82(10):15763–15778CrossRef SM J, Aravindan PM, C., Appavu R (2023) Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools Appl 82(10):15763–15778CrossRef
34.
go back to reference Serrano C, Lazo M, Serrano A, Toledo-Pastrana T, Barros-Tornay R, Acha B (2022) Clinically inspired skin lesion classification through the detection of dermoscopic criteria for basal cell carcinoma. J Imaging 8(7):197CrossRefPubMedPubMedCentral Serrano C, Lazo M, Serrano A, Toledo-Pastrana T, Barros-Tornay R, Acha B (2022) Clinically inspired skin lesion classification through the detection of dermoscopic criteria for basal cell carcinoma. J Imaging 8(7):197CrossRefPubMedPubMedCentral
35.
go back to reference Sharma AN, Shwe S, Mesinkovska NA (2022) Current state of machine learning for non-melanoma skin cancer. Arch Dermatol Res 314(4):325–327CrossRefPubMed Sharma AN, Shwe S, Mesinkovska NA (2022) Current state of machine learning for non-melanoma skin cancer. Arch Dermatol Res 314(4):325–327CrossRefPubMed
36.
go back to reference Du-Harpur X, Arthurs C, Ganier C, Woolf R, Laftah Z, Lakhan M, Lynch MD (2021) Clinically relevant vulnerabilities of deep machine learning systems for skin cancer diagnosis. J Invest Dermatol 141(4):916CrossRefPubMedPubMedCentral Du-Harpur X, Arthurs C, Ganier C, Woolf R, Laftah Z, Lakhan M, Lynch MD (2021) Clinically relevant vulnerabilities of deep machine learning systems for skin cancer diagnosis. J Invest Dermatol 141(4):916CrossRefPubMedPubMedCentral
37.
go back to reference Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Haenssle HA (2019) Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatology 155(10):1135–1141CrossRefPubMedPubMedCentral Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Haenssle HA (2019) Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatology 155(10):1135–1141CrossRefPubMedPubMedCentral
38.
go back to reference Montilla IH, Carthy M, Aguilar T, A., Medela A (2023) Dermatology Image Quality Assessment (DIQA): Artificial intelligence to ensure the clinical utility of images for remote consultations and clinical trials. J Am Acad Dermatol 88(4):927–928CrossRef Montilla IH, Carthy M, Aguilar T, A., Medela A (2023) Dermatology Image Quality Assessment (DIQA): Artificial intelligence to ensure the clinical utility of images for remote consultations and clinical trials. J Am Acad Dermatol 88(4):927–928CrossRef
Metadata
Title
The utility and reliability of a deep learning algorithm as a diagnosis support tool in head & neck non-melanoma skin malignancies
Authors
Alfonso Medela
Alberto Sabater
Ignacio Hernández Montilla
Taig MacCarthy
Andy Aguilar
Carlos Miguel Chiesa-Estomba
Publication date
06-09-2024
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-024-08951-z