Skip to main content
Top

Small Cell Lung Cancer—An Update on Chemotherapy Resistance

Stay up to date with medical journals in your specialty

Already registered? Log in here

Looking for something specific?

Find articles from over 500 clinical journals from Springer with the search function.

About journals on Springer Medicine

The range of medical journals on Springer Medicine is extremely diverse. It includes the current editions and archives of around 500 English-language journals from almost all medical disciplines published by Springer. 

The specialist literature is usually available both online in full text and as a PDF for download. The online view is optimized in such a way that the specialist texts can be read comfortably on all screen sizes, from desktops to tablets to smartphones. We also include features to support your use of the journals for your research, such as bookmark setting.

Whether you’re interested in internal medicine, surgery, general medicine, gynecology, orthopedics, neurology, or pediatrics, there are excellent journals in almost every subject area, such as the BMC Series, Diabetologia, Breast Cancer Research, Current Obesity Reports, CNS Drugs and many others, all of which are an integral part of the everyday life of doctors across Europe. 

The breadth of content from this suite of journals allows the Springer Medicine team to collect and deliver broad-ranging content across the full spectrum of medical knowledge, with a special focus on topics highlighted by these leading journals and their editorial boards and specialist authors. This guarantees a high quality of content and ensures that our readers are offered the most relevant topics in their respective specialist area. 

Our experienced clinical content managers constantly monitor the needs of medical professionals to provide up-to-date reports from international congresses, expert interviews, and a range of digestible content on emerging topics in the field of medicine.

Published in:

27-07-2024 | SCLC

Small Cell Lung Cancer—An Update on Chemotherapy Resistance

Authors: Qian Ying, Ruiyun Fan, Yili Shen, Boyi Chen, Jianhui Zhang, Qiuhui Li, Xuefei Shi

Published in: Current Treatment Options in Oncology | Issue 8/2024

Login to get access

Opinion Statement

Compared to other types of lung cancer, small cell lung cancer (SCLC) exhibits aggressive characteristics that promote drug resistance. Despite platinum-etoposide chemotherapy combined with immunotherapy being the current standard treatment, the rapid development of drug resistance has led to unsatisfactory clinical outcomes. This review focuses on the mechanisms contributing to the chemotherapy resistance phenotype in SCLC, such as increased intra-tumoral heterogeneity, alterations in the tumor microenvironment, changes in cellular metabolism, and dysregulation of apoptotic pathways. A comprehensive understanding of these drug resistance mechanisms in SCLC is imperative for ushering in a new era in cancer research, which will promise revolutionary advancements in cancer diagnosis and treatment methodologies.
Literature
1.
go back to reference Rodriguez E, Lilenbaum RC. Small cell lung cancer: past, present, and future. Curr Oncol Rep. 2010;12(5):327–34.PubMedCrossRef Rodriguez E, Lilenbaum RC. Small cell lung cancer: past, present, and future. Curr Oncol Rep. 2010;12(5):327–34.PubMedCrossRef
2.
3.
go back to reference Rudin CM, Poirier JT. Small-cell lung cancer in 2016: Shining light on novel targets and therapies. Nat Rev Clin Oncol. 2017;14(2):75–6.PubMedCrossRef Rudin CM, Poirier JT. Small-cell lung cancer in 2016: Shining light on novel targets and therapies. Nat Rev Clin Oncol. 2017;14(2):75–6.PubMedCrossRef
4.
6.
go back to reference Wang Q, Gumus ZH, Colarossi C, et al. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J Thorac Oncol. 2023;18(1):31–46.PubMedCrossRef Wang Q, Gumus ZH, Colarossi C, et al. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J Thorac Oncol. 2023;18(1):31–46.PubMedCrossRef
7.
go back to reference Niu X, Chen L, Li Y, Hu Z, He F. Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol. 2022;86(Pt 3):273–85.PubMedCrossRef Niu X, Chen L, Li Y, Hu Z, He F. Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol. 2022;86(Pt 3):273–85.PubMedCrossRef
8.
go back to reference Petty WJ, Paz-Ares L. Emerging Strategies for the Treatment of Small Cell Lung Cancer: A Review. JAMA Oncol. 2023;9(3):419–29.PubMedCrossRef Petty WJ, Paz-Ares L. Emerging Strategies for the Treatment of Small Cell Lung Cancer: A Review. JAMA Oncol. 2023;9(3):419–29.PubMedCrossRef
9.
go back to reference Horn L, Mansfield AS, Szczesna A, et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med. 2018;379(23):2220–9.PubMedCrossRef Horn L, Mansfield AS, Szczesna A, et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med. 2018;379(23):2220–9.PubMedCrossRef
10.
go back to reference Liu SV, Reck M, Mansfield AS, et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients With Extensive-Stage Small-Cell Lung Cancer Treated With Atezolizumab, Carboplatin, and Etoposide (IMpower133). J Clin Oncol: off j Am Soc Clin Oncol. 2021;39(6):619–30.CrossRef Liu SV, Reck M, Mansfield AS, et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients With Extensive-Stage Small-Cell Lung Cancer Treated With Atezolizumab, Carboplatin, and Etoposide (IMpower133). J Clin Oncol: off j Am Soc Clin Oncol. 2021;39(6):619–30.CrossRef
11.
go back to reference Schenk MW, Humphrey S, Hossain A, et al. Soluble guanylate cyclase signalling mediates etoposide resistance in progressing small cell lung cancer. Nat Commun. 2021;12(1):6652.PubMedPubMedCentralCrossRef Schenk MW, Humphrey S, Hossain A, et al. Soluble guanylate cyclase signalling mediates etoposide resistance in progressing small cell lung cancer. Nat Commun. 2021;12(1):6652.PubMedPubMedCentralCrossRef
12.
go back to reference Stewart CA, Gay CM, Xi Y, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36.PubMedPubMedCentralCrossRef Stewart CA, Gay CM, Xi Y, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36.PubMedPubMedCentralCrossRef
13.
go back to reference Thirusangu P, Ray U, Sarkar Bhattacharya S, et al. PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene. 2022;41(33):4003–17.PubMedPubMedCentralCrossRef Thirusangu P, Ray U, Sarkar Bhattacharya S, et al. PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene. 2022;41(33):4003–17.PubMedPubMedCentralCrossRef
14.
go back to reference Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83.PubMedCrossRef Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83.PubMedCrossRef
15.
go back to reference Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 2013;85(9):1219–26.PubMedCrossRef Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 2013;85(9):1219–26.PubMedCrossRef
16.
go back to reference Dexter DL, Leith JT. Tumor heterogeneity and drug resistance. J Clin Oncol: off J Am Soc Clin Oncol. 1986;4(2):244–57.CrossRef Dexter DL, Leith JT. Tumor heterogeneity and drug resistance. J Clin Oncol: off J Am Soc Clin Oncol. 1986;4(2):244–57.CrossRef
17.
go back to reference Dentro SC, Leshchiner I, Haase K, et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell. 2021;1848:2239-54.e39.CrossRef Dentro SC, Leshchiner I, Haase K, et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell. 2021;1848:2239-54.e39.CrossRef
18.
go back to reference Stanzione M, Zhong J, Wong E, et al. Translesion DNA synthesis mediates acquired resistance to olaparib plus temozolomide in small cell lung cancer. Sci Adv. 2022;8(19):eabn1229 Stanzione M, Zhong J, Wong E, et al. Translesion DNA synthesis mediates acquired resistance to olaparib plus temozolomide in small cell lung cancer. Sci Adv. 2022;8(19):eabn1229
19.
go back to reference Lim JS, Ibaseta A, Fischer MM, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 2017;545(7654):360–4.PubMedPubMedCentralCrossRef Lim JS, Ibaseta A, Fischer MM, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 2017;545(7654):360–4.PubMedPubMedCentralCrossRef
20.
go back to reference Falco JP, Baylin SB, Lupu R, et al. v-rasH induces non-small cell phenotype, with associated growth factors and receptors, in a small cell lung cancer cell line. J Clin Invest. 1990;85(6):1740–5.PubMedPubMedCentralCrossRef Falco JP, Baylin SB, Lupu R, et al. v-rasH induces non-small cell phenotype, with associated growth factors and receptors, in a small cell lung cancer cell line. J Clin Invest. 1990;85(6):1740–5.PubMedPubMedCentralCrossRef
21.
go back to reference Mabry M, Nakagawa T, Nelkin BD, et al. v-Ha-ras oncogene insertion: a model for tumor progression of human small cell lung cancer. Proc Natl Acad Sci USA. 1988;85(17):6523–7.PubMedPubMedCentralCrossRef Mabry M, Nakagawa T, Nelkin BD, et al. v-Ha-ras oncogene insertion: a model for tumor progression of human small cell lung cancer. Proc Natl Acad Sci USA. 1988;85(17):6523–7.PubMedPubMedCentralCrossRef
22.
go back to reference Calbo J, van Montfort E, Proost N, et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell. 2011;19(2):244–56.PubMedCrossRef Calbo J, van Montfort E, Proost N, et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell. 2011;19(2):244–56.PubMedCrossRef
23.
go back to reference Wu Q, Guo J, Liu Y, et al. YAP drives fate conversion and chemoresistance of small cell lung cancer. Sci Adv. 2021;7(40): eabg1850 Wu Q, Guo J, Liu Y, et al. YAP drives fate conversion and chemoresistance of small cell lung cancer. Sci Adv. 2021;7(40): eabg1850
24.
go back to reference Galli GG, Carrara M, Yuan WC, et al. YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Mol Cell. 2015;60(2):328–37.PubMedPubMedCentralCrossRef Galli GG, Carrara M, Yuan WC, et al. YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Mol Cell. 2015;60(2):328–37.PubMedPubMedCentralCrossRef
26.
go back to reference de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403.PubMedCrossRef de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403.PubMedCrossRef
27.
go back to reference Cabanos HF, Hata AN. Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers (Basel). 2021;13(11):2666.PubMedCrossRef Cabanos HF, Hata AN. Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers (Basel). 2021;13(11):2666.PubMedCrossRef
28.
go back to reference Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.PubMedCrossRef Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.PubMedCrossRef
29.
go back to reference Chan JM, Quintanal-Villalonga A, Gao VR, et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell. 2021;39(11):1479-96.e18.PubMedPubMedCentralCrossRef Chan JM, Quintanal-Villalonga A, Gao VR, et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell. 2021;39(11):1479-96.e18.PubMedPubMedCentralCrossRef
30.
go back to reference Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol. 2020;10:625332.PubMedCrossRef Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol. 2020;10:625332.PubMedCrossRef
31.
go back to reference Grunblatt E, Wu N, Zhang H, et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34(17–18):1210–26.PubMedPubMedCentralCrossRef Grunblatt E, Wu N, Zhang H, et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34(17–18):1210–26.PubMedPubMedCentralCrossRef
32.
go back to reference Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57.PubMedCrossRef Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57.PubMedCrossRef
33.
go back to reference Jiang Y, Zhang H, Wang J, Liu Y, Luo T, Hua H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 2022;15(1):34.PubMedPubMedCentralCrossRef Jiang Y, Zhang H, Wang J, Liu Y, Luo T, Hua H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 2022;15(1):34.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel). 2021;13(21):5510.PubMedCrossRef Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel). 2021;13(21):5510.PubMedCrossRef
36.
go back to reference Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999;5(6):662–8.PubMedCrossRef Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999;5(6):662–8.PubMedCrossRef
37.
go back to reference Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res. 2005;65(18):8423–32.PubMedCrossRef Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res. 2005;65(18):8423–32.PubMedCrossRef
38.
go back to reference Terranova VP, Liotta LA, Russo RG, Martin GR. Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res. 1982;42(6):2265–9.PubMed Terranova VP, Liotta LA, Russo RG, Martin GR. Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res. 1982;42(6):2265–9.PubMed
39.
go back to reference Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA. 1990;87(17):6698–702.PubMedPubMedCentralCrossRef Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA. 1990;87(17):6698–702.PubMedPubMedCentralCrossRef
40.
go back to reference Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res. 2016;5(1):16–25.PubMedPubMedCentral Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res. 2016;5(1):16–25.PubMedPubMedCentral
41.
go back to reference Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol. 2022;87:160–9.PubMedCrossRef Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol. 2022;87:160–9.PubMedCrossRef
42.
go back to reference Phi LTH, Sari IN, Yang YG, et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018;2018:5416923.PubMedPubMedCentralCrossRef Phi LTH, Sari IN, Yang YG, et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018;2018:5416923.PubMedPubMedCentralCrossRef
44.
45.
go back to reference Viale A, Pettazzoni P, Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–32.PubMedPubMedCentralCrossRef Viale A, Pettazzoni P, Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–32.PubMedPubMedCentralCrossRef
46.
go back to reference Parada LF, Dirks PB, Wechsler-Reya RJ. Brain Tumor Stem Cells Remain in Play. J Clin Oncol: off J Am Soc Clin Oncol. 2017;35(21):2428–31.CrossRef Parada LF, Dirks PB, Wechsler-Reya RJ. Brain Tumor Stem Cells Remain in Play. J Clin Oncol: off J Am Soc Clin Oncol. 2017;35(21):2428–31.CrossRef
47.
go back to reference Sarvi S, Mackinnon AC, Avlonitis N, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65.PubMedCrossRef Sarvi S, Mackinnon AC, Avlonitis N, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65.PubMedCrossRef
48.
go back to reference Yu J, Wang S, Zhao W, et al. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel alpha2delta1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer. Clin Cancer Res. 2018;24(9):2148–58.PubMedCrossRef Yu J, Wang S, Zhao W, et al. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel alpha2delta1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer. Clin Cancer Res. 2018;24(9):2148–58.PubMedCrossRef
49.
go back to reference Kursunel MA, Taskiran EZ, Tavukcuoglu E, et al. Small cell lung cancer stem cells display mesenchymal properties and exploit immune checkpoint pathways in activated cytotoxic T lymphocytes. Cancer Immunol Immunother. 2022;71(2):445–59.PubMedCrossRef Kursunel MA, Taskiran EZ, Tavukcuoglu E, et al. Small cell lung cancer stem cells display mesenchymal properties and exploit immune checkpoint pathways in activated cytotoxic T lymphocytes. Cancer Immunol Immunother. 2022;71(2):445–59.PubMedCrossRef
51.
go back to reference Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.PubMedCrossRef Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.PubMedCrossRef
52.
54.
go back to reference Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21.PubMedCrossRef Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21.PubMedCrossRef
55.
go back to reference Wagner W, Ciszewski WM, Kania KD. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 2015;13:36.PubMedPubMedCentralCrossRef Wagner W, Ciszewski WM, Kania KD. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 2015;13:36.PubMedPubMedCentralCrossRef
56.
go back to reference Botzer LE, Maman S, Sagi-Assif O, et al. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer. 2016;114(7):759–66.PubMedCrossRef Botzer LE, Maman S, Sagi-Assif O, et al. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer. 2016;114(7):759–66.PubMedCrossRef
57.
58.
go back to reference Guerra B, Recio C, Aranda-Tavio H, Guerra-Rodriguez M, Garcia-Castellano JM, Fernandez-Perez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol. 2021;11:626971.PubMedPubMedCentralCrossRef Guerra B, Recio C, Aranda-Tavio H, Guerra-Rodriguez M, Garcia-Castellano JM, Fernandez-Perez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol. 2021;11:626971.PubMedPubMedCentralCrossRef
59.
go back to reference Guo C, Wan R, He Y, et al. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. Nat Cancer. 2022;3(5):614–28.PubMedCrossRef Guo C, Wan R, He Y, et al. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. Nat Cancer. 2022;3(5):614–28.PubMedCrossRef
60.
go back to reference Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.PubMedCrossRef Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.PubMedCrossRef
62.
go back to reference Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006;2(3):e40.PubMedPubMedCentralCrossRef Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006;2(3):e40.PubMedPubMedCentralCrossRef
63.
go back to reference Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291–366.PubMedCrossRef Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291–366.PubMedCrossRef
64.
go back to reference Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001; 105(4): 511-9 Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001; 105(4): 511-9
65.
go back to reference Preisig-Muller R, Schlichthorl G, Goerge T, et al. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA. 2002;99(11):7774–9.PubMedPubMedCentralCrossRef Preisig-Muller R, Schlichthorl G, Goerge T, et al. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA. 2002;99(11):7774–9.PubMedPubMedCentralCrossRef
66.
go back to reference Sansone V, Griggs RC, Meola G, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.PubMedCrossRef Sansone V, Griggs RC, Meola G, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.PubMedCrossRef
67.
go back to reference Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994;35(3):326–30.PubMedCrossRef Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994;35(3):326–30.PubMedCrossRef
68.
go back to reference Liu H, Huang J, Peng J, et al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer. 2015; 14:59 Liu H, Huang J, Peng J, et al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer. 2015; 14:59
69.
go back to reference Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y. Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer. 2010;46(9):1692–702.PubMedCrossRef Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y. Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer. 2010;46(9):1692–702.PubMedCrossRef
70.
71.
go back to reference Lam HD, Lemay AM, Kelly J, Hill CE. Loss of Kv and MaxiK currents associated with increased MRP1 expression in small cell lung carcinoma. J Cell Physiol. 2006;209(2):535–41.PubMedCrossRef Lam HD, Lemay AM, Kelly J, Hill CE. Loss of Kv and MaxiK currents associated with increased MRP1 expression in small cell lung carcinoma. J Cell Physiol. 2006;209(2):535–41.PubMedCrossRef
72.
go back to reference Song Y, Sun Y, Lei Y, Yang K, Tang R. YAP1 promotes multidrug resistance of small cell lung cancer by CD74-related signaling pathways. Cancer Med. 2020;9(1):259–68.PubMedCrossRef Song Y, Sun Y, Lei Y, Yang K, Tang R. YAP1 promotes multidrug resistance of small cell lung cancer by CD74-related signaling pathways. Cancer Med. 2020;9(1):259–68.PubMedCrossRef
73.
go back to reference Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature. 1996;384(6610):638–41.PubMedCrossRef Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature. 1996;384(6610):638–41.PubMedCrossRef
74.
go back to reference Debatin KM, Beltinger C, Bohler T, et al. Regulation of apoptosis through CD95 (APO-I/Fas) receptor-ligand interaction. Biochem Soc Trans. 1997;25(2):405–10.PubMedCrossRef Debatin KM, Beltinger C, Bohler T, et al. Regulation of apoptosis through CD95 (APO-I/Fas) receptor-ligand interaction. Biochem Soc Trans. 1997;25(2):405–10.PubMedCrossRef
75.
go back to reference Wu W, Wang HD, Guo W, et al. Up-regulation of Fas reverses cisplatin resistance of human small cell lung cancer cells. J Exp Clin Cancer Res. 2010;29(1):49.PubMedPubMedCentralCrossRef Wu W, Wang HD, Guo W, et al. Up-regulation of Fas reverses cisplatin resistance of human small cell lung cancer cells. J Exp Clin Cancer Res. 2010;29(1):49.PubMedPubMedCentralCrossRef
76.
go back to reference Luo M, Ye L, Chang R, et al. Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat Commun. 2022;13(1):6345.PubMedPubMedCentralCrossRef Luo M, Ye L, Chang R, et al. Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat Commun. 2022;13(1):6345.PubMedPubMedCentralCrossRef
78.
80.
go back to reference Xie K, Doles J, Hemann MT, Walker GC. Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci USA. 2010;107(48):20792–7.PubMedPubMedCentralCrossRef Xie K, Doles J, Hemann MT, Walker GC. Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci USA. 2010;107(48):20792–7.PubMedPubMedCentralCrossRef
81.
go back to reference Coleman N, Zhang B, Byers LA, Yap TA. The role of Schlafen 11 (SLFN11) as a predictive biomarker for targeting the DNA damage response. Br J Cancer. 2021;124(5):857–9.PubMedCrossRef Coleman N, Zhang B, Byers LA, Yap TA. The role of Schlafen 11 (SLFN11) as a predictive biomarker for targeting the DNA damage response. Br J Cancer. 2021;124(5):857–9.PubMedCrossRef
82.
go back to reference Zoppoli G, Regairaz M, Leo E, et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA. 2012;109(37):15030–5.PubMedPubMedCentralCrossRef Zoppoli G, Regairaz M, Leo E, et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA. 2012;109(37):15030–5.PubMedPubMedCentralCrossRef
83.
go back to reference Gardner EE, Lok BH, Schneeberger VE, et al. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell. 2017;31(2):286–99.PubMedPubMedCentralCrossRef Gardner EE, Lok BH, Schneeberger VE, et al. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell. 2017;31(2):286–99.PubMedPubMedCentralCrossRef
84.
go back to reference Scattolin D, Maso AD, Ferro A, et al. The emerging role of Schlafen-11 (SLFN11) in predicting response to anticancer treatments: Focus on small cell lung cancer. Cancer Treat Rev. 2024;128:102768.PubMedCrossRef Scattolin D, Maso AD, Ferro A, et al. The emerging role of Schlafen-11 (SLFN11) in predicting response to anticancer treatments: Focus on small cell lung cancer. Cancer Treat Rev. 2024;128:102768.PubMedCrossRef
85.
go back to reference Krushkal J, Silvers T, Reinhold WC, et al. Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets. Clin Epigenetics. 2020;12(1):93.PubMedPubMedCentralCrossRef Krushkal J, Silvers T, Reinhold WC, et al. Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets. Clin Epigenetics. 2020;12(1):93.PubMedPubMedCentralCrossRef
86.
go back to reference Brickner JR, Soll JM, Lombardi PM, et al. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature. 2017;551(7680):389–93.PubMedPubMedCentralCrossRef Brickner JR, Soll JM, Lombardi PM, et al. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature. 2017;551(7680):389–93.PubMedPubMedCentralCrossRef
87.
88.
go back to reference Lukinovic V, Hausmann S, Roth GS, et al. SMYD3 Impedes Small Cell Lung Cancer Sensitivity to Alkylation Damage through RNF113A Methylation-Phosphorylation Cross-talk. Cancer Discov. 2022;12(9):2158–79.PubMedPubMedCentralCrossRef Lukinovic V, Hausmann S, Roth GS, et al. SMYD3 Impedes Small Cell Lung Cancer Sensitivity to Alkylation Damage through RNF113A Methylation-Phosphorylation Cross-talk. Cancer Discov. 2022;12(9):2158–79.PubMedPubMedCentralCrossRef
89.
go back to reference Zhu B, Zhou X. The study of PI3K/AKT pathway in lung cancer metastasis and drug resistance. Zhongguo Fei Ai Za Zhi. 2011;14(8):689–94.PubMed Zhu B, Zhou X. The study of PI3K/AKT pathway in lung cancer metastasis and drug resistance. Zhongguo Fei Ai Za Zhi. 2011;14(8):689–94.PubMed
90.
go back to reference Li X, Li C, Guo C, et al. PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J Genet Genomics. 2021;48(7):640–51.PubMedCrossRef Li X, Li C, Guo C, et al. PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J Genet Genomics. 2021;48(7):640–51.PubMedCrossRef
91.
go back to reference Jin Y, Chen Y, Tang H, et al. Activation of PI3K/AKT Pathway Is a Potential Mechanism of Treatment Resistance in Small Cell Lung Cancer. Clin Cancer Res. 2022;28(3):526–39.PubMedCrossRef Jin Y, Chen Y, Tang H, et al. Activation of PI3K/AKT Pathway Is a Potential Mechanism of Treatment Resistance in Small Cell Lung Cancer. Clin Cancer Res. 2022;28(3):526–39.PubMedCrossRef
92.
go back to reference Chen R, Li D, Zheng M, et al. FGFRL1 affects chemoresistance of small-cell lung cancer by modulating the PI3K/Akt pathway via ENO1. J Cell Mol Med. 2020;24(3):2123–34.PubMedPubMedCentralCrossRef Chen R, Li D, Zheng M, et al. FGFRL1 affects chemoresistance of small-cell lung cancer by modulating the PI3K/Akt pathway via ENO1. J Cell Mol Med. 2020;24(3):2123–34.PubMedPubMedCentralCrossRef
93.
go back to reference Tripathi SC, Fahrmann JF, Celiktas M, et al. MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway. Cancer Res. 2017;77(16):4414–25.PubMedPubMedCentralCrossRef Tripathi SC, Fahrmann JF, Celiktas M, et al. MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway. Cancer Res. 2017;77(16):4414–25.PubMedPubMedCentralCrossRef
94.
go back to reference Krystal GW, Sulanke G, Litz J. Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther. 2002;1(11):913–22.PubMed Krystal GW, Sulanke G, Litz J. Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther. 2002;1(11):913–22.PubMed
95.
go back to reference Moon H, Han KH, Ro SW. Pro-tumorigenic roles of TGF-beta signaling during the early stages of liver tumorigenesis through upregulation of Snail. BMB Rep. 2017;50(12):599–600.PubMedPubMedCentralCrossRef Moon H, Han KH, Ro SW. Pro-tumorigenic roles of TGF-beta signaling during the early stages of liver tumorigenesis through upregulation of Snail. BMB Rep. 2017;50(12):599–600.PubMedPubMedCentralCrossRef
96.
go back to reference Lin A, Zhu L, Jiang A, Mou W, Zhang J, Luo P. Activation of the TGF-beta Pathway Enhances the Efficacy of Platinum-Based Chemotherapy in Small Cell Lung Cancer Patients. Dis Markers. 2022;2022:8766448.PubMedPubMedCentralCrossRef Lin A, Zhu L, Jiang A, Mou W, Zhang J, Luo P. Activation of the TGF-beta Pathway Enhances the Efficacy of Platinum-Based Chemotherapy in Small Cell Lung Cancer Patients. Dis Markers. 2022;2022:8766448.PubMedPubMedCentralCrossRef
97.
98.
go back to reference Hayakawa A, Saitoh M, Miyazawa K. Dual Roles for Epithelial Splicing Regulatory Proteins 1 (ESRP1) and 2 (ESRP2) in Cancer Progression. Adv Exp Med Biol. 2017;925:33–40.PubMedCrossRef Hayakawa A, Saitoh M, Miyazawa K. Dual Roles for Epithelial Splicing Regulatory Proteins 1 (ESRP1) and 2 (ESRP2) in Cancer Progression. Adv Exp Med Biol. 2017;925:33–40.PubMedCrossRef
99.
go back to reference Zheng M, Niu Y, Bu J, et al. ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-beta/Smad signaling. Aging (Albany NY). 2021;13(3):3554–72.PubMedCrossRef Zheng M, Niu Y, Bu J, et al. ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-beta/Smad signaling. Aging (Albany NY). 2021;13(3):3554–72.PubMedCrossRef
100.
go back to reference Huang W, Yang Y, Wu J, et al. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-beta signalling. Cell Death Differ. 2020;27(5):1709–27.PubMedCrossRef Huang W, Yang Y, Wu J, et al. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-beta signalling. Cell Death Differ. 2020;27(5):1709–27.PubMedCrossRef
101.
go back to reference Leung EL, Fraser M, Fiscus RR, Tsang BK. Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: involvement in p53 regulation and cisplatin resistance. Br J Cancer. 2008;98(11):1803–9.PubMedPubMedCentralCrossRef Leung EL, Fraser M, Fiscus RR, Tsang BK. Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: involvement in p53 regulation and cisplatin resistance. Br J Cancer. 2008;98(11):1803–9.PubMedPubMedCentralCrossRef
102.
go back to reference Yao Z, Lin A, Yi Y, Shen W, Zhang J, Luo P. THSD7B Mutation Induces Platinum Resistance in Small Cell Lung Cancer Patients. Drug Des Devel Ther. 2022;16:1679–95.PubMedPubMedCentralCrossRef Yao Z, Lin A, Yi Y, Shen W, Zhang J, Luo P. THSD7B Mutation Induces Platinum Resistance in Small Cell Lung Cancer Patients. Drug Des Devel Ther. 2022;16:1679–95.PubMedPubMedCentralCrossRef
103.
go back to reference Chen YX, Wang CJ, Xiao DS, et al. eIF3a R803K mutation mediates chemotherapy resistance by inducing cellular senescence in small cell lung cancer. Pharmacol Res. 2021;174:105934.PubMedCrossRef Chen YX, Wang CJ, Xiao DS, et al. eIF3a R803K mutation mediates chemotherapy resistance by inducing cellular senescence in small cell lung cancer. Pharmacol Res. 2021;174:105934.PubMedCrossRef
104.
go back to reference He J, Zhu S, Liang X, et al. LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep. 2021;48(8):1–15.PubMedCrossRef He J, Zhu S, Liang X, et al. LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep. 2021;48(8):1–15.PubMedCrossRef
105.
go back to reference Li D, Shen Y, Ren H, Wang L, Yang J, Wang Y. Repression of linc01555 up-regulates angiomotin-p130 via the microRNA-122-5p/clic1 axis to impact vasculogenic mimicry-mediated chemotherapy resistance in small cell lung cancer. Cell Cycle. 2023;22(2):255–68.PubMedCrossRef Li D, Shen Y, Ren H, Wang L, Yang J, Wang Y. Repression of linc01555 up-regulates angiomotin-p130 via the microRNA-122-5p/clic1 axis to impact vasculogenic mimicry-mediated chemotherapy resistance in small cell lung cancer. Cell Cycle. 2023;22(2):255–68.PubMedCrossRef
106.
go back to reference Wang X, Li X, Niu L, et al. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene. 2024;43(22):1669–87.PubMedCrossRef Wang X, Li X, Niu L, et al. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene. 2024;43(22):1669–87.PubMedCrossRef
107.
go back to reference Zeng F, Wang Q, Wang S, et al. Linc00173 promotes chemoresistance and progression of small cell lung cancer by sponging miR-218 to regulate Etk expression. Oncogene. 2020;39(2):293–307.PubMedCrossRef Zeng F, Wang Q, Wang S, et al. Linc00173 promotes chemoresistance and progression of small cell lung cancer by sponging miR-218 to regulate Etk expression. Oncogene. 2020;39(2):293–307.PubMedCrossRef
108.
go back to reference Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef
109.
go back to reference Ranade AR, Cherba D, Sridhar S, et al. MicroRNA 92a–2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol. 2010;5(8):1273–8.PubMedCrossRef Ranade AR, Cherba D, Sridhar S, et al. MicroRNA 92a–2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol. 2010;5(8):1273–8.PubMedCrossRef
110.
go back to reference Wang Z, Fu S, Zhao J, et al. Transbronchoscopic patient biopsy-derived xenografts as a preclinical model to explore chemorefractory-associated pathways and biomarkers for small-cell lung cancer. Cancer Lett. 2019;440–441:180–8.PubMedCrossRef Wang Z, Fu S, Zhao J, et al. Transbronchoscopic patient biopsy-derived xenografts as a preclinical model to explore chemorefractory-associated pathways and biomarkers for small-cell lung cancer. Cancer Lett. 2019;440–441:180–8.PubMedCrossRef
111.
go back to reference Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell. 2020;37(3):270–88.PubMedPubMedCentralCrossRef Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell. 2020;37(3):270–88.PubMedPubMedCentralCrossRef
112.
go back to reference Zhang Z, Zhang C, Yang Z, et al. m(6)A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J Hematol Oncol. 2021;14(1):190.PubMedPubMedCentralCrossRef Zhang Z, Zhang C, Yang Z, et al. m(6)A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J Hematol Oncol. 2021;14(1):190.PubMedPubMedCentralCrossRef
113.
go back to reference Belgiovine C, Bello E, Liguori M, et al. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br J Cancer. 2017;117(5):628–38.PubMedPubMedCentralCrossRef Belgiovine C, Bello E, Liguori M, et al. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br J Cancer. 2017;117(5):628–38.PubMedPubMedCentralCrossRef
114.
go back to reference Santamaria Nunez G, Robles CM, Giraudon C, et al. Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells. Mol Cancer Ther. 2016;15(10):2399–412.PubMedCrossRef Santamaria Nunez G, Robles CM, Giraudon C, et al. Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells. Mol Cancer Ther. 2016;15(10):2399–412.PubMedCrossRef
115.
go back to reference Trigo J, Subbiah V, Besse B, et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol. 2020;21(5):645–54.PubMedCrossRef Trigo J, Subbiah V, Besse B, et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol. 2020;21(5):645–54.PubMedCrossRef
116.
go back to reference Koinis F, Agelaki S, Karavassilis V, et al. Second-line pazopanib in patients with relapsed and refractory small-cell lung cancer: a multicentre phase II study of the Hellenic Oncology Research Group. Br J Cancer. 2017;117(1):8–14.PubMedPubMedCentralCrossRef Koinis F, Agelaki S, Karavassilis V, et al. Second-line pazopanib in patients with relapsed and refractory small-cell lung cancer: a multicentre phase II study of the Hellenic Oncology Research Group. Br J Cancer. 2017;117(1):8–14.PubMedPubMedCentralCrossRef
117.
go back to reference Ready N, Farago AF, de Braud F, et al. Third-Line Nivolumab Monotherapy in Recurrent SCLC: CheckMate 032. J Thorac Oncol. 2019;14(2):237–44.PubMedCrossRef Ready N, Farago AF, de Braud F, et al. Third-Line Nivolumab Monotherapy in Recurrent SCLC: CheckMate 032. J Thorac Oncol. 2019;14(2):237–44.PubMedCrossRef
118.
go back to reference Ready NE, Ott PA, Hellmann MD, et al. Nivolumab Monotherapy and Nivolumab Plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results From the CheckMate 032 Randomized Cohort. J Thorac Oncol. 2020;15(3):426–35.PubMedCrossRef Ready NE, Ott PA, Hellmann MD, et al. Nivolumab Monotherapy and Nivolumab Plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results From the CheckMate 032 Randomized Cohort. J Thorac Oncol. 2020;15(3):426–35.PubMedCrossRef
119.
go back to reference Spigel DR, Vicente D, Ciuleanu TE, et al. Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331(☆). Ann Oncol. 2021;32(5):631–41.PubMedCrossRef Spigel DR, Vicente D, Ciuleanu TE, et al. Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331(☆). Ann Oncol. 2021;32(5):631–41.PubMedCrossRef
120.
go back to reference Kim JW, Ko JH, Sage J. DLL3 regulates Notch signaling in small cell lung cancer iScience. 2022; 25(12): 105603 Kim JW, Ko JH, Sage J. DLL3 regulates Notch signaling in small cell lung cancer iScience. 2022; 25(12): 105603
121.
go back to reference Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet. 2011;20(5):905–16.PubMedCrossRef Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet. 2011;20(5):905–16.PubMedCrossRef
122.
go back to reference Geffers I, Serth K, Chapman G, et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol. 2007;178(3):465–76.PubMedPubMedCentralCrossRef Geffers I, Serth K, Chapman G, et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol. 2007;178(3):465–76.PubMedPubMedCentralCrossRef
123.
go back to reference Tanaka K, Isse K, Fujihira T, et al. Prevalence of Delta-like protein 3 expression in patients with small cell lung cancer. Lung Cancer. 2018;115:116–20.PubMedCrossRef Tanaka K, Isse K, Fujihira T, et al. Prevalence of Delta-like protein 3 expression in patients with small cell lung cancer. Lung Cancer. 2018;115:116–20.PubMedCrossRef
124.
go back to reference Giffin MJ, Cooke K, Lobenhofer EK, et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin Cancer Res. 2021;27(5):1526–37.PubMedCrossRef Giffin MJ, Cooke K, Lobenhofer EK, et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin Cancer Res. 2021;27(5):1526–37.PubMedCrossRef
125.
go back to reference Paz-Ares L, Champiat S, Lai WV, et al. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J Clin Oncol: off J Am Soc Clin Oncol. 2023;41(16):2893–903.CrossRef Paz-Ares L, Champiat S, Lai WV, et al. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J Clin Oncol: off J Am Soc Clin Oncol. 2023;41(16):2893–903.CrossRef
126.
go back to reference Ahn MJ, Cho BC, Felip E, et al. Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer. N Engl J Med. 2023;389(22):2063–75.PubMedCrossRef Ahn MJ, Cho BC, Felip E, et al. Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer. N Engl J Med. 2023;389(22):2063–75.PubMedCrossRef
Metadata
Title
Small Cell Lung Cancer—An Update on Chemotherapy Resistance
Authors
Qian Ying
Ruiyun Fan
Yili Shen
Boyi Chen
Jianhui Zhang
Qiuhui Li
Xuefei Shi
Publication date
27-07-2024
Publisher
Springer US
Published in
Current Treatment Options in Oncology / Issue 8/2024
Print ISSN: 1527-2729
Electronic ISSN: 1534-6277
DOI
https://doi.org/10.1007/s11864-024-01245-w

Other articles of this Issue 8/2024

Current Treatment Options in Oncology 8/2024 Go to the issue